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Abstract: Due to the intermittent and variable nature of wind, Wind Power Generation Forecast
(WPGF) has become an essential task for power system operators who are looking for reliable wind
penetration into the electric grid. Since there is a need to forecast wind power generation accurately,
the main contribution of this paper is the development, implementation, and comparison of WPGF
methods in a framework to be used by distribution system operators (DSOs). The methodology
applied comprised five stages: pre-processing, feature selection, forecasting models, post-processing,
and validation, using the historical wind power generation data (measured at secondary substations)
of 20 wind farms connected to the medium voltage (MV) distribution network in Portugal. After
comparing the accuracy of eight different models in terms of their relative root mean square error
(RRMSE), extreme gradient boosting (XGBOOST) appeared as the best-suited forecasting method for
wind power generation. The best average RRMSE achieved by the proposed XGBOOST model for
1-year training (January—December of 2020) and 6 months forecast (January—June of 2021) corresponds
to 13.48%, outperforming the predictions of the Portuguese DSO by 20%.

Keywords: extreme gradient boosting (XGBOOST); medium voltage distribution network; secondary
substations; short-term forecasting; wind power generation forecast

1. Introduction
1.1. Motivation

Nowadays, the world is going through an energy transition process from fossil fuels
to renewable energies, which aims to reduce the environmental impact of the energy
sector. To increase the penetration rate of Renewable Energy Sources (RES) in power
systems, significant incentive schemes and policies have been considered by governments.
The European Union (EU), under the 2030 climate and energy framework for the period
2021-2030, is part of the ambitious European Green Deal. The framework commits the EU
to reducing greenhouse emissions by at least 40% (as compared to 1990 levels), to increase
the amount of renewable energy in the energy mix by at least 32%, and to improve the
energy efficiency by at least 32.5% [1]. To achieve those targets, a high penetration of RES
such as solar, wind, hydropower, geothermal, biomass, biofuels, waves, or tidal is necessary.

Over the last years, a rapid expansion of Solar Photovoltaic (PV) and wind has been
seen, mainly because the cost of PV and because wind power installations have declined
sharply. Out of all the available RES, PV and wind are considered now to be the most
abundant, developed, economically viable, and commercially accepted types worldwide [2].
Without considering hydropower, wind is a renewable resource, with a higher installed
capacity. According to the Global Wind Report 2021 [3], the year 2020 was the best year
in history for the global wind industry. The report shows a year-over-year growth of 53%,
considering that for 2020, more than 93 GW of wind power was installed, with 86.9 GW
allocated to the onshore market and 6.1 GW to the offshore market. The new installations
bring the global cumulative wind power capacity up to 743 GW [3].
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However, the uncertainty in wind power generation is very large due to the inherent
variability of wind speed [4,5]. Hence, wind variability needs to be understood by operators
of power systems and wind farms in order to ensure that supply and demand are balanced,
and that the power network operates without constraints. Since supply and demand should
be equal at all times but wind power generation depends on the availability of wind, which
is a weather-dependent source, the integration into the existing electricity supply system
brings some challenges at the level of secondary substations that need to be addressed by
DSOs of power networks [6,7].

Some of the challenges include system stability and reliability, due to grid congestion or
the intermittency of supply; system balance, which requires a strong information exchange
between the DSO and the Transmission System Operator (TSO), or flexibility services
(voltage support and demand-side response) to ensure that the network is stabilized amid
the varying energy generation and consumption. Other challenges that are associated with
optimizing the grid include technical imbalances in the existing equipment, and saturations
in the MV network or in the substations [8].

This is where WPGF appears as one of the most efficient ways to overcome some
of these problems, and to help power system operators to reduce the risk of unreliable
electricity supply. The development of new techniques to improve the understanding of
wind power generation, through simulation, forecasting, distribution curve fitting, filtering,
and modeling, allows better decisions to be made about the expansion of the wind sector
and the better management of the electricity system [9].

WPGF accuracy is directly connected to the need for balancing energy, and therefore,
to the cost of wind power integration [10]. Accurate estimations of wind speed and wind
power generation might improve safety, reliability, and profitability [9] not only in the
operation of the wind farms, but also in the secondary substations managed by DSOs.

Consequently, a large amount of research has been directed towards the development
and improvement of good and reliable wind forecasts in recent years, and different forecast
systems have been developed.

1.2. State of the Art on Wind Power Forecast Methods

WPGEF has been a topic of interest for many researchers, due to the importance of
integrating RES into the power system and all the implications that it brings. Based on an
analysis of the literature, wind forecast methods can be divided into six overall groups:
persistence method, physical methods, statistical methods, Artificial Neural Networks
(ANNSs)-based models, hybrid methods, and new models.

The persistence method uses the simple assumption that the value at a certain future
time will be the same as it is when the forecast is made. It is based on the assumption of a
high correlation between present and future values, and produces accurate predictions for
very-short-term forecasts [11]. As expected, the accuracy of this model degrades rapidly
with the increasing prediction lead time [12], so it is normally used as a reference to evaluate
the performance of advanced methods.

Physical methods use forecast values from a Numerical Weather Prediction (NWP)
model as an input to calculate the wind power generation based on the power curve. The
NWP method is mathematically complex and is usually run on supercomputers because
it requires a high computation time to produce forecasts, which limits its usefulness [12].
However, J.Taylor et al. [4] developed a new type of physical method to predict the
probability density function of wind power generation for the 1 to 10 days ahead forecast
using Weather Emsemble Predictions (WEPs). WEPs are generated from atmospheric
models and consist of multiple scenarios for the future value of a weather variable (in this
case, wind speed). The results of this study were compared with the statistical time series
method, ARMA, and it was found that WEPs gave more accurate and comfortably superior
results; therefore, the author mentions that WEPs have a strong potential for WPGF.

Statistical methods are based on training with measured data (time series). They are
easy to model, capable of providing timely prediction and mostly used for short-term
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forecasting [12]. Several types of time series models may be considered, but the most pop-
ular are AR and its variants ARX, ARMA, and ARIMA. For instance, C.Gallego et al. [13]
presents a study focused on modeling the influences of local wind speed and wind direction
on the dynamics of a wind power time series, using a generalized linear AR model. What
they found in their study is that the local measurements of both wind speed and wind
direction provide useful information for a better comprehension of wind power time series
dynamics, at least when considering the case of very-short-term forecasting. In particular,
local wind direction contributes to the modeling of some features of the prevailing winds,
such as the impact on wind variability, whereas the non-linearities related to the power
transformation process can be introduced by considering the local wind speed. Another
study made by M.Duran et al. [14], tested an ARX model for wind power prediction, us-
ing wind speed as an exogenous variable. The results for a 24 h time horizon showed a
significant improvement in accuracy when comparing the mean error of their model with
persistence and a traditional AR model. According to [14], when compared with AR, the
improvement of ARX is about 14% and about 26% when compared with persistence.

