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Abstract: This article presents a review to provide up-to-date research findings on concentrated
photovoltaic (CPV) cooling, explore the key challenges and opportunities, and discuss the limitations.
In addition, it provides a vision of a possible future trend and a glimpse of a promising novel
approach to CPV cooling based on pulsating flow, in contrast to existing cooling methods. Non-
concentrated photovoltaics (PV) have modest efficiency of up to around 20% because they utilise
only a narrow spectrum of solar irradiation for electricity conversion. Therefore, recent advances
employed multi-junction PV or CPV to widen the irradiation spectrum for conversion. CPV systems
concentrate solar irradiation on the cell’s surface, producing high solar flux and temperature. The
efficient cooling of CPV cells is critical to avoid thermal degradation and ensure optimal performance.
Studies have shown that pulsating flow can enhance heat transfer in various engineering applications.
The advantage of pulsating flow over steady flow is that it can create additional turbulence and
mixing in the fluid, resulting in a higher heat transfer coefficient. Simulation results with experimental
validation demonstrate the enhancement of this new cooling approach for future CPV systems. The
use of pulsating flow in CPV cooling has shown promising results in improving heat transfer and
reducing temperature gradients.

Keywords: concentrated solar cell; solar energy; CPV cooling mechanism; electrical and thermal
efficiency; high heat flux dissipation; heat transfer enhancement

1. Introduction

Solar energy in the world’s total energy mix has become much more significant over
the past two decades [1–3]. Photovoltaic (PV) cells produce electricity directly from the
sun’s irradiation. They are an excellent alternative to decreasing the use of fossil fuels,
which contributes to global warming [4–6]. On our planet, solar energy from direct sunlight
is both the most widespread and the most easily accessible source of energy [7,8]. Sand,
widely accessible globally, is the primary silicon source for PV cells [9]. Most PV systems
consist of single-junction PV cells, which have become more cost-effective in recent decades.
However, their efficiency is relatively low, around 20%, because they can only convert a
narrow range of electromagnetic waves into electricity. Multi-junction PV cells, also known
as concentrated photovoltaic (CPV) cells, have recently emerged as an alternative. The
structure of multijunction CPV cells broadens the spectrum of electromagnetic waves that
can be converted into energy, making them a more attractive option for the renewable
energy community. CPV systems utilise equipment such as parabolic mirrors to concentrate
and increase solar irradiation density up to 1000 times (1000 suns) at the CPV cell’s surface.

In CPV, the electrical and thermal output increases. However, the thermal stresses
caused by the concentration make the cell temperature high, which could cause physical
damage to the whole system. The current conventional cooling method works based on a
continuous flow, which increases the chances of having a non-uniform temperature in CPV.
Continuous flow in cooling creates a boundary layer that hinders heat transfer [10]. Pulsat-
ing flow may boost heat transfer by disrupting the boundary layer and mixing the fluid [11].
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Research shows that pulsating flow enhances heat transfer [12–16]. Most studies report
cooling techniques based on a steady, continuous coolant flow. The steady-continuous
flow can cause issues with temperature distribution and heat exchange efficiency due
to its intrinsic flow dynamic properties. Specifically, it may over-cool the inlet area and
under-cool the outlet area, leading to a non-uniform temperature distribution.

This article reviews the existing cooling techniques for concentrated photovoltaics
and highlights critical research gaps and findings. The article begins by discussing the
classification of photovoltaics and the main challenges and limitations of CPV cooling. It
then introduces an innovative approach based on discontinued flow (pulsation flow) as a
potential approach and future trend of CPV cooling.

2. Photovoltaics Current State of the Art
2.1. Classifications

Photovoltaics can be classified as first-generation (1st G), second-generation (2nd G),
and third-generation (3rd G), as shown in Figure 1. The 1stG includes monocrystalline
panels, polycrystalline panels, and amorphous solar cells. This photovoltaic was the first
commercial photovoltaic cell introduced in 1954. In the 21st century, they are the most
available solar cell used in residential areas, making up about 80% of the solar cells sold.
1st G can have an efficiency of up to 26% for monocrystalline and 21% for polycrystalline.
It is made of silicon and has a bandgap of 1.1 eV [9,17].
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Figure 1. Classification of photovoltaic. The 2nd G, with an efficiency of 21.4%, came into existence
after 20 years of research and development [9]. The disadvantage of 2nd G is that most of the
components of these cells are becoming increasingly rare and expensive (indium), and some are
toxic (cadmium). The 3rd G is a recent generation that has emerged due to the high costs of 1st
G solar cells, materials availability limitations, and the toxicity of 2nd G solar cells. In addition to
silicon, researchers use various new materials to make solar cells, such as nano-materials, silicon
wires, solar inks created with conventional printing press technology, conductive plastics, and organic
dyes- [9,18]. In [18], the fourth generation (4th G) classifies the new generation of solar cell technology.
It uses a combination of organic and inorganic materials for manufacturing. The advantage of 4th G
is combining inorganic and organic materials to maintain cost and increase solar to electrical energy
conversion efficiency. The maximum efficiency of laboratory-based photovoltaic cells is more than
40%, according to the National Renewable Energy Laboratory (NREL) in 2020 [6]. According to
NREL, Figure 2 shows the efficiency improvement trends as of November 2021.
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2.2. Concentrated Photovoltaic Cooling

