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Abstract: In light of the energy and environment issues, fuel cell vehicles have many advantages,
including high efficiency, low-temperature operation, and zero greenhouse gas emissions, making
them an excellent choice for urban environments where air pollution is a significant problem. The
dynamics of fuel cells, on the other hand, are relatively slow, owing principally to the dynamics of
the air compressor and the dynamics of manifold filling. Because these dynamics can limit the overall
performance of fuel cell vehicles, two key technologies that have emerged as critical components of
electric vehicle powertrains are batteries and supercapacitors. However, choosing the best hybrid
energy storage system that combines a battery and a supercapacitor is a critical task nowadays.
An electric vehicle simulated application by MATLAB Code is modeled in this article using the
multi-objective particle swarm optimization technique (MOPSO) to determine the appropriate type
of batteries and supercapacitors in the SFTP-SC03 drive cycle. This application optimized both
component sizing and power management at the same time. Batteries of five distinct types (Lithium,
Li-ion, Li-S, Ni-Nicl2, and Ni-MH) and supercapacitors of two different types (Maxwell BCAP0003
and ESHSR-3000CO) were used. Each storage component is distinguished by its weight, capacity, and
cost. As a consequence, using a Li-ion battery with the Maxwell BCAP0003 represented the optimal
form of hybrid storage in our driving conditions, reducing fuel consumption by approximately 0.43%
when compared to the ESHSR-3000CO.

Keywords: fuel-cell hybrid electric vehicle; particle swarm optimization algorithm; hydrogen
consumption; multi-objective function problem; energy management strategy

1. Introduction

As the world becomes increasingly aware of the environmental impact of internal
combustion engine (ICE) cars, alternative technologies have emerged to replace them. One
promising technology is the fuel cell electric vehicle (FCEV), which uses hydrogen and
oxygen to produce electricity, emitting only water vapor as a byproduct. FCEVs have been
in development for decades, but only recently have it begun to gain traction as a viable
alternative to ICE cars [1]. FCEVs offer several advantages over traditional gasoline or diesel
vehicles. First and foremost, they emit zero greenhouse gases and pollutants, making them
a cleaner transportation option [2]. Additionally, FCEVs have a longer range than battery
electric vehicles (BEVs) and can be refueled quickly, making them more practical for long-
distance driving. They also have the potential to reduce dependence on oil and increase
energy security. In addition, the principal function of a FC-HEV is to convert the energy
from hydrogen fuel and oxygen in the air into electrical energy through an electrochemical
reaction in a fuel cell [3]. This electrical energy is then used to power the vehicle’s electric
motor, which drives the wheels. In a FC-HEV, the fuel cell serves as the primary power
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source; however, the performance of fuel cells can be limited by slow dynamics in the
air compressor and manifold filling, especially during high-demand situations such as
rapid acceleration or high-speed driving [4]. To address this, batteries and supercapacitors
have emerged as key technologies in electric vehicle powertrains, as they offer high energy
and power density, respectively. By combining these technologies, electric vehicles can
potentially achieve the benefits of both, providing sustainable and efficient transportation.
For this reason, researchers and manufacturers are paying significant attention to FC-HEVs
(fuel-cell hybrid electric vehicles) [5]. Hence, when designing a hybrid storage system
for a fuel cell electric vehicle, one of the key challenges is determining the appropriate
sizing and type of components to use. This is because the hybrid storage system needs to
balance the tradeoff between energy density, power density, cost, and weight. In addition,
the choice of battery and supercapacitor components plays a crucial role in determining
the efficiency of electric vehicles. Lithium-ion batteries, for example, are widely used due
to their high energy density, longer lifespan, and relatively low self-discharge rate. On
the other hand, supercapacitors, such as maxwell, have high power density and quick
charge and discharge capabilities, which makes them ideal for regenerative braking and
providing power during acceleration. The efficiency of electric vehicles is dependent on
various factors, including the energy storage system, the motor, and the overall design of
the vehicle [6]. Therefore, the proper selection of battery and supercapacitor components
can significantly impact the efficiency of the electric car. To address these challenges,
researchers have proposed various approaches, including analytical and simulation-based
methods, to size and optimize the hybrid storage system such as [7–9]. However, all of
these studies were examining the optimal sizing and energy management to choose the
type of component in a discrete way. In this paper, a new energy management strategy was
developed for FCHEVs that controls each mode individually. This strategy determines the
optimal size using the MOPSO algorithm to optimize the FC, SC and battery size to meet
driving conditions while reducing overall fuel consumption. Four driving cycles from the
FCHEV application database were used to analyze the effects of driving conditions on fuel
consumption. Optimal batteries and supercapacitors were chosen to drive the SFTP-SC03
to achieve a lower multi-objective function value.