ANN s are typically composed of nodes (or neurons) that are distributed across differ-
ent layers, namely input, hidden, and output layers. Each node in a layer is linked to the
ones in the next using a weight parameter that measures the strength of that connection [15].
ANNSs can identify the non-linear relationships between the input features and the output
data. There are several kinds of ANNSs but the most common neural networks used for
WPGEF are Feed Forward Neural Networks (FFNNs), Back-Propagation Neural Networks
(BPNNs) and Recurrent Neural Networks (RNNs), which also includes a more advanced
version called the LSTM neural network. A successful application of ANNs in combination
with wavelet transform for short-term wind power forecasting in Portugal is presented by
J.Catalao in [16]. The model proposed predicts the value of wind power 3 h ahead, and it is
compared with persistence, ARIMA, and another neural network approach. The results of
the study confirmed that this model is effective, since the Mean Absolute Percentage Error
(MAPE) has an average value of 6.97%, outperforming the other methods analyzed in [16].
In addition, the introduction of the wavelet transform enables a reduction in the error
when compared with the normal neural network. Another model developed by M.Mabel
et al. is presented in [17], to forecast the wind power generation of seven wind farms in
Muppandal, India. In this case, a BPNN is implemented using three input variables: wind
speed, relative humidity, and generation hours. The model accuracy is then evaluated
by comparing the predicted power with the actual measured values, using two years of
training and one year of the forecast. The results are satisfactory and in agreement, since
the overall percentage error obtained was 4%.

Hybrid methods refer to the combination of different forecasting methods, with the
aim of retaining the merits of each technique and improving the overall accuracy [18]. It
includes the combination of physical and statistical methods, the combination of alternative
statistical methods, or the combination of models for short-term and medium-term forecast-
ing, for instance. Combining forecasting models does not always perform better than the
best individual model; however, in some cases it is viewed as being less risky to combine
forecasts than to select an individual forecast [19]. A recent study from S.Khazaei [20]
presents a hybrid approach for short-term wind power forecasting using the historical data
of Sotavento wind farm (located in Spain) and NWP data obtained from the Meteogalicia
numerical weather forecast system. The goal of the study is to forecast the wind power for
the next 24 h, which is carried out through three stages: wind direction forecast, wind speed
forecast, and wind power forecast. In all three phases, the same hybrid method is used,
and the only difference is in the input data set. Outlier detection, the decomposition of time
series using wavelet transform, feature selection, and the prediction of each time series
decomposed using a neural network constitute the main steps of the proposed method,
and the results obtained demonstrate that it has a very high accuracy.

The last group corresponds to some novel wind forecast models that have been
developed in recent years. Among the most interesting ones, the XGBOOST, Adaptative
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Neural Fuzzy Inference System (ANFIS), RE, and SVM models have achieved the most
accurate predictions for wind power generation. For instance, in [21] a study from H.Zheng
et al. proposes a model for short-term wind power generation forecast based on XGBOOST,
with weather similarity analysis and feature engineering. Hourly wind power generation
is predicted for the week between 21 and 28 April 2017, using the data from 1 January
2016 to 20 April 2017 as training. The results of the proposed model are compared with
a BPNN, RF, SVM, and a single XGBOOST model. Among all the methods, XGBOOST
produced the highest accuracy of prediction, while weather similarity analysis and feature
engineering significantly improved the accuracy of the forecasting results when compared
with the single XGBOOST model. In [22], an ANFIS-based approach for one day ahead
hourly wind power generation forecast is presented. The model proposed by Y.Kassa et al.
is trained with the historical wind speed and wind power data of a 2.5 MW rated wind
turbine installed in Beijing, using one year of data. The performance of the ANFIS model
is therefore evaluated against persistence, a BPNN, and a hybrid method; and the results
demonstrated that ANFIS outperformed all of the other methods tested, achieving an
average MAPE of 6.88%. Finally, a study from L.Fugon et al. [23] evaluates three different
models for short-term WPGF. The models analyzed are ANN, RF, and SVM, while three
wind farms in France are considered in the analysis. The data used correspond to a time
series of hourly power production for an 18 month period, specifically, from July 2004 to
December 2005. For the same period, the NWP of Meteo France is used, considering two
meteorological variables, wind speed and gust wind direction. The forecast is made once a
day for time horizons from 0 to 60 h ahead (3 h resolution), and the results revealed that RF
outperformed the rest of the models.

In summary, the literature review shows that WPGF is an extended task that depends
on the time horizon of the forecast, the resolution and quantity of data used, or the meteo-
rological variables considered. There is not a clear method that outperforms all others for
WPGE, and that is the reason for why this work develops and compares different methods.
The main aim of this study is therefore to find the model that best fits the characteristics
of the wind farms analyzed; considering that the sample of 20 wind farms studied repre-
sents 10% of the total number of wind farms connected to the MV distribution network of
Portugal, the results might be significant for the DSO. Afterwards, no studies are available
for wind power forecast at the MV level using only information collected at secondary
substations, which also makes this study novel.

1.3. Contributions

The main contributions of this work are summarized as follows:

*  The development and implementation of a framework to predict wind power gen-
eration at the MV level. Performing the forecast at the MV level presents several
challenges when compared to the forecast at other scales. At MV, information coming
directly from the wind farm is not available, only the power measurements at the
substations and the numerical weather predictions in areas of 14 km? above the wind
farm are available, making these data less accurate than if one had the information
specifically at a wind farm level. In comparison to the forecast at the regional or na-
tional level, the prediction at the MV level is more complicated because wind farms are
considered separately, which means that the error in the forecast has a direct impact
on the accuracy of the model. At higher levels, several wind farms are considered
at the same time, which means that the error in the power generation forecast of a
specific wind farm can be minimal or less significant when compared to the overall
system. It is important to notice that the secondary substations are normally installed
in wind farms but are operated by the DSO. The predictions are used to evaluate the
impacts of the wind farms in the distribution system, and, because of that, it is not
possible to perform the forecast for more than one wind farm at the same time. One of
the requirements of the proposed method is to provide the forecast in a very efficient
way in terms of computational time. The main reason for this is that the number
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of secondary substations operated by a DSO that can arrive at more than 100,000,
including the ones used for consumers and for distributed generation.