Concentrated photovoltaic (CPV) technologies are new advanced PV systems. The
principle of operation includes focusing the sun into a solar cell using reflectors such as
mirrors or an optical prism [19–21]. Beams of sun radiation hit a reflector and concentrate
the rays of the beam onto a solar cell (Figure 3). A reflector is mostly a mirror or a lens that
receives the primary solar radiation from the sun and focuses secondary solar radiation
onto a cell located at the reflector’s focal point. CPV systems must track the sun to maintain
the radiation’s concentration on the solar panel [22]. With 1000 suns of solar concentration
ratio, researchers projected that the temperature of an uncooled solar cell would rise by
1360 ◦C [19]. Concentrated multijunction solar cells are essential in realising a more efficient
photovoltaic. The incident solar energy on the solar cell’s surface is converted to generate
electricity. In contrast, the rest is thermally absorbed within the solar cell. Consequently, this
increases solar cell temperature [23]. On a long-term basis, increasing panel temperature
leads to decreased conversion efficiency and lower panel reliability. Numerous cooling
systems are developed and studied to prevent excessive temperature increases and improve
their efficiency effectively [7]. As such, the cooling of CPV is still a challenge to researchers.
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Substantial research on concentrated photovoltaic cooling (CPVC) is ongoing globally.
Statistics over the previous decade (2012–2022) show the rising interest and the relevance
of CPV cooling technology. In the past decade, researchers have published many research
publications. Based on data from the Scopus and Web of Science databases, a search for
“Concentrated Photovoltaic Cooling” has yielded over 288 and 438 research papers on
CPVC from 2012 to May 2022, respectively. Figure 4 presents a statistical breakdown of
research publications on CPVC over the past decade, including the annual number of
papers published (Figure 4a), detailed information on the top ten nations with the most
significant proportion of research papers (Figure 4b), and the first five countries with the
most funding investment (Figure 4c) on this topic.
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3. Types and Classification of Cooling Techniques in Solar Cells

Research by [22] examines the cooling system using an active cooling system pump. It
collects the heat from the PV and dissipates it utilising a convector or heat sink. Several
researchers have highlighted that active cooling is more efficient and suitable for high
concentrations. The authors of [22] experimented and reported that the output of a con-
centration solar panel is between 4.7 and 5.2 times that of the nonconcentrated cell. The
results demonstrate that the solar cell temperature was reduced to below 60 ◦C, generating
more electrical output. Research using parabolic concentrators to analyse heat transfer
in photovoltaics has been conducted by [24]. Researchers found that the temperature of
the concentrator aperture and the PV cell increased with the intensity of incident solar en-
ergy. We have presented a comparative analysis in Table 1 between the most commercially
available photovoltaic and a concentrated multijunction solar cell based on the following
references [25–30].
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Table 1. Comparison between primarily used solar cells with concentrated multijunction solar cells.

Type of Solar Cell Monocrystalline Polycrystalline Thin Film Multi-Junction

Type of
Material

Fragments from single
wafer crystal

Fragments from
different silicon crystals

Fragments from single
wafer crystal

Combination of
different

semiconductors

Life Span 25 to 30 years 20 to 25 years 10 to 20 years 30 or more years

Efficiency 14 to 26% 12 to 21% Very low 33.8 to 69.1

Appearance Aesthetic Non-aesthetic Aesthetic Aesthetic

Portability Big, comes in
different size

Big, comes in
different size Flexible lightweight Lightweight,

smaller size

Number of Junctions 1 1 1 It can have 2–7

Cost High High Low Higher

Research and development in CPV have highlighted the importance of effective
cooling. The cooling system ensures that the cell operates within its optimal temperature.
CPV cooling design typically has thermal resistance coefficients with good cell temperature
uniformity for maximum efficiency [31]. Additionally, it is vital to consider the cooling
system’s power consumption, ease of installation, and high level of dependability. The
selection of a cooling technique depends on the objective and operational environment [31].
However, the suitability of a cooling method is contingent on the solar concentration,
location, installation, and system output requirements [32]. Researchers classify CPV
cooling as either passive or active, depending on the geometry, coolant, and level of solar
concentration [32]. Furthermore, CPV cooling can be categorised based on the nature of
heat transfer, natural circulation and forced circulation, or the type of coolant as passive
cooling and active cooling [7,33,34]. Researchers report that passive cooling is suitable for
concentrations of less than 20 suns; in high concentrations, active cooling is necessary [35].

Natural circulation and forced circulation can be air-based cooling or water-based
cooling. Air-based cooling is simple and cheaper [34]. However, it has a lower heat transfer
coefficient which varies from 1–10 W/m2.K for natural circulation to 20–100 W/m2.K
for forced circulation [31]. Water-based cooling has a better heat transfer coefficient
of 200–1000 W/m2.K for natural circulation and 1000–1500 W/m2.K for forced circula-
tion [24,36,37]. Ref. [38] stated heat pipe heat sink dissipates flux in CPV. Researchers
reported that under 25 suns, the heat pipe and heat sink could cool CPV to 37.8 ◦C and
54.16 ◦C, respectively. They have highlighted that this cooling method is cost-effective due
to its low energy consumption. The disadvantage of passive cooling is the size in terms
of the heatsink area. Economically, the passive system is not viable because it requires
a large amount of material, consisting of larger fins and plate areas depending on the
concentration ratio [1–3,32,39,40]. Photovoltaic (PV) cells produce electricity directly from
the sun’s irradiation. They are an excellent alternative to decreasing the use of fossil fuels,
which contributes to global warming [4–6]. On our planet, solar energy from direct sunlight
is both the most widespread and the most easily accessible source of energy [7,32,39–41]. In
other words, the greater the concentration ratio of the CPV, the larger the required heatsink.
This has reduced the feasibility and attractiveness of using a PC system to cool a CPV.
The use of active cooling (AC) to achieve temperature uniformity has been studied. With
this method, the coolant circulates through the cooling system using an active cooling
system pump. It collects the heat from the PV and dissipates it utilising a convector or
heat sink. Several researchers have highlighted that active cooling is more efficient and
suitable for high concentrations [19,38,42,43]. However, one of the limitations posed by AC
includes temperature non-uniformity. Table 2 summarises research availability and current
challenges of CPV cooling.
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Table 2. Limitations and challenges in existing methods of CPV cooling.

