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Abstract: As the need to determine and monitor carbon footprints (CFs) in the construction industry
grows and given that concrete is a key construction material in this sector, the authors of the article
conducted a carbon footprint analysis of 15 different concrete mixtures. The method for determining
the carbon footprint of the entire life cycle of concrete was presented in detail. The authors conducted
a comparative analysis of the CF for an example structure made of three significantly different
concrete strength classes, in addition to determining the CF for 1 m3 of concrete mix. This analysis
showed the need to consider the entire structure and the emissivity associated with the consumption
of reinforcing steel when selecting the most favorable solution in terms of greenhouse gas (GHG)
emissions. The study revealed that the composition of the concrete mix, primarily the type and
amount of cement, has the greatest influence on the carbon footprint. Furthermore, the location and
geometry of the structure, as well as the number of floors, should also be taken into account when
selecting concrete. In the analyzed construction, the life-cycle phases related to the incorporation of
the concrete mixture at the construction site (phases A4–A5) and those related to the demolition of
the concrete at the end of its life cycle (phases C1–C4) constituted approximately 10% on average of
the total value of CF emissions over the entire concrete life cycle.

Keywords: carbon footprint; LCA of building materials; demolition process; circular economy;
decarbonization

1. Introduction

The production and exploitation of building structures are energy-intensive and
material-intensive and are thus expense-intensive. Additionally, it generates a lot of
waste and harmful emissions. Modern construction is increasingly being demanded to
incorporate specific characteristics in the building materials used (e.g., thermal insulation,
durability, strength) [1–3] and to reduce energy consumption during the construction and
operation of building structures [4,5]. The most important aspect is minimalization of the
environmental impact to the greatest extent possible [6,7]. According to data from 2020,
the construction industry and buildings are responsible for 36% of the total global energy
demand [8] and 38% of all global CO2 emissions. Among the CO2 emissions produced
by the construction industry and buildings, 10% are released during the production and
transportation of building materials, the construction process, and demolition.

The European Union is the third emitter of greenhouse gases (GHGs) in the world, just
behind China and the United States [9]. Due to this fact, monitoring the level and variations
of GHG emissions by individual EU countries is crucial for assessing the effectiveness of
the solutions used to reduce these emissions—decarbonization [10]. It is important to pay
particular attention to building materials and technologies with a low carbon footprint
when designing new buildings [11]. Calculating the carbon footprint can also serve as an
incentive for all parties interested in reducing greenhouse gas emissions. By providing
an opportunity to track the outcomes of their efforts, it encourages them to take action
towards their goals [12].
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According to ISO 14067 [13], the carbon footprint is the sum of all GHGs emissions
and absorptions during the full life cycle of a product (from cradle to the grave). When
justified, the carbon footprint is determined from the extraction of raw materials to the
delivery of the finished product to the customer (from cradle to gate). The principles of
formulation on which Type III Environmental Product Declarations of building materials
(EPDs) are based are recommended as a guideline for calculating CF and are often used to
obtain information on the emission factors of specific products [14]. The study [15] specifies
two methods for estimating the carbon footprint of buildings: the simplified method, which
includes modules A1–A3 and B6, and the full method, which considers each of stages
A1–A5, B1–B4, B6, and C1–C4. The simplified method is currently the most widely used
method due to the low availability of databases containing individual emission factors.

From the perspective of a building structure, the carbon footprint can be divided into
embedded and operational as showed in Figure 1.
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Figure 1. Types of carbon footprint from the perspective of a building structure. Own elaboration
based on.

In addition to carbon dioxide emissions, the carbon footprint also includes other
greenhouse gases, including methane CH4 and nitrous oxide N2O (a full list of greenhouse
gases is available in the IPCC report [16]). The magnitude of CF is expressed in terms
of carbon dioxide equivalents per functional unit of product (CO2e/functional unit). By
bringing all global warming impacts to a common scale, this makes it possible to easily
compare the results and assess the overall impact [10,13]. To calculate the CO2e value, the
masses of gases are multiplied by their global warming potential (GWP), which is typically
determined over a period of 100 years and listed in Table 1. Afterward, the values are
added together to obtain the total CO2e value [10,13].

Table 1. GWPs of the most commonly considered greenhouse gases in the footprint analysis. Own
elaboration based on [16].

Chemical Formula GWP100

CO2 1
CH4—fossil origin 29.8

CH4—non fossil origin 27.2
N2O 273

In recent years, the topic of carbon footprint has gained significant attention due to
a variety of factors. Not only is there growing concern about the environmental impact
of carbon emissions, but legislative changes and increased public awareness have also
contributed to the rising interest in this issue [17]. It is commonly used in the marketing
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activities of companies in industries, to demonstrate competitive advantage [18]. Among
the most important legal documents on CF are the European Green Deal [19] and the FIT
for 55 package [20].