*  The implementation and comparison of several forecasting methods, namely Per-
sistence, Auto-Regressive (AR), Auto-Regressive with Exogenous Variable (ARX),
Long Short-Term Memory (LSTM) neural network, XGBOOST, Random Forest (RF),
Decision Trees (DTs) and Support Vector Machine (SVM), applied to a case study
focused on wind power generation.

* A 20% improvement on the performance of the forecasting model that the Portuguese
DSO is currently using, which means that the final XGBOOST model developed in
this work could be employed by the DSO for future forecasts, to predict wind power
generation more accurately and within a short computation time.

1.4. Paper Organization

This paper is organized as follows: Section 2 explains systematically how the work was
performed, starting from the pre-processing of initial data, Exploratory Data Analysis (EDA)
and feature selection, an implementation of the forecasting models, post-processing, and
validation conducted. Section 3 shows the forecast results obtained for each method, and the
comparison in terms of the error performance between them and with the DSO predictions
provided. This section also includes the different tests or improvements performed on the
final method chosen. Finally, Section 4 summarizes the main outcomes of this study.

2. Wind Forecast at the Secondary Substations Level Framework

The methodology proposed in this framework corresponds to the five stages presented
in Figure 1 and described in this section.

EDA and .
Pre- Forecasting Post- L
. Feature . Validation
Processing - Models Processing
Selection

Figure 1. Methodology stages.
2.1. Data

The forecasting models are developed and tested using real data measured at sec-
ondary substations of wind farms connected to the MV distribution network of Portugal.
The data are provided by the Portuguese DSO and cover seven years of power generation,
from 2015 to 2021, for 20 wind farms located on Portugal’s mainland, providing a significant
sample of the total number of wind farms connected in the distribution system. Considering
the weather conditions in Portugal, some effects, such as icing, were not considered. The
temporal resolution of the datasets is 15 min, and the data also include the Portuguese DSO
predictions for the years 2020 and 2021, which are used to compare with our models results
(through an error metric). Considering the resolution of the measurements, the predictions
will also have a resolution of 15 min.

Different meteorological parameters that might influence the power forecasts, such as
temperature, solar radiance, wind speed, and wind direction are also considered by the
forecasting models as features. The weather data come from the Instituto Portugués do
Mar e da Atmosfera (IPMA), and two years of meteorological data are available for the
analysis, specifically, 2020 and 2021. The temporal resolution of the datasets is 3 h; therefore,
a process called upsampling (increasing the frequency of the samples) is performed to
transform the 3-hour resolution into a 15 min resolution, to have both the power data and
the meteorological data in the same resolution. To assign the values of the new points
created, linear interpolation is applied between the known data.
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2.2. Pre-Processing

This stage intends to prepare the raw data and to make it suitable for the forecasting
models by removing the outliers and by dealing with missing data.

In the case of outliers, all the data points that present a value of power generation
higher than the installed capacity of the wind farm to which they belonged, are considered
outliers, and therefore, they are removed from the datasets. Negative values of power,
if they exist, are considered inconsistent data points and are adjusted to zero.

To deal with missing data, several strategies are applied to fill in the gaps. All of the
strategies are specifically based on two factors: the position (where the data are missing)
and the quantity (the number of consecutive values that are missing).

In the case where the missing data are located at the beginning of the dataset, instead
of trying to fill in the missing values, the algorithm will decrease the length of the training
set to the first value that is available, but respecting the minimum quantity of data defined.
If in the training set, 50% or more of the values are missing, then no forecast is performed
and the training set becomes invalid. On the other side, if the missing data are located at the
end of the dataset, a calculation based on the median is used to fill in the missing values.

When the missing data are not located on the extremes but are in the middle of
the dataset (having available values before and after the gap), four different scenarios
are considered:

e If the missing data correspond to one hour (four data points) or less, the interpolation
approach is used. Since only a small number of values are missing, a straight line
between both sides gives a good approximation of the missing values.

*  From one hour (four data points) to one day (96 data points) of missing data, an ap-
proach based on adjusting the profile of the previous day is used. It considers the time
for when the missing data are found and also the previous day’s information for that
specific moment, to make a normalization and to adapt it to the current day.

¢  If the missing data proceeds from one day (96 data points) to one week of 5 days
(480 data points), the median approach is used, but in this case, the day of the week
and the exact time for when the data are missing is also considered. It is relevant to
mention at this point that only real values contribute to the median; values created by
the missing data algorithm are not taken into account in the median calculation.

e For more than one week (more than 480 data points) of missing values, the gap is not
filled because creating artificial values for long periods of time may have a negative
effect on the forecast models, and consequently, on the results. The approach, in this
case, is to remove the dates that contain large periods of missing data from the training
set, as long as the minimum length defined for the training set is respected.

2.3. Exploratory Data Analysis and Feature Selection

Exploratory Data Analysis (EDA) is the process by which the user looks at and
understands the data with statistical and visualization methods. To have an idea about
the data contained in the datasets, Table 1 presents some descriptive statistics of wind
farm 15. The variables T and R stand for temperature and solar radiance, respectively.
The remaining wind farms have similar information.
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Table 1. Descriptive statistics of wind farm 15.
Measure Power T R Wind Speed Wind
(kW) (K) (W/m?) (m/s) Direction (°)
Mean 7834.07 288.58 735.84 7.01 24151
Std Dev 7177.94 4.95 729.82 2.80 109.90
Min 0.00 272.94 0.00 0.14 0.02
25th Perc 1600.00 285.25 86.43 4.93 157.24
50th Perc 5610.00 288.11 524.35 6.92 284.33
75th Perc 13,102.50 291.45 1193.59 9.08 338.96
Max 29,705.29 310.58 2814.88 16.32 359.98

Feature selection consists of determining which features (input variables) will be used
in the forecasting models. Only a few variables in the dataset are useful for building the
models, and the rest of the features are either redundant or irrelevant. If we input the
dataset with all these redundant or irrelevant features, it may negatively impact on and
reduce the overall performance and accuracy of the models [24].

To select the appropriate features, a correlation matrix, which provides the relationship
between variables, is used. The correlation coefficients can fall between —1 and +1, where
a high and positive correlation indicates that the variables measured using the same
characteristic. Thus, the features with the higher correlation with the target variable
(power) are chosen, and the features with negative or low correlation are discarded. Figure 2
presents the correlation matrix of wind farm 15.