Cooling
Technique Method of Study Concentration Main Challenges Reference

Heat Pipe
and Fins

Experiment
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cooling, and heat pipes, can potentially enhance electrical and thermal performance. Re-

searchers can utilise the organic Rankine cycle (ORC) to create a mutually beneficial sce-

nario to achieve cell temperature reduction while enhancing system output by incorpo-

rating a heat recovery system into a CPV thermal system. However, various restrictions 

and challenges exist associated with implementing concentrated photovoltaic/thermal 

(CPV/T) hybrid systems, such as complexities related to design, initial costs, component 

compatibility, and a lack of available platforms integrated model packages for research 

purposes. Electroosmotic flow (EOF) is another method of improving heat transfer by in-

ducing fluid motion through an electric field, enhancing convective heat transfer [71–73]. 

This approach can be beneficial in microfluidic channels and other critical applications. 

Researchers use magnetohydrodynamics (MHD) flow to enhance heat transfer. Applying 

an external magnetic field induces fluid motion and enhances convective heat transfer. 

MHD flow has been used in various heat transfer applications, such as nuclear reactors, 

liquid metal batteries, and plasma devices [70–72]. The limitations and research gaps of 

the current approach to heat transfer enhancement are summarised in Table 3. 
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the current approach to heat transfer enhancement are summarised in Table 3. 
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Researchers use magnetohydrodynamics (MHD) flow to enhance heat transfer. Applying 

an external magnetic field induces fluid motion and enhances convective heat transfer. 

MHD flow has been used in various heat transfer applications, such as nuclear reactors, 

liquid metal batteries, and plasma devices [70–72]. The limitations and research gaps of 

the current approach to heat transfer enhancement are summarised in Table 3. 
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This approach can be beneficial in microfluidic channels and other critical applications. 

Researchers use magnetohydrodynamics (MHD) flow to enhance heat transfer. Applying 

an external magnetic field induces fluid motion and enhances convective heat transfer. 

MHD flow has been used in various heat transfer applications, such as nuclear reactors, 

liquid metal batteries, and plasma devices [70–72]. The limitations and research gaps of 

the current approach to heat transfer enhancement are summarised in Table 3. 
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Researchers use magnetohydrodynamics (MHD) flow to enhance heat transfer. Applying 
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MHD flow has been used in various heat transfer applications, such as nuclear reactors, 

liquid metal batteries, and plasma devices [70–72]. The limitations and research gaps of 

the current approach to heat transfer enhancement are summarised in Table 3. 
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compatibility, and a lack of available platforms integrated model packages for research 

purposes. Electroosmotic flow (EOF) is another method of improving heat transfer by in-

ducing fluid motion through an electric field, enhancing convective heat transfer [71–73]. 

This approach can be beneficial in microfluidic channels and other critical applications. 

Researchers use magnetohydrodynamics (MHD) flow to enhance heat transfer. Applying 

an external magnetic field induces fluid motion and enhances convective heat transfer. 

MHD flow has been used in various heat transfer applications, such as nuclear reactors, 

liquid metal batteries, and plasma devices [70–72]. The limitations and research gaps of 

the current approach to heat transfer enhancement are summarised in Table 3. 

  

Numerically

Energies 2023, 16, 2842 6 of 24 
 

 

Table 2. Limitations and challenges in existing methods of CPV cooling. 

Cooling  

Technique 
Method of Study Concentration Main Challenges Reference 

Heat Pipe 

and Fins 

Experiment     

Theoretical     

Numerically    

Simulation       

Lower 

Medium 

High * 

Overheating, uncontrollable oscilla-

tory thermal flows, reverse thermal 

flows, area-dependent cooling capac-

ity, temperature non-uniformity 

[31,32,44–49] 

PCM 

Experiment     

Theoretical  

Numerically  

Simulation       

Lower 

Medium  

High * 

Limited cooling capacity at higher 

concentrations, limited amounts of 

heat energy storage, acidic nature, is-

sue of disposal after lifetime used, 

mass/weight cooling capacity de-

pendant 

[42,50–54] 

Jet  

Impingement 

Experiment     

Theoretical      

Numerically  

Simulation       

Lower  

Medium 

High 

System design complexity, draining 

spent flow, temperature non-uni-

formity, manufacturing costs 

[55–58] 

Immersion 

Liquid 

Experiment     

Theoretical  

Numerically    

Simulation       

Lower 

Medium  

High 

Salt deposition issue, 

cell performance degression, pres-

sure drop, type of liquid, increased 

weight, design architecture 

[42,59–64] 

Microchannel  

Experiment     

Theoretical     

Numerically    

Simulation       

Lower  

Medium  

High 

Pressure drops, corrosion, 

temperature non-uniformity, higher 

manufacturing costs, 

more power requirements, more 

studies are needed to commercialise 

[65–70] 

Level of Research Reported in CPV cooling:  = Good number of study available;  = Lim-

ited number of study available; Level of Concentration (C): Lower: C < 20 suns, Medium: 20 < C < 100, 

High: C > 100.  * With a hybrid system configuration. 

In order to improve the thermal performance of a system, nanofluids offer a promis-

ing solution. However, they have limitations, including high costs, potential corrosion 

problems, pressure drops, sedimentation, and agglomeration. Hybrid CPV technology, 

which utilises methods such as jet impingement cooling, microchannels or impingement 

cooling, and heat pipes, can potentially enhance electrical and thermal performance. Re-

searchers can utilise the organic Rankine cycle (ORC) to create a mutually beneficial sce-

nario to achieve cell temperature reduction while enhancing system output by incorpo-

rating a heat recovery system into a CPV thermal system. However, various restrictions 

and challenges exist associated with implementing concentrated photovoltaic/thermal 

(CPV/T) hybrid systems, such as complexities related to design, initial costs, component 

compatibility, and a lack of available platforms integrated model packages for research 

purposes. Electroosmotic flow (EOF) is another method of improving heat transfer by in-

ducing fluid motion through an electric field, enhancing convective heat transfer [71–73]. 
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MHD flow has been used in various heat transfer applications, such as nuclear reactors, 

liquid metal batteries, and plasma devices [70–72]. The limitations and research gaps of 

the current approach to heat transfer enhancement are summarised in Table 3. 
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the current approach to heat transfer enhancement are summarised in Table 3. 
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the current approach to heat transfer enhancement are summarised in Table 3. 