The aforementioned legal and environmental aspects, as well as social trends, are
driving the growing interest as well as the need to calculate the carbon footprint, resulting
in new and improved methods for this purpose. Despite the many ongoing studies, the
level of research is still at an early stage and lacks not only a uniform standard database
but also assessment models [21–23].

The literature provides guidance on how to reduce carbon emissions in the construc-
tion industry, including detailed plans for achieving decarbonization [24–26]. The authors
of the standard [15] also indicate that efforts to decarbonize have been focused mainly
on the operational footprint, with insufficient attention paid to the built-in footprint and
the final stages of the life cycle. Reducing only the operational phase of the building is
insufficient; a holistic approach to CF assessment is required. Studies show that improving
the energy efficiency of the building resulted in an 82% reduction in CF emissions for this
life cycle phase, while increasing the CF of the construction phase by 14% [27]. Engaging
in activities aimed at waste reduction and the recycling of construction and demolition
materials can be instrumental in lowering carbon emissions [28]. It is therefore necessary to
develop a future decarbonization assessment framework for both construction and demo-
lition processes, which will make it possible to track the impact of efforts [29,30]. In line
with this idea, decision-making models are already being developed to select the optimal
solution from the perspective of reducing the carbon footprint of a given project through-
out its life cycle [31], which is another argument for the need to standardize calculation
methods so that this practice can become standard.

The environmental impact of concrete and other cement-based materials is becoming
increasingly significant given their mass use [32]. This has led to widespread focus and a
search for solutions to reduce GHGs throughout the life cycle of concrete by researchers
and manufacturers. Concrete is the most widely used building material in the world [33].
As technology advances, it is expected to meet increasingly stringent requirements. One
of the key expectations is to maintain sufficient quality, which must be closely monitored
throughout various stages of the material’s life cycle, such as during ingredient selection
and design, production, delivery, and pre- and post-placement [34–37]. The European
Cement Association Cembureau has established a plan for achieving carbon neutrality in
the cement and concrete value chain by 2050 [38]. The operations carried out by the cement
and concrete industry are highly significant for sustainable development and consumption
policies, as they involve the use of natural resources and notably affect the energy balance of
each country [39]. In addition, concrete recycling is critical to achieving a material efficient
society, which also has an impact on greenhouse gas emissions [40]. The authors of the
paper conducted a carbon footprint analysis on 15 different concretes due to the arguments
presented that emphasized the importance of defining and monitoring carbon footprint
in the construction industry and the fact that concrete is a vital building material for the
industry. Since the majority of available publications focus on only certain aspects, such as
components of the concrete mix (e.g., [41]) or the initial phase of the life cycle (e.g., [42]),
the analysis developed dealt with the entire concrete life cycle (from cradle to grave) and,
as previously, demonstrates the need for a holistic approach. The evaluation was designed
to examine the impact of the various stages of the concrete life cycle on its carbon footprint
and to compare concretes with different compositions and compressive strengths in this
regard. Moreover, the method of calculating the carbon footprint is presented in detail,
which can be used in decision models for the selection of the optimal solution in terms
of greenhouse gas emissions, given the widespread interest in this topic as well as the
continuing deficiencies and development of the methodology. Besides determining the
CF for 1 m3 of concrete mix, the authors conducted a comparative analysis of the CF for a
structure made of three significantly different classes of concrete. This allowed to indicate
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the effect of the concrete class on the amount of mix and reinforcing steel used and thus the
total amount of GHGs emissions of the analyzed structure.

2. Materials and Methods
2.1. Specifications of Concretes and Structures under Analysis

The analysis was conducted for the full life cycle of a reinforced concrete structure
(from cradle to grave), as shown in Figure 2, with particular attention to the characteristics
of the concrete used. The functional unit was defined as 1 m3 of concrete. The carbon
footprint was evaluated for 15 types of concrete mixtures, the composition of which was
assumed on the basis of the literature data:

• Ordinary concrete of normal strength class—NSC according to [43];
• Self-compacting concrete based on slug cement (CEM III)—SCC 1, fly-ash cement

(CEM II)—SCC 2, and Portland cement (CEM I)—SCC 3 according to [43];
• High-performance concrete—HPC according to [43];
• High-performance self-compacting concrete—HPSCC according to [43];
• Concrete with 50% of recycled aggregate—RAC 1 and 100% of recycled aggregate—

RAC 2 according to [44];
• Geopolymer concrete—GPC according to [45];
• Lightweight concrete—LC according to [46];
• Fiber-reinforced concrete with steel fibers—FBS 1-3 [47];
• Fiber-reinforced concrete with glass fibers—FSG according to [48];
• Reactive powder concrete—RPC [49].
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Figure 3 shows the adopted variant for the end of life of concrete.
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Figure 3. End-of-life process included in the analysis.