Wind 15 IPMA 1o

power-
-0.8

T
-0.6

R
0.4

wind_speed
0.2

wind_direction
0.0

—
o
B
15}
%

wind_speed |

wind_direction -

Figure 2. Correlation matrix of wind farm 15.

Based on the correlation matrix, only the wind speed and wind direction features are
selected to forecast the power generation. Wind speed presents a higher correlation, as
expected, followed by wind direction, which, despite not having a very high correlation,
may be relevant. The other variables, temperature and solar radiance, are discarded because
they have either a negative or a very low correlation.

2.4. Forecasting Models

Once the outliers are removed, the missing values are filled or handled, and the feature
selection has been performed, the final dataset is divided into the following two subsets:

¢  Training set, the data used by the model to discover and to learn patterns between the
features and the forecast variable, power.
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®  Test set, the data on which the power predictions are generated. It corresponds to
unseen data used to evaluate the performance of the model.

The training set is normally larger than the test set because the idea is to feed the
model with as much data as possible, to learn meaningful patterns, and then apply the
things learned to create predictions on unseen data.

In this case, eight different forecasting models are implemented to predict the power
generation of the 20 wind farms, starting from persistence (to have a benchmark), passing
through regressive models, a neural network, and some newer models.

Specifically, the following forecasting models are tested:

2.4.1. Persistence

The persistence forecast in this case corresponds to the power measured at the same
time instant from the previous day, or at 96-time intervals before the desired forecast time
instant, considering a data resolution of 15 min. It can be formulated as:

X(t) = X(t —96) 1)
where X(t) is the wind power forecast value at a certain instant of time, and X(t — 96) is
the wind power value measured 96 time intervals beforehand.

2.4.2. Auto-Regressive (AR)

This model uses observations from previous time steps as input for the regression
equation, to predict the value at the next time step. In simple terms, an AR(p) model relates
p past observations to the current value X; as [25]:

P
Xp=p+ ), ¢iXii+e (2)
i-1

where y is the mean value, @; is a coefficient which reflects each past observation’s X;_;
influence on the current value, and ¢; is the actual stochastic perturbation.

2.4.3. Auto-Regressive with Exogenous Variable (ARX)

AN ARX model is an auto-regressive model with exogenous inputs. It assumes a
stationary and invertible process, where the exogenous inputs come from an external
system. Therefore, an ARX(p, ;) model can described as [26]:

p Ny
Xe=p+Y ¢iXe—i+ Y nibi +e (3)
i1 i—1

where 7; is the exogenous coefficient and 7y is the order of the exogenous inputs.

2.4.4. Long Short-Term Memory (LSTM) Neural Network

LSTM is one of many types of RNN. Since RNNs cannot store long-time memory,
LSTMs proved to be very useful in forecasting with long-time data, based on ‘'memory line’.
In an LSTM, the memorization of earlier stages is performed through gates. In the end,
the sigmoidal neural network layer composing the gates drives the cell to an optimal value
by disposing of or letting data pass through. Each sigmoid layer has a binary value (0 or 1),
with 0 meaning to let nothing pass through, and 1 meaning to let everything pass through.
Figure 3 shows the composition of the LSTM nodes [27].
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Figure 3. Every LSTM node consists of a set of cells responsible for storing passed data streams.
The upper line in each cell links the models as a transport line, handing over data from the past to the
present ones, and the independence of cells helps the model to filter aggregate values from one cell to
another [27].

To develop the L5TM neural network model in Python, the library tensorflow.keras-
Jayers.LSTM was used.

2.4.5. Decision Trees (DTs)

DTs are a common way of representing the decision-making process through a branch-
ing, tree-like structure. They are made up of different nodes, where the root node is the
start of the decision tree, which is usually the whole dataset. Leaf nodes are the endpoint
of a branch or the final output of a series of decisions. The features of the data are internal
nodes, and the outcome is the leaf node [28]. Figure 4 presents the basic structure of a
decision tree.

Root Node
Branches represent test
outcomes on the training
dataset

Leaf nodes holds
numeric prediction

Internal node denotes
test on an attribute

Figure 4. DT structure [29].

To develop the DT model in Python, the library sklearn.tree.DecisionTreeRegressor
was used.

2.4.6. Random Forest (RF)

RF is a method that combines several decision trees and that uses the majority voting
of the individual trees to find the overall class. It consists of three steps: randomly selecting
training data when making trees, choosing some subsets of features when splitting nodes,
and employing only a subset of all features for splitting each node in each simple decision
tree. During the training of the data, each tree learns from a random sample of the data
points [30]. Figure 5 shows the composition of the 'n’ number of trees, which constructs the
RF algorithm.
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Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

i

{ Majority Voting J

Y

Final Class

Figure 5. Composition of RF [31].

To develop the RF model in Python, the library sklearn.ensemble.RandomForest-
Regressor was used.

2.4.7. Extreme Gradient Boosting (XGBOOST)

XGBOOST is one of the most efficient implementations of gradient-boosted decision
trees, specifically designed to optimize memory usage and to exploit the hardware com-
puting power. The main idea of boosting is to sequentially build subtrees from an original
tree, such that each subsequent tree reduces the errors of the previous one. In such a way,
the new subtrees will update the previous residuals in order to reduce the error of the cost
function. The process of additive learning in XGBOOST, as explained by N.Dhieb et al. [32],
is presented below.

First, consider a data set D, expressed as follows:

D = {(x;,y;), where x; € R™ and y; € R} 4)

D =n Q)

where m is the dimension of the features x;, y; is the response of the sample 7, and # is the
number of samples. The vertical bars in Equation (5) denote the cardinality of the set.
Then, the predicted value of the entry i and denoted as 1;, is defined as:

=

Yi = )_ fr(xi), where fy € F (6)

»
Il

1

where f; indicates an independent tree in the space of the regression trees. F and fi(x;)
refer to the predicted score given by the i-th sample and k-th tree.
The objective function of the XGBOOST, denoted by , is given as follows:

K

T=Y i)+ Y Qfe) 7)
1

i k=1

=
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By minimizing the objective function J, the regression tree model functions f; can be
learned. The training loss function £(y;, ;) evaluates the difference between the prediction
J; and the actual value y;. Herein, the term () is used to avoid the overfitting problem by
penalizing the model complexity as follows:

Q(fe) = 9T+ A o] ®

where ¢ and A are regularization parameters. T and w are, respectively, the numbers of
leaves and the scores on each leaf.