  

Numerically

Energies 2023, 16, 2842 6 of 24 
 

 

Table 2. Limitations and challenges in existing methods of CPV cooling. 

Cooling  

Technique 
Method of Study Concentration Main Challenges Reference 

Heat Pipe 

and Fins 

Experiment     

Theoretical     

Numerically    

Simulation       

Lower 

Medium 

High * 

Overheating, uncontrollable oscilla-

tory thermal flows, reverse thermal 

flows, area-dependent cooling capac-

ity, temperature non-uniformity 

[31,32,44–49] 

PCM 

Experiment     

Theoretical  

Numerically  

Simulation       

Lower 

Medium  

High * 

Limited cooling capacity at higher 

concentrations, limited amounts of 

heat energy storage, acidic nature, is-

sue of disposal after lifetime used, 

mass/weight cooling capacity de-

pendant 

[42,50–54] 

Jet  

Impingement 

Experiment     

Theoretical      

Numerically  

Simulation       

Lower  

Medium 

High 

System design complexity, draining 

spent flow, temperature non-uni-

formity, manufacturing costs 

[55–58] 

Immersion 

Liquid 

Experiment     

Theoretical  

Numerically    

Simulation       

Lower 

Medium  

High 

Salt deposition issue, 

cell performance degression, pres-

sure drop, type of liquid, increased 

weight, design architecture 

[42,59–64] 

Microchannel  

Experiment     

Theoretical     

Numerically    

Simulation       

Lower  

Medium  

High 

Pressure drops, corrosion, 

temperature non-uniformity, higher 

manufacturing costs, 

more power requirements, more 

studies are needed to commercialise 

[65–70] 

Level of Research Reported in CPV cooling:  = Good number of study available;  = Lim-

ited number of study available; Level of Concentration (C): Lower: C < 20 suns, Medium: 20 < C < 100, 

High: C > 100.  * With a hybrid system configuration. 

In order to improve the thermal performance of a system, nanofluids offer a promis-

ing solution. However, they have limitations, including high costs, potential corrosion 

problems, pressure drops, sedimentation, and agglomeration. Hybrid CPV technology, 

which utilises methods such as jet impingement cooling, microchannels or impingement 

cooling, and heat pipes, can potentially enhance electrical and thermal performance. Re-

searchers can utilise the organic Rankine cycle (ORC) to create a mutually beneficial sce-

nario to achieve cell temperature reduction while enhancing system output by incorpo-

rating a heat recovery system into a CPV thermal system. However, various restrictions 

and challenges exist associated with implementing concentrated photovoltaic/thermal 

(CPV/T) hybrid systems, such as complexities related to design, initial costs, component 

compatibility, and a lack of available platforms integrated model packages for research 
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MHD flow has been used in various heat transfer applications, such as nuclear reactors, 

liquid metal batteries, and plasma devices [70–72]. The limitations and research gaps of 

the current approach to heat transfer enhancement are summarised in Table 3. 
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liquid metal batteries, and plasma devices [70–72]. The limitations and research gaps of 

the current approach to heat transfer enhancement are summarised in Table 3. 
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This approach can be beneficial in microfluidic channels and other critical applications. 

Researchers use magnetohydrodynamics (MHD) flow to enhance heat transfer. Applying 

an external magnetic field induces fluid motion and enhances convective heat transfer. 

MHD flow has been used in various heat transfer applications, such as nuclear reactors, 

liquid metal batteries, and plasma devices [70–72]. The limitations and research gaps of 

the current approach to heat transfer enhancement are summarised in Table 3. 
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an external magnetic field induces fluid motion and enhances convective heat transfer. 

MHD flow has been used in various heat transfer applications, such as nuclear reactors, 

liquid metal batteries, and plasma devices [70–72]. The limitations and research gaps of 

the current approach to heat transfer enhancement are summarised in Table 3. 
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In order to improve the thermal performance of a system, nanofluids offer a promising
solution. However, they have limitations, including high costs, potential corrosion prob-
lems, pressure drops, sedimentation, and agglomeration. Hybrid CPV technology, which
utilises methods such as jet impingement cooling, microchannels or impingement cooling,
and heat pipes, can potentially enhance electrical and thermal performance. Researchers
can utilise the organic Rankine cycle (ORC) to create a mutually beneficial scenario to
achieve cell temperature reduction while enhancing system output by incorporating a heat
recovery system into a CPV thermal system. However, various restrictions and challenges
exist associated with implementing concentrated photovoltaic/thermal (CPV/T) hybrid
systems, such as complexities related to design, initial costs, component compatibility, and
a lack of available platforms integrated model packages for research purposes. Electroos-
motic flow (EOF) is another method of improving heat transfer by inducing fluid motion
through an electric field, enhancing convective heat transfer [71–73]. This approach can be
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tohydrodynamics (MHD) flow to enhance heat transfer. Applying an external magnetic
field induces fluid motion and enhances convective heat transfer. MHD flow has been used
in various heat transfer applications, such as nuclear reactors, liquid metal batteries, and
plasma devices [70–72]. The limitations and research gaps of the current approach to heat
transfer enhancement are summarised in Table 3.
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= Studies available mainly in the field
of medicine, electronics, and mechanical engineering but has not been applied to CPV cooling.