Table 2 shows the compositions of the various concrete mixtures, their compressive
strengths, and the CF values of the components. The data are derived from either the
GWP impact category contained in the EPDs, or it was adopted from published research.
Due to the lack of information for basalt, the value was estimated based on the data
of granite extraction which has a similar technology. On the other hand, the value of
Ground Granulated Blast-Furnace Slag (GGBS) was assessed in the results of economic
allocation [50]. The GWP value for structural steel was adopted from [51].

Concretes were divided into three groups based on its mean compressive strength fcm:

• I—fcm ≤ 30 MPa;
• II—30 MPa < fcm ≤ 80 MPa;
• III—80 MPa < fcm.

Given this categorization, an examination was conducted to determine how the par-
ticular concrete mixture used impacted the overall carbon footprint of a representative
reinforced concrete structure. The assessment concerned a two-story building with a com-
mercial use, in which structural elements were designed for 3 significantly different classes
of concrete. The building, which measures—in plan—12 × 15 m and has an overall height
of 7.0 m, was designed in post-and-beam construction with 2-way reinforced slabs and an
external walkway (Figure 4).
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Figure 4. Reinforced concrete structure model under analysis: (a) general view; (b) view of the
reinforced concrete structure (geometric dimensions in m).

The calculation model assumed the interaction of forces on the structure from the dead
weight of individual structural elements, service loads, and climatic loads (Figure 5). Load
combinations were made based on the standard codes [52,53]. The tools of Autodesk Robot
Structural Analysis Professional 2013 software [54] that generate automatic combinations
based on the partial factor method were used.
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Figure 5. An exemplary load acting on the analyzed reinforced concrete structure: (a) example service
load; (b) example wind load (push on gable wall).

Static calculations were performed for the adopted model, which made it possible to
determine the values of cross-sectional forces in individual structural elements (Figure 6).
Designing in terms of ultimate limit state and serviceability limit state was conducted in
variants according to [55], assuming that the load-bearing structure of the building (footings,
columns, beams, and slabs) was made from concrete class of C20/25, C50/60, and C90/105.
Designing of individual structural elements was carried out assuming constant dimensions
of their lengths and by optimization due to the consumption of concrete and steel of the
remaining geometric dimensions.
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floor slabs in ULS; (b) map of deflections of floor slabs in ULS.
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Table 2. Concrete mix compositions used in the analysis.

Ingredients CF Concrete [kg/m3]
kgCO2e/kg Source NSC SCC 1 SCC 2 SCC 3 HPC HPSCC RAC 1 RAC 2 GPC LC FBS 1 FBS 2 FBS 3 FSG RPC

Cement
CEM I 0.8890

[50]
380 - - 310 - - 335 335 - 400 255 330 475 616 905

CEM II 0.7040 - - 350 - 455 500 - - - - - - - - -
CEM III 0.4820 - 370 - - - - - - - - - - - - -

GGBS GGBS 0.0020 [50] - - - - - - - - 40 - - - - - -

Aggregate

Sand 0–2 mm 0.0031

[43]

580 700 713 700 668 840 - - 655 700 - - - 1355 -
Sand max. 4.75 mm 0.0031 - - - - - - 865 865 - - 859 790 643 - -

Gravel 2–8 mm 0.0031 400 468 477 375 - - - - - - - - - - -
Gravel 8–16 mm 0.0031 860 468 477 375 - - - - - - - - - - -

Quartz Sand 0.0200 [56] - - - - - - - - - - - - - - 987
Crushed limestone 0.0630 [50] - - - - - - 538 - - - 1069 1069 1069 - -

Basalt 2–8 mm 0.0064 [57] - - - - 1240 990 - - - - - - - - -
Basalt 8–16 mm 0.0064 [57] - - - - - - - - 1216 608 - - - - -
Granite 4–8 mm 0.0064 [57] - - - - - - - - - 267 - - - - -

Lightweight
expanded clay 0.1270 [58] - - - - - - - - - 67.8 - - - - -

Concrete waste 0.0047 [59] - - - - - - 490 980 - - - - - - -

Water Water 0.0006 [43] 190 170 161 200 160 160 182 182 8 110.4 180 180 180 254 260

Additives

Silica fume 0.0039 [43] - - - - 45 - - - - 40 - - - 53.6 230
Fly ash 0.0020 [50] - 180 200 190 - - - - 360 - - - - - -