A second-degree Taylor series can be used to approximate the objective function. Let’s
define I; = {i|q(x;) = j}, an instance set of leaf j with g(x), a fixed structure. The opti-
mal weights w} of leaf j and the corresponding optimal value can be obtained using the

J
following equations:

w; = — 9)

2
oL AT (10)

where g; and h; are the first and the second gradient orders of the loss function ¢. The loss
function { can be used as a quality score of the tree structure 4. The smaller the score is,
the better the model is.

As it is not possible to enumerate all of the tree structures, a greedy algorithm can
solve the problem by starting from a single leaf and by iteratively adding branches to the
tree. Let’s say that Iz and Ij are the instance sets of the right and left nodes after the split.
Assuming I = Ig U I}, the loss reduction after the split is given as:

Coni :1 (ZieIL gi)z (ZieIR gi)z B (YCier gi)2 B
T Eier, i+ A Ticp itA Lier hi+A

Y (11)

This formula is usually used in practice for evaluating the split candidates. The XG-
BOOST model uses many simple trees and score leaf nodes during splitting. The first three
terms of the equation represent, respectively, the scores of the left, right, and original leaf.
In addition, the term v is the regularization on the additional leaf and it will be used in the
training process.

To develop the XGBOOST model in Python, the library xgboost. XGBRegressor was used.

2.4.8. Support Vector Machine (SVM)

SVM regression trains the model using a symmetrical loss function, which penalizes
for both high and low misestimates. The aim is to find a hyperplane that differentiates
the data points plotted in multi-dimensional space, where each dimension represents the
different features used.

The hyperplane having a maximum separation distance is used to meet the request
of the regression with a higher degree of accuracy. Different coordinates on the plot are
obtained by mapping the parameters under observation on the plot. It can be described
with the help of the mapping function formulated as [29]:

Fx) = Y wp(X;) + b 12)
i=1

where w is the weighted vector and (X;) is the mapped regressor.
To develop the SVM model in Python, the library sklearn.svm.SVR was used.
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2.5. Post-Processing

The main purpose of this stage is to check the generated power predictions and
to adjust the values out of range if they exist. To achieve that, the algorithm checks
two conditions:

*  Power predictions >= 0. The predicted power cannot be negative. In the case where
there are negative values, they are adjusted to 0.

*  Power predictions <= Installed capacity. The predicted power cannot be higher than
the installed capacity of the wind farm. In this case, the maximum forecast value is
limited to the installed capacity.

Once both conditions are verified or adjusted if necessary, the final wind power
predictions are saved, and a plot comparing the forecast values with the real values is
generated. An example of this plot is presented in Figure 6, where the XGBOOST method
is used to forecast 1 month of 2020 (JUL), by using 6 months of training (January-June of
2020). In the figure, it is possible to see that the forecast method arrives at predicting the
trends of the wind generation, but it presents a higher error when the production is high
during short periods of time.

Wind15 predictions vs real values using XGBOOST
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—— Predicted M
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0
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Figure 6. Forecast vs. real values plot for 6 months training, 1-month forecast using XGBOOST.

2.6. Validation

The error metric defined to evaluate the performance of the forecasting models is
based on the Root Mean Square Error (RMSE), but with a small difference: in this case,
the RMSE is normalized by dividing by the installed capacity of the wind farm. Hence, it is
called the Relative Root Mean Square Error (RRMSE) and it is calculated as:

RMSE

RRMSE (%) = x 100 (13)
installed
1 vN (p 2
Y (B P)
RRMSE (%) = VAL -p % 100 (14)
Pinstalled

where N is the total number of samples, D; is the forecast value, P; is the measured value,
and Pjsta1104 is the installed capacity of the wind farm.

Basically, the algorithm calculates the daily RRMSE between the predictions and the
real values for the test period defined, and then the average of this daily error is reported
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(as a percentage), to have an idea of the accuracy of the forecast made. This RRMSE metric
is used as a comparison point in all the results presented.

3. Results and Discussion

This section presents the results obtained for the forecasting models developed,
the comparison of the RRMSE between them, and the DSO results. It also presents the dif-
ferent tests and the tuning process performed to the best-suited model in order to improve
the results. The wind farms’ installed power range from 2 MW to 45 MW. As an example,
the average production behavior of two wind farms is presented in Figure 7.

Wind9 average daily power Wind15 average daily power
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Figure 7. Average production of wind farm 9 (left) and wind farm 15 (right).

3.1. WPGF Models

Table 2 presents the RRMSE for the Persistence, AR, and ARX models; Table 3 presents
the RRMSE for the LSTM, DT, RE, XGBOOST, and SVM models. The training and test
periods defined in all the simulations correspond to: June-November of 2021 for training,
and December of 2021 for forecast. The meteorological parameters, wind speed and wind
direction, were used as features in the models that use exogenous variables, as determined
in Section 2.3.

Table 2. RRMSE for Persistence, AR, and ARX: 6 months training, 1-month forecast.

Wind Persistence AR ARX DSO
Farm (%) (%) (%) (%)
1 24.594 16.886 15.384 13.482
2 37.717 35.105 19.248 16.187
3 14.895 12.396 12.515 41.013
4 35.714 32.035 28.131 19.850
5 30.814 26.713 20.364 14.874
6 32.897 27.102 21.185 18.929
7 35.403 28.947 19.673 50.877
8 38.103 32.230 27.287 21.536
9 30.248 26.306 20.168 14.372
10 34.136 30.781 20.690 45.416
11 31.939 29.759 23.380 29.586
12 24.222 19.232 17.073 15.593
13 33.787 29.940 18.394 17.470
14 38.087 30.688 25.111 21.550
15 26.191 20.947 13.660 11.954
16 37.940 26.028 36.241 21.983
17 34.902 23.803 29.912 19.541
18 34.712 28.478 33.975 26.619
19 31.060 19.225 24.680 18.242
20 29.404 21.114 26.565 18.998

Average 31.838 27.522 21.046 22.904
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The results obtained in Tables 2 and 3 show that just three methods, ARX (21.046%),
RF (20.354%), and XGBOOST (18.613%) outperformed the DSO results (22.904%). Since
XGBOOST has a lower RRMSE, it is chosen as the method to be focused upon and to be
improved, in order to reduce the percentage of error even more.

At this point, the main objective of this work has been achieved, considering that the
developed and implemented XGBOOST model can forecast wind power generation with a
higher accuracy than the model currently used by the DSO. In addition, the computation
time, which is also a determinant factor for the DSO, is on average between 20-30 s per
wind farm for the XGBOOST model, which is highly efficient.