Numerous studies have emphasised the benefits of pulsating for improving cooling.
This article suggests exploring the potential of unsteady flow for CPV cooling performance
instead of relying on continuous flow. Valves integrated with controls and sensors can
achieve this. One promising method to enhance thermal performance is nanofluids. How-
ever, limitations include high cost, corrosion problems, pressure drop, sedimentation, and
agglomeration. Formal research has been conducted on hybrid CPV technology to im-
prove electrical and thermal performance. A hybrid system incorporating jet impingement
cooling, microchannels or impingement cooling, and heat pipes can facilitate high heat
dissipation rates in robust systems. Integrating a heat recovery system into a CPV thermal
system can further increase the capabilities of CPV cooling, with the organic Rankine
cycle providing a means to maximise waste heat utilisation and create a win-win situation
between cell temperature reduction and system output enhancement. The design and
implementation of concentrated photovoltaic/thermal (CPV/T) hybrid systems present
several challenges and restrictions. These include incorporating two or more methods,
higher initial costs than conventional power systems, compatibility issues between compo-
nents, and a lack of platforms and integrated model packages for investigating different
hybrid systems to minimise experiment costs and errors.

4. Pulsating Flow on CPV Cooling

The literature reviewed in this article shows that CPV systems deal with the chal-
lenging task of maintaining cell temperature. Concentrating solar energy on a solar cell
results in an increase in both electrical and thermal output. However, the high temperature
resulting from the concentration causes thermal stresses on the cell, which can physically
damage the entire system. The CPV needs an excellent cooling mechanism to have a higher
net output power and run reliably. Several research studies highlighted concentrated solar
cell temperature non-uniformity resulting in hot regions and cooled spots that need further
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study. The current conventional cooling method works based on a continuous flow, which
increases the chances of having a non-uniform temperature in CPV. Another challenge
researchers face is the continuous fluctuation of solar radiation intensity caused by uncon-
trollable conditions such as clouds. This poses a particular problem as the environment
changes depending on the weather.

Using two-phase liquid to enhance heat transfer, heat pipe pulsating technology has
been used in electronic devices and electrical components. It was introduced in the 1990s
as an oscillating heat pipe [74]. Ref. [75] reported that pulsating heat pipes are applied for
cooling electronic equipment within a short distance or where space is relatively compact.
Researchers suggested that the heat pipe is filled with a fraction of 40–60% of heat transfer
working liquid in a small capillary tube diameter [75–77]. The phase change liquid boils
or evaporates, causing pressure increase in the section where heat is applied. Due to the
pressure difference, the vapour in the heating section moves to the liquid cooling section,
and the liquid cooling moves to the heating section (Figure 5). These processes continue
to happen, making the liquid in the tube continuously oscillate. The process generates a
pulsating flow within the two sections of the tube, resulting in reduced weight due to the
requirement of a smaller fraction of liquid and air within the tube and the ability to function
with a smaller diameter [75]. Pulsating heat pipes (PHP) are an emerging subject of study to
researchers, with dozens of articles published yearly. However, limited knowledge of their
performance and a lack of scientific modelling tools restricts practical application [76].
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Researchers have demonstrated that the flow pattern within PHPs switches from an
oscillatory pattern to a circulation pattern, ultimately enhancing overall thermal perfor-
mance. Ref. [79] carried out an experiment using a high-speed camera to visualisation PHP
flow. An increase in the channel’s inner diameter was reported to shift the flow pattern
to a circular form from an oscillatory pattern, which correlates with increased thermal
performance. Several researchers have reported that shifting pulsating flow to circular flow
increases the basis and enhances thermal performance. Additionally, circular flow helps
vapour plugs from the evaporation section to recirculate more [79–83].

Continuous flow in cooling creates a boundary layer which hinders heat transfer [10].
Pulsating flow may boost heat transfer by disrupting the boundary layer and mixing the
fluid [11]. Pulsation flow is transient, which adds complexity to the analytical investiga-
tion [84,85]. Many modelling and computational fluid dynamics studies are available in
the literature. However, little experimental work exists due to inadequate technology to
measure pulsating properties. Velocity measurement is more challenging in pulsed flow
than in continuous steady flow. However, with research and development, technology has
improved to address those challenges [85]. Another challenge is that flowmeters cannot
record the exact results at high frequencies due to their weak reaction time. Temperature
prediction is also challenging [85]. Important parameters to consider in pulsating flow
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include frequency, amplitude, axial position, relaxation time, pulsation source, Womersley
number, Reynolds number, distance, and Nusselt and Prandtl numbers all impact heat
transfer in pulsating flow [86]. Ref. [87] reported that transient heat flux in CPV leads to
flow regularly boiling in microchannels. More work is needed to address the lack of control
parameters in boiling and irregular oscillation, which still pose a challenge in boiling and
PHPs. With current research and development, using valves to control the nature of the
oscillation is an area to explore.

Based on the literature search, cooling with direct couple pulsations has not been
applied to CPV cooling. Researchers working around CPV cooling can consider integrating
pulsating flow into the existing CPC cooling techniques to enhance heat transfer. Some
articles that provide detailed information on pulsation flow include [77,78,78,80,88–90].
The correlations for continuous and pulsating flow are as follows; in a continuous flow,
the Reynolds number (Re) is a parameter that differentiates between turbulent flow and
laminar flow. It is given by Equation (1) where Dh is the hydraulic diameter, ρ is the density,
µ is the dynamic viscosity, v is the velocity, and υ represents kinematic viscosity.

Re =
ρ vDh

µ
=

vDh
υ

(1)

Nusselt number (Nu) is the ratio of the heat transferred by convection and the hy-
draulic diameter to the thermal conductivity of the coolant, in this case, water. h is the heat
transfer coefficient, k is the thermal conductivity.

Nu =
hDh

k
(2)

The heat transfer coefficient was calculated using Equation (3) according to [91,92],
where m is the mass flow rate, cp is the specific heat capacity, Tout and Tin are the fluid inlet
and outlet temperature, and Ts and Tf are the cooling pad temperature and average fluid
temperature, respectively.

h =
mcp(Tout − Tin)

A
(

Ts − Tf

) (3)

Equation (4) provides the pressure drop as a function of the friction factor, where for
a smooth rectangular channel, the friction function f = 68.34/Re for lamina flow, and
f = 0.31/Re0.25 for turbulent flow, according to [93].