Steel fibres 1.2800 [60] - - - - - - - - - - 39 39 39 - 233
Glass fibres 1.4400 [61] - - - - - - - - - - - - - 13.5 -

Superplasticizer 1.5300 [62] 3.8 2.59 2.45 6.5 4.05 5.55 - - 6 8.8 0.89 1.16 1.66 3.84 29.6
Na2SiO3 (solution) 0.823 [63] - - - - - - - - 84 - - - - - -

NaOH 0.070 [64] - - - - - - - - 56 - - - - - -

Mechanical compaction YES NO NO NO YES NO YES YES YES YES YES YES YES YES YES

Average compressive strength fcm [MPa] 41.2 42 47 37 91.1 90.5 31 28 27 88.3 25.5 37 55 83 106
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The use of high-performance concretes in the analyzed facility enabled the reduction
of the amount of concrete and reinforcing steel compared to normal strength concrete in
the individual structural elements. The reduction in concrete was mainly related to the
columns, which, due to the nature of their work, transmit eccentrically acting compressive
forces. In slabs made of higher-class concretes, there was no significant reduction in their
thickness. The reason for this is the bi-directional operation of the slabs over their entire
surface and the significant effect of flexural moment on their load-bearing capacity.

The obtained values of steel and concrete mix demand for each material solution are
shown in Table 3 (the values do not consider the waste surcharge).

Table 3. Consumption of concrete and reinforcing steel in the analyzed reinforced concrete structure
depending on the adopted concrete class.

Concrete Classes Reinforcing Steel [Mg] Concrete [m3]

Construction 1 C20/25 7.47 104.19

Construction 2 C50/60 7.06 95.97

Construction 3 C90/105 7.00 94.04

It should that the analysis conducted did not consider the suitability of using a specific
concrete mix in the analyzed structure, given factors such as concrete durability and other
performance parameters.

2.2. Carbon Footprint of Concrete—Calculation Method

The carbon footprint CF (Equation (1)) for the entire life cycle of concrete was deter-
mined following [13] as the quotient of the sum of its CFi values for individual ranges
A1–C4 (Equations (2)–(5)), and the volume of concrete (V) in the entire structure (V was
increased by a 5% waste allowance for process waste, e.g., from using a concrete pump,
based on the [15]):

CF =
∑C4

i=A1(CFi)

V

[
kgCO2e

m3

]
(1)

The value of CFA1 was determined using an Equation (2) as the sum of the products of
the CFj values and the mass mj for the individual concrete components:

CFA1 =
n

∑
j=1

(CFj·mj)[kgCO2e] (2)

Emissions for transport were determined for the Euro V engine class of transport
vehicles, assuming transport for a maximum distance of 100 km and a loading factor of
0.85 [43]. Due to the small share of steel fibers (RPC exception), superplasticizer, and
activators Na2SiO3 and NaOH in the mix, emissions related to the transport of these
materials were omitted. For calculation purposes, the ratios developed for the Tier 1 and
Tier 2 methods in publication [65] were used and are presented in Table 4. The magnitude
of CF for the A2, A4, C2.2 range was defined according to Equation (3):

CFA2,A4,C2.2 =
n

∑
j=1

[lj·(ElCO2
+ 273·EtN2O + FC·E f CO2 + FC·SC)][kgCO2e] (3)

where lj is the transport distance (taking into account the number of necessary trips) for
the individual concrete components; ElCO2 , EtN2 O, and EfCO2 are the emission factors of
CO2 and N2O; FC is the fuel consumption; and SC is the supply chain indicators of diesel
(Table 3).
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Table 4. Data used to calculate transportation emissions. Own elaboration based on [65].

Loading
Capacity [t]

Transport

Exhaust Emission Factors Fuel

EtCO2
[kgCO2e/km]

EtN2 O
[kgN2Oe/km]

Typical Fuel
Consumption

[kg/km]

EfCO2
[kg/kg fuel]

Diesel Supply Chain
Indicator SC

[kgCO2e/kg] [kgCO2e/l]

7.5–16 the ingredients of the
concrete mixtures

0.486·10−3 0.034·10−3
0.155

3.169 0.395 0.332

16–32 concrete mixtures,
debris 0.210

The factors in Table 5 were used to determine the emissions associated with on-site
production, pumping, and compaction of the concrete mix. Due to the lack of information
on N2O emissions, the factors for NOx were used.

Table 5. Electricity demand for A3, A5 processes.

Process Production * Pumping Compacting

Scope A3 A5 A5

Process energy consumption [kWh/m3] 29.66 [66] 0.49 [43] 0.25 [43]

* Included in the concrete production process are placement and transportation of aggregate and cement at
the plant, mixing of aggregate, cement, and water by the concrete plant, and loading of concrete into the
concrete mixer.