Now, some tests and improvements to the XGBOOST algorithm are developed and
executed, with the idea of improving the results as much as possible.

Table 3. RRMSE for LSTM, DT, RF, XGBOOST, and SVM: 6 months training, 1-month forecast.

Wind LSTM DT RF XGBOOST SVM DSO
Farm (%) (%) (%) (%) (%) (%)

1 23.209 19.543 12.371 12.451 19.492 13.482

2 24.413 24.596 19.952 17.637 31.561 16.187

3 8.288 15.671 11.257 10.549 10.399 41.013

4 29.888 28.721 28.698 22.649 47.410 19.850

5 22.727 21.783 14.873 13.617 29.755 14.874

6 22.555 25.147 23.205 19.273 35.377 18.929

7 29.426 32.046 21.851 21.101 20.949 50.877

8 25.833 25.484 25.398 24.427 39.240 21.536

9 26.900 23.291 17.296 17.472 24.699 14.372
10 26.700 22.602 21.286 16.374 28.953 45.416
11 21.877 25.785 22.783 21.412 34.463 29.586
12 19.562 23.656 17.673 17.509 23.907 15.593
13 21.859 17.593 18.195 12.947 26.973 17.470
14 26.925 29.963 26.919 28.127 36.026 21.550
15 22.833 17.059 12.828 11.651 15.297 11.954
16 29.310 25.150 22.071 20.628 37.585 21.983
17 27.285 26.611 25.206 21.862 45.642 19.541
18 24.323 31.979 28.080 26.764 29.098 26.619
19 21.575 27.072 18.103 17.219 24.802 18.242
20 27.717 23.865 19.042 18.595 34.802 18.998
Average 24.160 24.381 20.354 18.613 29.822 22.904

3.2. XGBOOST, Adjusting Training, and Test Periods

The first test consists of adjusting the training and test periods, to compare the RRMSE
of the XGBOOST model under different time horizons. Based on the two years of IPMA
data available (2020 and 2021), the following eight combinations of training and test periods
are defined:

e Combination 1: 6 months training (January—June of 2021) and 6 months forecast (July—
December of 2021).

*  Combination 2: 7 months training (January-July of 2021) and 5 months forecast (August-
December of 2021).

e Combination 3: 8 months training (January—-August of 2021) and 4 months forecast
(September—December of 2021).

o Combination 4: 9 months training (January—September of 2021) and 3 months forecast
(October-December of 2021).

e Combination 5: 10 months training (January—October of 2021) and 2 months forecast
(November—December of 2021).

e Combination 6: 11 months training (January—-November of 2021) and 1 month forecast
(December of 2021).
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e Combination 7: 1 year training (January—December of 2020) and 6 months forecast
(January-June of 2021).

e Combination 8: 1 year training (January—December of 2020) and 1 year forecast (January-
December of 2021).

The results obtained are summarized in Figure 8, which presents the average RRMSE
of the 20 wind farms for each combination, achieved by the XGBOOST model and by the
model used by the DSO. To have a fair comparison between the different combinations,
regardless of the number of months to forecast, the RRMSE of the same month (DEC of
2021) was analyzed independently of the combination.
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Figure 8. Average RRMSE for each combination.

Figure 8 shows that first, the error of the XGBOOST model developed is always
lower than the error of the DSO for any combination of training and test sets. Second,
the XGBOOST model more accurately forecasts long periods of time, such as 6 months
(Combination 7) or 1 complete year (Combination 8), instead of short periods of time such as
1 month (Combination 6) or 2 months (Combination 5). Third, the best combination found
corresponds to Combination number 7: 1-year training (January—December of 2020) and
6 months forecast (January—June of 2021), with an average RRMSE of 14.257%. From now
on, these training and forecast periods are used in all tests.

3.3. XGBOOST Hyperparameter Tuning

Hyperparameter tuning or hyperparameter optimization is the process of determining
the right combination of hyperparameters that maximizes an ML or AI model performance.
It works by running multiple trials of different combinations of hyperparameters in a single
training process. Once the process ends, it gives the set of hyperparameter values that are
best suited for the model to give the most optimal result [33]. The hyperparameters of
XGBOOST that are tuned are the following [34]:

*  max depth: Maximum depth per tree. A deeper tree might increase the performance,
but also the complexity and the chances to overfit. The value must be an integer
greater than 0. The default is 6.

* learning rate: Determines the step size at each iteration while the model optimizes
toward its objective. A low learning rate makes computation slower and requires
more rounds to achieve the same reduction in residual error as a model with a high
learning rate. The value must be between 0 and 1. The default is 0.3.
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* n estimators: The number of trees in our ensemble. Equivalent to the number of
boosting rounds. The value must be an integer that is greater than 0. The default
is 100.

e colsample bytree: Represents the fraction of columns to be randomly sampled for each
tree. It might improve overfitting. The value must be between 0 and 1. The default
is 1.

e sub-sample: Represents the fraction of observations to be sampled for each tree. Lower
values prevent overfitting but might lead to underfitting. The value must be between
0 and 1. The default is 1.

*  min child weight: Defines the minimum sum of weights of all observations required
in a child. It is used to control overfitting. The larger it is, the more conservative the
algorithm will be. The value must be an integer greater than 0. The default is 1.

To find the best combination of hyperparameters for the XGBOOST model, a Random
Search optimization algorithm is used. It consists of a large range of hyperparameter values,
which are randomly iterated a specific number of times over the combinations of the values
defined. The number of iterations defined for the Random Search is 50, and the Mean
Square Error (MSE) is the metric used to evaluate the performance for each combination of
hyperparameters. This process is performed only once because the computation time is
very high and it takes a long time to obtain the results.

Table 4 presents the best combination of hyperparameters obtained for each wind
farm after running Random Search and the average values of each hyperparameter when
considering the 20 wind farms altogether.

Table 4. Best XGBOOST hyperparameters for each wind farm.