∆P = f × l
Dh

× v2

2
× ρ (4)

In pulsating flow, Equation (5) gives the Reynolds number associated with the os-
cillating Reω and the stable components Res [90]. The pulsating velocity is given by
us = v(1 + ksinωt), k = 2π f Ao/v refers to as waviness of the flow, where v is the average
velocity [94], Ao = usDh/υ [95], f = 1/T is the frequency of pulsation, and T = T1 + T2 is
the period where T1 and T2 are the first and second-half periods of pulsating [96].

Reω =
Ao

2

υω
, Res =

us Dh

υ
(5)

In pulsating flow, the Nusselt number is considered a time average. The Nusselt
number is used to determine the heat transmission properties. Equations (6) and (7) give
the expression according to [90] and [13], respectively. Equation (8) calculates the degree of
heat transfer enhancement (E), with Np referring to the pulsating average Nusselt number,
and Nnp referring to the non-pulsating Nusselt number [94].

Nu =
∫ L

0

∫ T

0
Nu(x, t) dtdx (6)
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Nu =
hDh
k f

(7)

E =
Np

Nnp
(8)

The heat transfer coefficient is given by Equation (9) as a function of the mean log
temperature where Q = mcp(Tout − Tin), and As It is the heat transfer area.

h =
Q

As(∆TLMT)
=

Q

As

[
(Ts−Tin)−(Ts−Tout)

ln
(

(Ts−Tin)
(Ts−Tout)

)
] (9)

In an oscillating flow, the Womersley number expresses the influence of frequency
on which force, inertia, or viscosity will dominate. It is given by Equations (10) or (11),
according to [90]

α = L
(ω

υ

)1/2
(10)

α = (2πReSt)1/2 (11)

The Strouhal number is another dimensionless number used in a pulsating flow,
according to [90]. It is used to express the frequency divided by the velocity as Equation (12).

St =
f L
u

(12)

The pressure drops can be expressed as Equation (13) for α < 1 or Equation (14).

∆P =
8µ L Q

πR4 (13)

∆P = f ρ

(
l

Dh

)(
v2

2

)
(14)

5. Novel Approach to CPV Cooling

Research shows that pulsating flow enhances heat transfer [12–16]. In this section,
a 3D model was developed to study the feasibility of applying pulsating flow to CPV
using computational fluid dynamics. We designed the model using SOLIDWORKS and
conducted the analysis using Ansys FLUENT software. The design specifications for both
the simulation and experiment are presented in the Table 4.

Table 4. Model design specifications.

Parameter Parameter Design Specification Hydraulic
Diameter (Dh)

Circular
Section

Circular inlet diameter (m) 0.0085

0.0085Inlet radius (m) 0.00425

Cross-section area (m2) 0.000056752

Actual
Channel
Section

Inlet channel area (m2) 0.00007225
0.00544

Actual channel area (m2) 0.000034

Multi
Junction

Solar Cell

Channel length (m) 0.4

Single solar cell length (m) 0.01

Single solar cell width (m) 0.010275

Single solar cell area (m2) 0.00010275
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Figure 6 shows the model design considering the use of water as a coolant. Figure 6a
shows the channel view, while Figure 6b shows the coupled design with the solar cell.
Germanium material was used as the solar cell, while aluminium was used as the cooling
pad material. A combination of the laminar model corresponding to a Reynolds num-
ber (Re) of 1482.41 at 0.5 L/m and an enhanced wall function K-ε model corresponding
to 1–2.5 L/m with an increase in Re from 1482.41 to 8372.26 was used and adapted, as
described in [97–101]. A 10−6 residual was considered to indicate a converged solution.
A total heat flux of 150,000 W/m2, equivalent to a concentration of 150 suns of the solar
simulator used for the experiment, was applied. The complete 3D model (Figure 6c) was
constructed using a three-axis computer numerical control (CNC) machine with flat plate
material made of Aluminium 6082T6 manufacture by Ooznest UK. The pulsating flow was
generated using an Arduino MEGA microcontroller sourced through RS components UK,
integrated with a solenoid valve, which opened and closed at a frequency of 0.5 Hz and a
period of 2 s. A 5-multijunction solar cell was used.
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A mesh sensitivity analysis was conducted by increasing the number of cells until
the y+ value was less than zero, as shown in Figure 7. The mesh used for the analysis
consisted of 7,102,996 cells and 1,416,393 nodes with a Y+ value of 0.765. A user-defined
function (UDF) was created for a flow rate ranging from 0.5 L/m (0.0085 kg/s) to 2.5 L/m
(0.0425 kg/s) to generate pulsating flow at the inlet. The equivalent flow rate velocity
(ranging from 0.5 L/m to 2.5 L/m) was used in the UDF, which was then imported into the
FLUENT software. Subsequently, boundary conditions were defined at the walls, inlet, and
outlet. The experimental process flow adopted is illustrated in Figure 8. Finally, a high-flux
sun simulator experiment was conducted to validate the model.

The experimental setup is shown in Figure 9, which was built using a high-flux
concentrated sun simulator. In a series, two large radiators connected with a fan were used
as the heat sink. The simulator was turned ON for 10 min, after which the shutter was
opened to concentrate the light on the cell. The cooling system was then turned ON for
5 min to stabilise the cell’s concentration. The experiment was conducted for 25 min, with
a fixed flow rate ranging from 0.5 L/m to 2.5 L/m, the same as the simulation. Data were
recorded every minute, and the average of the recorded data after 5 min was exported to a
spreadsheet and used for further analysis. The solar cell’s maximum theoretically required
cooling capacity was 823 W.
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5.1. Simulation Results

Figure 10 shows the temperature contour of the solar cell for both continuous flow and
pulsating flow at 1 L/m. The pulsating flow, with a period of 2 s and a frequency of 0.5 Hz,
equivalent to 30 pulses/minute (Figure 9b), exhibited better cooling than the continuous
flow (Figure 9a), with a maximum and minimum temperature interval of 298 K to 308 K.
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Figure 10. Temperature contour of solar cell from simulation (a) Continuous flow (b) Pulsating flow
at 30 pulse/minute.