The sections of the article are as follows. The modeling and validation of the FCHEV
are presented in Section 1. In Section 2, the energy management strategy is proposed for
the optimal sizing of the FCHEV. In Section 3, we present a simplified explanation of the
MOPSO algorithm. Then, in Section 4, simulations are presented via the vehicle application
to discuss the results obtained in Section 5. Finally, the conclusion and recommendations
for future work are summarized in Section 6.

2. Modeling of the FCHEV
2.1. Vehicle Dynamic Model

In Figure 1, the fuel cell, battery, and super-capacitor are all connected by a DC/DC
converter and combined by a DC/DC link, and then connected to the motor by a DC/AC
converter [10].
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The power required can be calculated as the sum of the acceleration power Pacc,
power due to rolling resistance (Proll), power due to air resistance (Paero), and power due to
climbing a slope (Pgx) by using Equations (1)–(5) [11].

Pmotor (t) = Paero(t) + Proll(t) + Pgx(t) + Pacc(t) , (1)

Paero (t) = 0.5 ρ A Cx Vveh(t)
3 , (2)

Pacc(t) = M α(t)Vveh(t), (3)

Proll(t) = M g
(

C0 + C1 Vveh(t)
2
)

Vveh(t), (4)

Pgx(t) = M g sin(β(t))Vveh(t), (5)

where in M is the vehicle weight, the vehicle’s velocity is denoted by Vveh, ρ denotes the
density of air, Cx is the vehicle aerodynamic drag coefficient, A represents the vehicle’s
frontal area, α denotes the vehicle’s acceleration, the static rolling resistance coefficient is
denoted as C0, the dynamic rolling resistance coefficient is denoted as C1, the gravitational
acceleration is denoted by g, and β denotes the road slope.

The power required for an electric motor with a fuel cell, a battery, and a supercapacitor
may be estimated using the vehicle’s longitudinal dynamic equation, which is shown in
Equations (6) and (7) [12].{

Pdem (t) = Pmotor(t)
ηmotor

, i f d
dt Vveh(t) > 0

Prec (t) = Pmotor(t)·ηmotor , i f d
dt Vveh(t) < 0

, (6)

Pproduit (t) = Pf c(t) + Pb(t) + Psc(t), (7)

where Pdem represents the vehicle demand power when the acceleration mode meaning
d
dt Vveh(t) > 0, Prec (t) represent recovered power from the motor when the braking
mode meaning d

dt Vveh(t) < 0, Pproduit represent produced power by fuel cell, battery, and
supercapacitor, ηmotor represents the electric motor efficiency, and Pf c, Pb, and Psc represent
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the power of the fuel cell, battery, and supercapacitor, respectively [10]. The parameters
that were used in the application of the FCHEV are shown in Table 1.

Table 1. FCHEV characteristics.