Wind Max Learning n Colsample Subsample Min Child
Farm Depth Rate Estimators Bytree Weight

1 2 0.050 200 0.7 0.7 10
2 2 0.050 500 1.0 0.7 10
3 2 0.001 385 1.0 1.0 5
4 3 0.030 200 1.0 0.7 5
5 3 0.030 200 1.0 1.0 10
6 3 0.030 500 1.0 0.5 10
7 2 0.017 610 0.7 1.0 5
8 3 0.050 200 1.0 0.5 5
9 2 0.050 500 1.0 0.7 10
10 2 0.005 715 1.0 1.0 3
11 3 0.022 345 1.0 0.7 10
12 2 0.050 200 1.0 0.5 3
13 2 0.050 100 1.0 1.0 10
14 3 0.100 100 0.7 1.0 10
15 2 0.025 502 1.0 1.0 5
16 2 0.048 181 1.0 0.7 5
17 3 0.054 208 1.0 1.0 5
18 2 0.046 217 0.7 0.7 3
19 2 0.050 500 1.0 0.7 10
20 2 0.050 500 1.0 0.7 10

Average 2 0.04 343 0.9 0.8 7

Considering the values in Table 4, two tests, one using the best combination of hyper-
parameters for each wind farm (Best combination) and the other using the same average
values of hyperparameters for all wind farms (Average values) are performed. The idea
is to compare the best RRMSE achieved so far (Best results until now), with the RRMSE
obtained after the hyperparameter optimization. The results are presented in Table 5, using
1-year training (January-December of 2020) and 6 months forecast (January—June of 2021)
that was the best combination found in Section 3.2.
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From Table 5, it is possible to observe that the average RRMSE was reduced from
14.257% to 13.180% after the hyperparameter tuning was performed specifically for each
wind farm, meaning there was an improvement of 7.55%. In the other case, where the
RRMSE was computed using the average values of hyperparameters instead of the specific
combination found for every wind farm, the average RRMSE achieved was 13.481%. In both
cases, a considerable reduction in the error was achieved with the hyperparameter tuning.

After the comparison between the two tests performed, it was decided that for future
forecasts, just the average combination of hyperparameters (max depth = 2, learning
rate = 0.04, n estimators = 343, colsample bytree = 0.9, subsample = 0.8, min child
weight = 7) will be used to run the XGBOOST model independently of the wind farm. This
considered that the DSO has 200 wind farms connected to the MV distribution network
of Portugal, and that running Random Search for each one is not worth the computation
time required (around 12 h per wind farm) for the little extra improvement obtained when
calculating the best combination of hyperparameters specific for every wind farm.

Table 5. RRMSE for XGBOOST after hyperparameter tuning: 1-year training, 6 months forecast.

Wind Best .Results Bftst ) Average DSO
Farm until Now Combination Values (%)
(%) (%) (%)

1 11.247 10.321 10.338 10.193

2 13.775 12.835 12.860 13.443

3 8.558 7.586 11.194 26.794

4 17.922 17.070 17.497 17.293

5 11.947 11.066 11.174 11.221

6 12.886 11.770 12.125 12.321

7 14.374 13.547 13.567 39.519

8 15.996 14.452 14.756 15.510

9 14.989 14.279 14.254 11.981
10 15.495 14.246 14.404 30.680
11 14.400 13.450 13.526 19.459
12 10.595 9.838 9.909 10.538
13 15.012 14.076 14.175 14.034
14 16.386 15.358 15.459 15.931
15 10.804 9.729 9.796 10.308
16 19.087 16.147 16.237 18.055
17 15.345 14.352 14.732 15.129
18 17.286 16.302 16.335 16.313
19 13.685 12.660 12.726 12.689
20 15.350 14.525 14.555 15.140
Average 14.257 13.180 13.481 16.827

3.4. XGBOOST with Backtesting

Backtesting is a term used in modeling that refers to the testing of a predictive model
on historical data. It involves moving backwards in time, step by step, in as many stages as
it is necessary. Hence, it is a special type of cross-validation applied to previous periods [35].

The purpose of this test is then to apply the backtesting with refit, and increasing
training size strategy inside the XGBOOST model, to see if the RRMSE can be reduced.
To achieve that, the model is trained each time before making a new prediction, and then
that prediction is included in the training set and the process is repeated until all the
predictions are made. That means that the model uses all the data available so far, while
the training set increases sequentially, maintaining the temporal order of the data.
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The initial training set in our case corresponds to 1 year of data (January—-December of
2020), the prediction horizon corresponds to 1 day (meaning that the model is trained in
each iteration to forecast each day separately) and the retraining is performed until the 6
months (January-June of 2021), that correspond to the forecast period is predicted.

Table 6 presents the RRMSE achieved when using the backtesting strategy imple-
mented inside the XGBOOST model.

As shown in Table 6, the results obtained with backtesting are better than the best
RRMSE achieved until now. There is a little improvement of 2.8% since the error was
reduced from 13.481% to 13.097%. However, when considering the computation time that
backtesting requires, which is on average 10 h per wind farm, the small reduction in the
error makes it not worth implementing this strategy inside the model.

For the DSO, it is important that the model is able to perform the forecast in a short
computing time because they have 200 wind farms connected to the MV distribution
network of Portugal. The implemented XGBOOST model takes between 20-30 s per wind
farm to run, and with backtesting, it takes 1500 times more. Since the accuracy of the
forecast with backtesting does not represent a significant improvement when compared
with the normal XGBOOST, the inclusion of backtesting is discarded.

Table 6. RRMSE for XGBOOST using backtesting strategy: 1-year training, 6 months forecast.

Wind Best Results Backtesting DSO
Farm (%) (%) (%)

1 10.338 10.053 10.193

2 12.860 12.568 13.443

3 11.194 9.212 26.794

4 17.497 16.475 17.293

5 11.174 10.683 11.221

6 12.125 - 12.321

7 13.567 13.247 39.519

8 14.756 14.109 15.510

9 14.254 13.740 11.981

10 14.404 14.031 30.680

11 13.526 12.901 19.459

12 9.909 9.355 10.538

13 14.175 13.983 14.034

14 15.459 14.809 15.931

15 9.796 9.575 10.308

16 16.237 17.668 18.055

17 14.732 14.153 15.129

18 16.335 15.899 16.313

19 12.726 12.547 12.689

20 14.555 13.832 15.140

Average 13.481 13.097 16.827

3.5. Stacking

Stacking is the process of using different machine learning and AI models one after
another, where the predictions from each model are added as new features. It is performed
in layers, and there can be arbitrarily many layers, dependent on exactly how many models
are trained, along with the best combinations of these models. In the end, the final dataset
combines the initial features plus the predictions created after each layer is fed into the
last model. The last model is called a meta-learner, and its purpose is to generalize all the
features from each layer into the final predictions [36].

Figure 9 presents the diagram of the stacking process implemented in this case.
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Figure 9. Stacking process implemented [36].