Emissions associated with ranges A3 and A5 were calculated based on Equation (4) as
the sum of the products of the electricity end-use emission factor (EeCO2 , EeNOx according to
the National Balancing and Emissions Management Center Report [67] 0.698 kg/kWh and
0.000522 kg/kWh, respectively), the process-specific energy use factor Eck, and the volume
of concrete mix V.

CFA3,A5 =
n

∑
k=1

(EeCO2 + 273·EeNOx
)·Eck·V[kgCO2e] (4)

To determine CFC1, C3.1, C3.2, C2.1 for demolition processes, the methodology developed
by J. Sagan in her paper [68] and the non-road model [69] were used. Demolition (C1) was
conducted using an excavator equipped with hydraulic hammers, followed by loading of
the rubble by the excavator (C3.1) into a crusher (C3.2) and after crushing onto cars (C2.1).
The parameters of the equipment used are listed in Table 6.

Table 6. Equipment parameters. Own elaboration based on [68].

Vehicle Category Power [kW] Average Technical Performance [Mg/h] Maximum Volume of the
Excavator Bucket [m3]

Hydraulic hammer 110 According to Equations (8)–(10) -

Excavator 110 According to Equation (11) 1.5

Crusher 29.6 17.5 -

The carbon footprint was calculated by determining the operating time of the listed
equipment and, on this basis, specific emissions from combustion and fuel consumption—
Equation (5):

CFC1,C2 = EFCO2 + 273·ENO2
+ Fuelk·h·EtCO2 + Fuelk·h·SC[kgCO2e] (5)
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where EFCO2 , EFNOx are unit emissions for CO2 by and for N2O, respectively (Equation (12));
h is equipment operating time (Equation (6)); and Fuelk is fuel consumption (Equation (18)),

h = V· 1
Weh,ec

[h]

h = V·ρn· 1
Wee

[h]
(6)

where Weh,ec (Equation (7)) is the operating capacity for the hydraulic hammer and crusher;
and for the excavator Wee (Equation (11)), ρn bulk density for rubble 1.7 [Mg/m3] [68], and
for recycled aggregate 2.47 [Mg/m3] [70]

Weh,ec = Wt·Sw

[
m3

h

]
, (7)

where Wt is the technical capacity for hydraulic hammers Wt = Wth (Equations (8)–(10));
for the crusher Wt = Wtc according to Table 7; and Sw is the working time utilization factor
equal to 0.8.

Table 7. Indicators used in the calculations for the phase of C1, C3.1, C3.2 i C2.1. Own elaboration
based on [68].

i
[-]

EFss [g/kWh] TAF
[-]

hculm
[h]

Mflh
[h]

AHC
[-]

ANOx
[-]

BSFCss
[lb/kWh]HC NOx

Excavator
(Tier 4N) 0.59

0.176

0.370

1

1092 4667

0.027 0.008

0.492

Crusher
(Tier 4) 0.43 4.023 955 2500 0.547

The technical capacity expressed in m3/h for hydraulic hammers was determined by
the thickness of the element to be demolished (15 cm), and the compressive strength of the
concrete from which the element was formed—Equations (8)–(10):

80 MPa < fcm Wth(x) = 8·10−5·x3 − 0.0135·x2 + 0.589·x + 1.3862 (8)

30 MPa < fcm ≤ 80 MPa Wth(x) = 2·10−5·x3 − 0.0069·x2 + 0.5829·x + 6.258 (9)

fcm ≤ 30 MPa Wth(x) = −1·10−5·x3 − 0.0032·x2 + 0.5977·x + 7.3226 (10)

Operating capacity for the excavator determined according to Equation (11):

Wee =
(Veb·ρn)·3600

T
·Sn

[
Mg
h

]
, (11)

where Veb is the volume of the excavator bucket (Table 6); Sn is the filling factors of the
working vessel 0.85 [71], while T is the duration of the excavator’s working cycle including
the time of auxiliary processes [68].

Individual emissions (Equation (12)) are dependent on engine power P, process time
h, emissions of a specific type of pollutant (EF(HC, NOx, CO2 )—Equations (13) and (14)), and
engine load factor i:

E(HC,NOx ,CO2)
= P·h·EF(HC,NOx ,CO2)

·i [ kg
kWh

] (12)
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Pollutant emissions by type are defined as Equation (13) (for HC and NOx) and
Equation (14) (for CO2):

EF(HC,NOx)
= Ess(HC,NOx)

·TAF·DF [
kg

kWh
] (13)

where EFss(HC, NOx) is the emission factor in the initial state (Table 7) DF is the deterioration
factor calculated using Equation (15); and TAF is the correction factor (Table 7),

EFCO2 = (BSFC·0.4536 − EF HC
)
·0.87·44

12
[

kg
kWh

] (14)

where BSFC is the volume of fuel needed to generate a unit of power—Equation (17);
0.4536—converter of lb units to kg, 0.87 mass fraction of carbon in diesel; 44/12—molecular
weight ratio of carbon dioxide and carbon.