Parameter Value

Vehicle mass (kg) 950
Vehicle frontal area (m2) 1.75
Air density (ρ) (kg/m3) 1.5
Vehicle aerodynamic drag coefficient (Cx) (m2) 0.3
Static rolling resistance coefficient (C0) 0.008
Dynamic rolling resistance coefficient (C1) 1.6 × 10−6

Electric motor efficiency (ηmotor) (%) 0.95

2.2. Fuel-Cell Modelling and Experimental Validation
2.2.1. PEMFC Mathematical Model

A typical PEMFC is depicted in Figure 2. The electrochemical generator consists of
three major components: a solid membrane (typically made of NafionTM material) and
two metallic plates known as the anode and the cathode. These are the locations where
hydrogen and oxygen react, respectively [13]. When an outside load is connected, hydrogen
atoms divide into electrons and protons, resulting in an electrical current. As a result of
these electrochemical processes, the cathode releases heat and water vapor.
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The output voltage of the FC, VFC, is the variation between its reversible open-circuit
voltage and its reductions in internal voltage, including the loss or reduction in ohms,
activation, and concentration. The nonlinear functions of the FC chemical reactions, temper-
ature, and current are these losses. The essential term for the PEMFC voltage was illustrated
in a previous study [14]. We can calculate the output power of the FC related to the output
voltage VFC, I (A), the FC current, and the number of FC NB f c using Equations (8)–(10):

PFC = NB f c × (VFC × I), (8)
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VFC = ENernst −Vact −Vohm −Vconc, (9)

VFC = Ns × [{1.229− 0.85× 10−3 × (T − 298.15)
+4.3085× 10−5 × T × ln

(
PH2,an ×

√
PO2,ca

)}
+{[ξ1 + ξ2 × T + ξ3 × T × ln(CO2) + ξ4 × T × ln(I )]}
+
{

β× ln
(

1− J
Jmax

)}
− {(Rm + Rc)× I}

]
,

(10)

where VFC is the output voltage of the PEMFC generator, and Ns is the number of cells
assembled in series. ENernst is the no-load voltage in an open-circuit thermodynamic
balance. Vact is the activation voltage resulting from the sluggish kinetic reactions occurring
on the surface of the anode and cathode, Vcon is the concentration voltage drop, and Vohm is
the ohmic voltage drop caused by the resistance values of the membrane and metal contacts,
Rm(Ω) and Rc(Ω), respectively. T is the cell temperature (K), and ξ1, ξ2, ξ3, and ξ4 are
semi-coefficients based on electrochemistry. PH2,an and PO2,ca are the partial pressure values
of the hydrogen and oxygen (atm) entering the anode and cathode, respectively. I and J are
the current (A) and current density (A/cm2) of the PEMFC stack, respectively. CO2 is the
concentration of oxygen on the surface of catalysis (mol/cm3). β is an empirical parametric
coefficient in volts. Jmax is the maximum allowable current density. The concentration CO2
and resistance Rm are calculated using Equations (11) and (12), respectively [15,16]:

CO2 =
pO2,ca

5.08× 106 × exp(
498
T ), (11)

Rm =
l × ρM

A
=

181.6
[

1 + 0.03
(

I
A

)
+ 0.062

(
T

303

)2( I
A

)2.5
]
× l

A×
[
λ− 0.634− 3×

(
I
A

)]
× exp

[
4.18

(
T−303

T

)]
× A

, (12)

where ρM stands for the resistivity of the membrane (Ω cm), and l is the thickness of the
membrane (cm). A is the activation surface of the stack (cm2), and λ is an adjustable
fitting parameter influenced by the material properties of the membrane [15,17]. The fuel
consumption of the fuel cell can be calculated according the following Equation (13):

.
m =

1
Elow,H2

∫ t2

t1

Pf c(t)
η f c

dt, (13)

where
.

m is the fuel consumption per second, Elow,H2 = 120 MJ/kg is the lower heating
value of hydrogen [18,19], Pf c is the output power of the fuel cell (FC) system, and η f c is
the efficiency of the FC system presented in Figure 3, where net power = Pfc/Pnominal.

2.2.2. Validation of NedStack PS6 PEMFC Stack Modeling in FCHEV Application

In this section, the mathematical model is validated by NedStack PS6 PEMFCs by
Fawzi et al. [20,21].