Figure 11 shows the model’s 2 D x-y centre-cut view temperature contour for continu-
ous and pulsating flow at 1 L/m, with a maximum and minimum temperature interval
of 298 K to 308 K. The pulsating flow, with a period of 2 s and a frequency of 0.5 Hz,
equivalent to 30 pulses/minute (Figure 10b), shows better cooling compared to continuous
flow (Figure 10a).
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Figure 11. Temperature contour of x-y centre cut-view of the model from simulation (a) Continuous
flow (b) Pulsating flow at 30 pulse/minute.

A 2D z-y centre channel cut-view temperature contour of the model for both con-
tinuous flow and pulsating flow at 1 L/m is shown in Figure 12, with maximum and
minimum temperature intervals of 298 K to 308 K. Based on the temperature contour, it
can be seen that the pulsating flow with a period of 2 s and a frequency of 0.5 Hz, which is
equivalent to 30 pulses/minute (Figure 12b), shows better cooling compared to continuous
flow (Figure 12a).
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pad temperature increased from 301.92898 K to 321.90656 K and 305.88118 K to 325.86523 

Figure 12. Temperature contour of z-y centre cut-view of the model from simulation (a) Continuous
flow (b) Pulsating flow at 30 pulse/minute.

An overall coupled model temperature contour is shown in Figure 13, with a temper-
ature interval of 298 K to 308 K. At a flow rate of 1 L/m, the comparison shows that the
pulsating flow with a period of 2 s and a frequency of 0.5 Hz, equivalent to 30 pulses/min
is more effective.
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Figure 13. Temperature contour of the coupled model from simulation (a) Continuous flow (b) Pul-
sating flow at 30 pulse/minute.

Figure 14a shows the effect of coolant inlet temperature on the model. With an increase
in the inlet temperature of the coolant from 298 K to 318 K, the solar cell and cooling pad
temperature increased from 301.92898 K to 321.90656 K and 305.88118 K to 325.86523 K,
respectively. In Figure 14b, the effect of the flow rate on the Reynolds number (Re) and
the Nusselt number (Nu). An increase in flow rate increases the Re number. With an
increase in flow rate from 0.5 L/m to 2.5 L/m, the Re with continuous flow increased from
1482.41 to 8372.26. While with the pulsating flow at 30 pulses/minutes, the Re increased
from 1047.33 to 27,108.48. The Nusselt number increases with the Reynolds number in
continuous and pulsating flow, which agrees with [13].
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5.2. Experiment Results 
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Nusselt number (Nu). With an increase in flow rate from 0.5 L/m to 2.5 L/m, the Re with 

continuous flow increased from 1617.55 to 8341.65. With pulsating flow at 30 

Figure 14. (a) Effect of inlet temperature on solar cell and cooling pad temperature (b) Reynolds
number and Nusselt number versus flow rate.

Figure 15 illustrates the relationship between the Womersley number (α), the heat
transfer rate, and the instantaneous velocity (U-p). The Womersley number indicates
whether the uneven fluid flow in pulsing flow is almost constant. The Womersley number
increases from 10.247 to 10.426 when the instantaneous velocity (U-p) increases from 0.14 to
0.73 m per second. The Womersley indicates that the pulsating flow is associated with the
plug-like flow. Thus, the velocity profile is less than the pulse frequency. The enhancement
in heat transmission increased from 2.196 to 3.539. Despite the increase in flow rate from
0.5 L/m to 2.5 L/m (Figure 15), at a speed of 0.587 m/s, the most significant improvement
was seen. Hence, the pulsing flow made the cooling more effective and improved it
by 37.95%.
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5.2. Experiment Results

Figure 16a demonstrates the effect of flow rate on the Reynolds number (Re) and Nus-
selt number (Nu). With an increase in flow rate from 0.5 L/m to 2.5 L/m, the Re with con-
tinuous flow increased from 1617.55 to 8341.65. With pulsating flow at 30 pulses/minutes,
Re increased from 1025.24 to 32,251.15. The Nusselt number increases with the Reynolds
number in continuous and pulsating flows, consistent with [88]. In Figure 16b, the relation-
ship between the Womersley number (α) and the rate of heat transfer and instantaneous
velocity (U-p) is illustrated. The Womersley number indicates whether the uneven fluid
flow in pulsating flow is nearly constant. When the instantaneous velocity (U-p) increases
from 0.14 m/s to 0.73 m/s, the Womersley number increase from 10.13 to 11.37. This Wom-
ersley number means that pulsating flow is associated with plug-like flow at the maximum,
resulting in a velocity profile lower than the pulse frequency. The enhancement in heat
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transmission fluctuates with maximum and minimum values of 12.21 and 9.02, respectively.
At a speed of 0.73 m/s, the most significant improvement was observed.
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Figure 16. (a) Reynolds number and Nusselt number versus flow rate (b) Pulsating velocity variation
at T = 2 s and f = 0.5 Hz with cooling enhancement and Womersley number.