First, six layers were defined using the following models: RF, Light Gradient Boosting
Machine (LGBM), XGBOOST, Ridge, Lasso, and SVM. Then, the XGBOOST model was
used again as a meta-learner to obtain the final predictions.

Table 7 presents the RRMSE obtained using the stacking approach, with the RF, LGBM,
XGBOOST, Ridge, Lasso, and SVM layers; and the XGBOOST meta-learner, for 1-year
training and 6 months forecast.

Table 7. RRMSE for stacking approach: 1 year training, 6 months forecast.

Wind Best Results Stacking DSO
Farm (%) (%) (%)

1 10.338 10.358 10.193

2 12.860 12.856 13.443

3 11.194 8.793 26.794

4 17.497 17.685 17.293

5 11.174 11.136 11.221

6 12.125 12.225 12.321

7 13.567 13.589 39.519

8 14.756 14.619 15.510

9 14.254 14.077 11.981

10 14.404 14.731 30.680

11 13.526 13.569 19.459

12 9.909 9.974 10.538

13 14.175 14.585 14.034

14 15.459 15.394 15.931

15 9.796 9.853 10.308

16 16.237 16.288 18.055

17 14.732 14.912 15.129

18 16.335 16.134 16.313

19 12.726 12.689 12.689

20 14.555 14.375 15.140

Average 13.481 13.392 16.827

As shown in Table 7, by stacking the RRMSE passed from 13.481% to 13.392%, this
is equivalent a 0.66% improvement. Regarding the computation time required by this
approach, for each wind farm, it takes on average 15 min to run, which is 40 times more
than the normal XGBOOST (that takes between 20-30 s to run). Therefore, even when the
RRMSE results are better when using stacking, the little reduction in the error is not worth
the extra computation time, and stacking is discarded.
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4. Conclusions

In this paper, eight different forecasting models, namely, Persistence, AR, ARX, LSTM
neural network, DT, RF, XGBOOST, and SVM were developed and tested to predict the
power generation of 20 wind farms connected to the secondary substations of the MV
distribution network of Portugal. This value is considered as representative of the total
number of wind farms at the distribution level. After comparing the models between
them and with the DSO predictions, the results showed that for 6 months of training
(June-November of 2021) and 1-month forecast (December of 2021), XGBOOST obtained
the best performance, with an RRMSE of 18.613%, followed by RF with an RRMSE of
20.354% and ARX with an RRMSE of 21.046%. The rest of the models obtained an error
that is higher than the error of the DSO predictions for the same period, which corresponds
to an RRMSE of 22.904%. Specifically, the LSTM neural network, DT, AR, SVM, and
Persistence obtained, respectively, RRMSEs of 24.160%, 24.381%, 27.522%, 29.822%, and
31.838%. Another aspect as important as the accuracy itself is the computation time, and in
this study, the computation time required to run any of the models is less than one minute,
which can be considered as computationally efficient.

With XGBOOST as the best-suited forecasting model for the wind farms analyzed,
some tests and improvements were performed on this method in order to reduce the error
as much as possible. It was found that the best combination of training and test periods
based on the two years of information available for IPMA, corresponds to 1 year of training
(January-December of 2020) and 6 months of forecast (January-June of 2021). When using
this specific combination, the average RRMSE is reduced to 14.257%.

A hyperparameter tuning of XGBOOST using Random Search optimization was
carried out to improve the previous result. The best combination of hyperparameters was
found for each wind farm and the average RRMSE was reduced to 13.180%. However, since
the computation time to run Random Search (around 12 h) is very high, it was decided to
use the average values of the hyperparameters independently of the wind farm. Using the
average values of the hyperparameters, the RRMSE achieved is 13.481%, which is not so
far from the value obtained using the best combination of hyperparameters, and therefore,
this approach should be used for future forecasts or with new wind farms.

Other improvements that lowered the best RRMSE (13.481%) of the developed XG-
BOOST model were achieved using backtesting and stacking approaches. In the case
of backtesting, the RRMSE was reduced to 13.097%, while for stacking, the RRMSE was
reduced to 13.392%. Nevertheless, both processes require a longer computation time, 10 h
per wind farm for backtesting and 15 min per wind farm for stacking, than the normal
XGBOOST model, which takes only between 20 to 30 s per wind farm to run. Since one
of the most important characteristics of a forecasting model is to make predictions in an
efficient way, meaning rapidly and with accuracy, it was concluded that the small reduction
in the error achieved with this strategy is not worth the large computation time needed,
and consequently, backtesting and stacking are discarded.

After all, using the proposed XGBOOST model for 1 year of training (January—December
of 2020) and 6 months forecast (January—June of 2021), the best average RRMSE achieved
for the 20 wind farms studied corresponds to 13.481%—after discarding Random Search,
backtesting, and stacking, of course. The results successfully fulfilled the main objective of
this work, which was to improve the performance of the actual DSO forecasting system,
which for the same period of analysis, presents an RRMSE of 16.827%. With the XGBOOST
model developed, an improvement of 20% is achieved. The framework is scalable, compu-
tationally efficient, and can be used for future wind power forecasting if the DSO wants to
obtain predictions with higher accuracy.

In future work, it is expected that methods will be developed that allow for the
probabilistic forecast of wind generation. The methods will be also tested in other sources
of generation such as solar photovoltaic. Afterwards, the impacts of the proposed forecast
methods on the operational planning tools will be assessed.
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Nomenclature

ANFIS Adaptative Neural Fuzzy Inference System
ANNs Artificial Neural Networks

AR Auto-Regressive

ARX Auto-Regressive with Exogenous Variable
ARIMA Auto-Regressive Integrated Moving Average
ARMA Auto-Regressive Moving Average

BPNN Back-Propagation Neural Network

DSO Distribution System Operator

DTs Decision Trees

EDA Exploratory Data Analysis

EU European Union

FENN Feed Forward Neural Network

IPMA Instituto Portugués do Mar e da Atmosfera
LGBM Light Gradient Boosting Machine

LSTM Long Short-Term Memory

MAPE Mean Absolute Percentage Error

ML Machine Learning

MV Medium Voltage

NWP Numerical Weather Prediction

1Y% Solar Photovoltaic

RESs Renewable Energy Sources

RF Random Forest

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RRMSE Relative Root Mean Square Error

SVM Support Vector Machine

TSO Transmission System Operator

WEPs Weather Ensemble Predictions

WPGF Wind Power Generation Forecast

XGBOOST  Extreme Gradient Boosting
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