The factors DF (Equation (15)) and AF (Equation (16)) are defined as:

DF =

{
1 + A·AF, dla AF ≤ 1

1 + A, dla AF > 1
(15)

AF =
hculm·i
M f lh

dla AF ≤ 1 (16)

where A is the relative deterioration factor; hculm is the total operating time of the machine
to date (Table 7), while MLflh is the average lifetime at full load operation (Table 7).

BSFC = BSFCss·TAF [
lb

kWh
] (17)

where BSFCss is the volume of fuel required to generate a unit of power in the initial state
of Table 7.

Fuelk =
(BSFC·0.4536)·P·i

0.84
[l] (18)

where 0.84 is the density of diesel [kg/l].

3. Results and Discussion

The amount of carbon footprint for one cubic meter of concrete mix determined by the
simplified method (range A1–A3) is presented in Figure 7.
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The extreme values of GHGs emissions obtained for RPC (the highest value) and
for GPC (the lowest value) are notably different from the other results. It is related to
the significant difference in the cement content for these mixtures compared to the other
compositions presented. This highlights the strong correlation between CF values and the
amount of cement utilized in the compositions presented.

Analyzing the mixtures of the SCC group, which had comparable compositions but
differed only in type of cement utilized, it was concluded that the CF was also affected by
the type of cement. This is supported by the results of a publication [41] in which mixtures
with CEM I, CEM II and CEM I, CEM III were used and were compared among themselves,
resulting in a difference in emissions of 73–150 kgCO2/m3. The reason for this can be
attributed to the fluctuating proportion of clinker, which is being substituted by alternative
binder materials with considerably lower emission rates (such as fly ash [72], GGBS [73],
and even plastic waste [74]), for which almost zero GHGs emissions are assumed due to
their waste origin [42]. This was confirmed by the example of the GPC concrete analyzed. A
similar relationship was also observed in HPC and HPSCC concretes, for which, despite the
higher amount of CEM II cement, comparable or lower CF values were obtained compared
to FBS 1–3, NSC, and LC concretes that used CEM I.

Globally, no significant correlation was observed between the compressive strength
and the CF value, as shown by a comparison of, for example, FBS mix to SCC 1. The reason
for this is the influence of many factors on the strength of concrete, such as grain size,
quantity, and quality of aggregate and water-to-cement ratio, which was also confirmed
by the results of the work [6]. However, considering the strength for one type of mix
(FBS), it could be noted that as the strength increased, so did the amount of GHGs emitted.
This correlation was also confirmed by the authors of the paper [75], who developed an
empirical relationship that allowed estimating individual CO2 emissions as a function of
compressive strength for cylindrical specimens. The increase in GHGs emissions with
increasing compressive strength of concrete was caused primarily by the higher amount of
cement in higher classes of concrete.

Comparison of normal strength concrete—NSC with concrete containing recycled
aggregate—RAC 1 and RAC 2 indicated a decrease in CF values for mixtures in the
RAC group. However, it is important to acknowledge that as the proportion of recycled
aggregate increased, the compressive strength of the tested concretes decreased. The results
of [76] demonstrated that for concrete with a compressive strength of less than 45 MPa,
it is possible to produce concrete with recycled aggregate with the same strength and
durability as concrete with traditional aggregate. Additional emissions might be avoided
by optimizing the mix design. To achieve comparable characteristics to concrete on crushed
aggregate in high-strength concrete using recycled aggregate, a larger amount of cement
would be required, which can result in up to three times higher CO2 emissions than regular
concrete mixtures. Practice has shown that recycled aggregate can be cost competitive with
natural aggregates. High profits can be obtained when ordinary aggregates are unavailable
locally and must be delivered from considerable distances, which also reduces emissions
resulting from transportation [39]. Considering this aspect, it is worth to mention the
analysis carried out in the work [77], which showed that, considering the strength and
economic parameters of concrete, it is reasonable to use recycled aggregate (RCA) when
the transport distance of fine natural aggregate is at least twice as large as for this recycled
aggregate. The reduction in the carbon footprint of concrete as a result of using locally
available aggregates is presented in [78]. The paper [79] emphasized the need to promote
Green Supply-Chain Management (GSCM) as a tool to support energy transformation and
energy conservation and emission reduction in the manufacturing industry. Research in
terms of natural aggregate substitutes did not focus only on recycled concrete aggregate
but also on the use of waste materials from other industries, e.g., PET (waste fraction from
PET bottle recycling) [80], which is in line with the idea of a closed-loop economy [81].