Figure 17 shows the solar cell temperature against the flow rate for simulation and ex-
periment. The cell temperature decreased with an increased flow rate in both the simulation
and experiment. Several researchers have reported that an increased flow rate decreases
cell temperature [68]. Similarly, in this research, the cell temperature drops from 307.25 K to
304.25 K with continuous flow when the flow rate increases from 0.5 L/m to 2.5 L/m. At the
same time, with the pulsating flow at 30 pulses/minute, the cell temperature drops from
303.75 K to 303.2 K. This shows that the cell temperature is lower with the pulsating flow
than with the continuous flow temperature. The temperature difference occurs because
the simulation was conducted based on the assumption that the flow does not involve
radiation heat transfer (ambient temperature). In reality, the temperature of the solar cell
depends on factors such as ambient temperature. This factor could only be controlled to a
certain extent in the experiment.
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The experiment with pulsating flow starts to increase from 1.5 L/m to 2.5 L/m. This
keeps the cell average output power constant from a 1.5 L/m to a 1.75 L/m flow rate
(Figure 18). The increase in cell temperature is due to the extensive vibration experienced
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during the pulsating flow experiment approach adopted in this research. The vibration
became more intense as the flow rate increased from 0.5 L/m to 2.5 L/m. Additionally, the
vibration becomes more intense between 1.5 L/m and 2.5 L/m, which leads to cracks on the
temperature sensor holders, as indicated with a red circle in Figure 18. This results in leakage
and affects the pulsating flow’s cooling capability during the experiment between 2 L/m
and 5 L/m. The system’s vibration has been highlighted as a challenge in applying pulsating
flow [90,102]. This challenge and a more detailed and efficient approach to pulsating flow
with CPV cooling would be an area to explore in the next stage of this research.
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Figure 19 shows the solar cell output power versus coolant flow rate and cell tempera-
ture obtained during the experiments. With an increase in flow rate from 0.5 to 2.5 L/m,
the solar cell power output increases for both continuous and pulsating flow, which agrees
with [68]. The cell’s pulsating flow power output shows better cooling than the continuous
flow. However, it declines from 1.803 W to 1.792 W between 1.5 L/m and 2.5 L/m flow
rate due to cell temperature increases caused by the overall system vibration, resulting
in cracks and leakage in the inlet temperature sensors (Figure 18). Another factor that
influences the decrease in power output and cell temperature increases is the ambient
temperature, which rises from 403.143 K to 407.996 K due to the sun’s concentration for
more than 35 min. Uncontrollable factors such as ambient environmental temperature
directly affect the performance of the heat sink and the solar cell.
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5.3. Validation

Figure 20a shows the pressure drops for both the experiment and simulation. Although
it is not the same, both simulation and experiments agree. The pressure drop was calculated
using Equation (14). With an increase in flow rate from 0.5 L/m to 2.5 L/m, the pressure
drops increase from 1940.28 Pa to 35,240.40 Pa and 1896.30 Pa to 34,961.30 Pa for simulation
and experiment, respectively. This agrees with [68], where it was reported that with an
increase in flow rate, pressure drop increases. Figure 19b shows the flow rate’s effect on the
Reynolds number (Re) for both simulation and experiment. As expected, an increase in flow
rate increases the Re. With an increase in flow rate from 0.5 L/m to 2.5 L/m, the Re increased
from 1617.56 to 8341.66 and 1482.41 to 8372.26 for experiment and simulation, respectively.
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6. Future Work

Current research on CPV cooling is a challenging area. Several studies have high-
lighted concentrated solar cell temperature non-uniformity, resulting in hot regions and
cooled spots that need further study: cell performance duration, pressure drop, liquid
type, weight, and design limit immersion cooling. Impinging jets poses the challenge of
temperature non-uniformity, spent fluid, and design complexity. Overheating, reverse ther-
mal flows, and area-dependent cooling issues are challenges for heat pipe cooling systems.
Limits on energy storage, mass weight dependent on cooling capacity, and utilisation of
low-quality heat sources are limitations of phase change materials. Microchannel cooling
has fundamental limitations such as pressure drops, corrosion, temperature non-uniformity
along the channel, higher manufacturing costs, and higher power consumption.

Another challenge is the continuous fluctuation of solar radiation intensity due to
uncontrollable conditions such as clouds. This is a challenge as our environment changes
depending on the weather and cloud coverage. The sun’s intensity concentrated on solar
cells changes continuously, and the heat flux generated by the CPV also changes. The
sudden fluctuation necessitates a more efficient approach to CPV cooling and increases
the chances of temperature non-uniformity. This article has introduced a new approach
to applying a pulsating flow to CPV cooling. The results of pulsating flow cooling in
both simulation and experiments have proven to be efficient compared to continuous
flow. However, the pulsating flow comes with a vibration challenge that affects the overall
system performance. An area to focus on would be designing a system flow that minimises
or eliminates system vibration with the pulsating flow. Future research should test dif-
ferent pulsating frequencies to optimise the system. CPV cooling with the pulsating flow,
integrated with PCM or porous media, is worth investigating. An investigation using an
optimised design with nanofluid instead of water as a coolant is an area to explore for
pulsating flow CPV cooling.
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Based on all the reviewed articles, applying a direct pulsating flow approach to
cooling CPV has not been studied. A similar approach using control valves connected with
a microcontroller to control the pulsating flow is possible with CPV cooling. This will allow
additional control parameters to enhance heat transfer, apart from the flow rate. Applying
a sensor to a part of the solar cell will cool the part at a higher temperature by pumping
most of the coolant to that area. This will result in not utilising the coolant in an area where
cooling is not required and channelling it to areas where cooling is required within the cell,
thereby increasing uniformity. Additionally, this will reduce the amount of coolant used
in CPV cooling and increase performance because the coolant is utilised in the area that
requires the cooling most.

7. Conclusions

In conclusion, current techniques for cooling concentrated photovoltaic (CPV) panels
are based on a continuous flow subjected to non-uniform temperature distribution issues
throughout the cell. This article has reviewed various CPV cooling methods, focusing
on the most applied techniques based on recently published research. The review shows
that the direct coupled pulsating flow approach to CPV cooling has not been studied and
presents an innovative approach using pulsating flow. Both simulation and experimental
findings show that applying pulsating flow to current CPV cooling techniques is possible
and more efficient than the conventional continuous flow. However, the pulsation vibration
experienced during the experiment is a challenge that needs to be addressed. Future
research can focus on exploring this area and designing a system flow that minimises or
eliminates system vibration with the pulsating flow. A direct pulsating flow approach using
control valves connected to a microcontroller can allow additional control parameters to
enhance heat transfer apart from the flow rate. Furthermore, applying a sensor to a part of
the solar cell can channel coolant to areas that require cooling most, increasing uniformity
and reducing coolant usage. This article provides a new approach to efficient CPV cooling
that warrants further exploration and research.
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