Table 8 shows a comparison of the results obtained in relation to other publications.
The obtained results relate only to phase A1, and the differences obtained are primarily due
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to the adopted assumptions and computational methods, which means that they cannot
always be compared with each other.

Table 8. Comparison of results with other studies.

Type of Concrete Range
Own Results Other Results

Source
CF [kgCO2e/m3]

Compressive
Strength [MPa]

CF
[kgCO2e/m3]

Compressive
Strength [MPa]

Concrete based on
CEM I

A1

305 28 215 25 [82]

291–349 30–80 310–378 30–50 [41]

291–349 30–80 350 60 [82]

386 88 394 80 [82]

RAC 1 337 31 347 31 [44]

RAC 2 305 28 334 28 [44]

FSB 1 348 26 370 25.5 [47]

FSB 2 415 37 439 37 [47]

FSB 3 544 55 572 55 [47]

Figure 8 provides a comparison of the percentage contribution of the carbon footprint
of the different component groups and A2–A3 phases to its total size for analyzed con-
crete mixtures. The results confirmed the previously described conclusions related to the
influence of the amount and type of cement on the CO2e value.
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Figure 8. Percentage contribution of concrete mix components as well as A2 and A3 phases in the
carbon footprint value.

For NSC, SCC1-3, HPC, HPSCC, RAC 2, and LC mixtures, the effect of components
other than cement on CF could be considered negligible. For mixtures with a significant
content of aggregate or fibers, the impact on the issue was evident, and possible attempts
to reduce emissions for these components could perceptibly affect the value of GHGs
emissions. It is worth mentioning that while searching for EPDs, part of the values was
taken from studies conducted in various countries, which indicated the current limited
availability and scope of databases. Additionally, it is important to recognize that values
may vary across regions due to different “energy mixes” in these countries.
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Figure 9 illustrates the obtained carbon footprint values for the entire life cycle of the
analyzed object made of the investigated concretes per 1 m3 of concrete mix.
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It is worth noting that there was a relatively small difference in GHGs emission values
for HPC concrete compared to other concretes with compressive strengths of less than
80 MPa. This relationship appeared to be crucial from the perspective of a particular
construction. Higher compressive strength of concrete could lead to thinner structural
elements or a reduced use of reinforcing steel, which globally may result in a smaller carbon
footprint for the entire structure. Therefore, when selecting a concrete mix for a specific
building project, it is crucial to consider not only the emissions per functional unit but
also how it relates to the overall structure. In paper [82], a carbon footprint analysis was
carried out for normal- and high-strength concrete in reference to three reinforced concrete
building structures with 14, 30, and 60 stories, respectively. The size of the carbon footprint
was defined as a function of both concrete strength and building height. The analysis
showed that for structures with the smallest number of floors, there was a gradual increase
in CO2 emissions together with the increase in concrete class, while for a 60-story building
the relationship was reversed.

The order of concretes ranked by emissivity did not change when using either the
simplified method (range A1–A3) or the full method (whole life cycle), except for HPC
concrete (from 7th place to 8th) and FBS 1 (from 8th to 7th). Hence, this would seem to
confirm that as long as no extensive measures are taken in terms of reducing emissivity in
the initial phase of the concrete life cycle, the simplified method is an acceptable method
for the comparison of the various material solutions for concrete structures with the main
binding component in the form of cement. In the case of GPC concretes, it may be worth-
while to perform the analysis over the entire life cycle since the contribution of the other
phases becomes more significant.

Figure 10 shows the percentage contribution of the carbon footprint of the various
phases of the concrete life cycle to the total. By far the largest share of the total concrete
life cycle was associated with phases A1–A3. The remaining phases for most structures
accounted for an average of 10%. However, the paper did not consider the location of the
analyzed construction, which could have substantial impact on the availability of materials
and transportation distance. Analyzing the graph in Figure 10, it becomes apparent that the
influence of transportation and on-site processes during the technological and demolition
phases become noteworthy only after implementing measures to reduce carbon footprint
during phase A1. This observation is exemplified in the case of GPC mix.
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Figure 10. Percentage contribution of the different life cycle phases of the analyzed concretes to the
carbon footprint value.

Figure 11 illustrates the carbon footprint values obtained for varying amounts of
concrete mix and required steel in the analyzed. The contribution of these components to
the total CF value of the analyzed structure contributed an average of 15%. It should be
noted that the proportion of steel and concrete required can vary significantly depending
on the strength class of concrete used and the number of floors of the structure, which can
result in different proportions of steel and concrete required.
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Figure 11. Carbon footprint value over the entire life cycle for concrete and reinforcing steel in the
analyzed structure.

The obtained value of GHGs emission per 1 m3 for NSC concrete (group II—C50/60)
was increased in comparison with FBS 1 (group I—C20/25); however, in relation to the
entire reinforced concrete structure (also taking into account the emissions associated with
the consumption of reinforcing steel), the opposite result was received: the use of concrete
from group II in this case reduced the emissivity by about 6.5%. A similar relationship
could be observed for RAC 2 concrete with respect to HPC: the reduction was 1.5%, and
for FBS 1 compared to HPC and HPSCC, the reduction was 8.7% and 4.1%, respectively.
This indicates the need to take a holistic approach to the selection of concrete type and
to consider not only the GHGs emissions per 1 m3 of concrete but also the values for the
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entire structure and the emissions associated with the use of reinforcing steel. It should be
noted that most often, besides achieving lower emissions, implementing carbon reduction
measures also results in a reduction in construction costs and labor intensity. This leads to
the conclusion that it is beneficial to combine carbon footprint analysis with cost and labor
intensity analysis of construction processes, as highlighted in references [9,83].

4. Conclusions

Despite the ongoing development of methodologies for calculating the carbon foot-
print, the deficiencies of a unified methodological approach are still apparent. Another
perceived problem is the low availability and narrow scope of GHGs emissions databases.
An analysis of 15 different concrete mixtures used for a sample reinforced concrete structure
showed the following conclusions.

1. The greatest impact on the carbon footprint had the composition of the concrete mix
(phase A1), including primarily the type and amount of cement, which indicated the
need to take low-carbon measures especially in this area.

2. The use of industrial waste and recycled aggregate helps reduce the carbon footprint
of concrete.

3. At the initial stage of construction assessment, the simplified method (phases A1–A3)
seems to be a sufficient method for the selection of concrete in terms of its
lowest emissivity.

4. On average, approximately 10% of the total carbon footprint emissions over the entire
life cycle of the concrete were related to the incorporation of the concrete mixture at
the construction site (phases A4–A5) and the demolition of the concrete at the end of
its life cycle (phases C1–C4) in the analyzed construction.

5. The share of reinforcing steel in the total CF of the analyzed structure amounted to an
average of 15%.

6. Depending on the location of the facility and its geometry and number of floors, when
selecting concrete, it is necessary to consider not only the emissions per functional
unit but also the value in relation to the entire structure and the emissivity associated
with the consumption of reinforcing steel. This is because differences in the amount
of material used due to the concrete’s strength class can significantly reduce the total
carbon footprint emissions.

7. After the implementation of CF reduction measures for phase A1, the impact of trans-
portation, construction site processes, and demolition processes can be considered
significant and important to reduce GHGs emissions for these life cycle phases.

8. A correct evaluation of emissions offers a chance to recognize the primary sources and
crucial regions that demand the implementation of low-emission procedures. From
this standpoint, the analysis presented in this study could assist future researchers,
especially when carrying out computations for concretes where binding materials
other than Portland cement dominate.

9. There is a need to develop unambiguous guidelines for estimating GHGs emissions
that also consider the sources of energy production required primarily for the manufac-
ture of cement, as a result of the specific nature of individual countries’ energy mixes.

10. The analysis of the emissivity of a particular construction-material solution is done on
a case-by-case basis, as it depends on the location of the structure and factors such
as transportation distance and energy sources that vary between countries and are
required to produce specific construction materials.

11. The authors point out that the results are subject to uncertainties due to the assump-
tions made, e.g., regarding materials for which national EPDs were not available
(values may vary between regions due to different energy sources), the transport
distance assumed, and the calculation of the structure for a specific location (specific
climatic loads, ground conditions).
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2. Spišáková, M.; Mésároš, P.; Mandičák, T. Construction Waste Audit in the Framework of Sustainable Waste Management in
Construction Projects—Case Study. Buildings 2021, 11, 61. [CrossRef]

3. Jaskowska-Lemanska, J. Impurities of Recycled Concrete Aggregate-Types, Origin and Influence on the Concrete Strength
Parameters. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2019;
Volume 603. [CrossRef]

4. Sztubecka, M.; Skiba, M.; Mrówczynska, M.; Bazan-Krzywoszanska, A. An Innovative Decision Support System to Improve the
Energy Efficiency of Buildings in Urban Areas. Remote Sens. 2020, 12, 259. [CrossRef]
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