In this study, we used the PS6 PEMFC stack model at 26 kg, where the fuel cell system
cost was USD 53/kW and the hydrogen price (µ f c) was USD 2/kg [22]. The results of
Fawzi et al. [20] were used to acquire data for this PS6 PEMFC-6kW. The aforementioned
PEMFC had a rated power of 6 kW and comprised 65 cells stacked in series. The highest
current density Jmax was 1.2 A/cm2, whereas the membrane thickness and cell active
area (A) were 178 µm and 240 cm2, respectively. Furthermore, the maximum thermal
current of this system was 225 A. The PH2,an/PO2,ca values were maintained constant at
1/1 atm, and the temperature of this stack was 343.15 K. Figure 4 depicts the predicted and
experimentally obtained (I/V) and (P/V) curves corresponding to the PS6 PEMFC in the
FCHEV application. We used the optimum parameter obtained by Fawzi et al. and shown
in Table 2 for the PEMFC mathematical model validation process of the simulated vehicle
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(mass: 950 kg and frontal area: 2.75 cm2) based on a HESS (Maxwell BCAP0003 SC and
Li-ion battery).
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Table 2. The optimal parameters for PEMFC.

Parameter NedStack PS6, Fawzi et al. [20].

ξ1 −0.8535

ξ2×10−3 2.4316

ξ3×10−5 3.7545

ξ4×10−5 −9.5400

λ 13.0802

β 0.0136

Rc×10−4(Ω) 1
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The optimum parameter values for the PEMFC model used in the FCHEV application
database are shown in Table 2.

2.3. Hybrid Energy Storage System (HESS) Modeling
2.3.1. Supercapacitor Modeling

A supercapacitor can be used when it is desired to increase the velocity of the vehicle
rapidly. The energy supply by the supercapacitor can be approximated by Figures 5 and 6 [23]:
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The minimum state of discharge (Esc
min) related to the dump of discharge (DODsc)

and the maximum state of discharge (Esc
max) are represented in Equation (14):

Esc
min = (1− DODsc)× Esc

max, (14)

where Esc is the energy of the SC bank. In every second (t), the supercapacitor’s state of
charge is controlled via the min and max values of supercapacitor capacity, Esc

min and
Esc

max, which can be expressed as in Equations (15)–(17).

Esc
min ≤ Esc(t) ≤ Esc

max, (15)

SOCsc(t) =
Esc(t)
Escmax , (16)

Esc
max = Vsc

max·Isc· (17)

2.3.2. Battery Bank Modeling

A battery bank is utilized when the electricity generated by a fuel cell is insufficient,
and the energy supply provided by the battery bank can be approximated using flowchart
of the charging/discharging mode in Figure 7 [23].
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The minimum state of discharge (Eb
min) related to the dump of discharge (DODb)

and the maximum state of discharge (Eb
max) of the battery can be determined using

Equation (18):
Eb

max = (1− DODb)× Eb
max, (18)
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where Eb is the energy of the battery bank. In every second (t), the battery’s state of charge
is controlled via the min and max values of battery capacity, Eb

min and Eb
max, which can

be expressed as in Equations (19)–(21).

Eb
min ≤ Eb(t) ≤ Eb

max, (19)

SOCb(t) =
Eb(t)
Eb

max , (20)

Eb
max = Vb

max·Ib. (21)

The characteristics of the HESS used in the database for the FCHEV application are
shown in Table 3 [24,25].

Table 3. HESS characteristics.

Parameter
Value for Battery Types Value for SC Type

Unit
Lithium Li-ion Na-NiCl2 Ni-MH Li-S Maxwell

BCAP0003
ESHSR-
3000CO

Weight 10.35 11.5 12 20 13 13.8 11.8 Kg
Typical Cost(Cb, Csc) 150 165 170 190 200 5000 3500 USD/kWh
Maximum Voltage 78 75 71 75 72 800 650 V
Nominal Capacity 9.3 9.46 7.32 6.73 6.089 / / Ah
(Charge/Discharge)

Current / / / / / 100 100 A

Maximum SOC 100 100 100 100 100 100 100 %
Minimum SOC 20 20 20 20 20 20 20 %
Initial Charge 80 80 80 80 80 80 80 %

Charging/Discharging
time >1800 >1800 >1800 >1800 >1800 1–30 1–30 s

Charge/Discharge
efficiency

0.9
/0.85

0.9
/0.85 0.9/0.85 0.9/0.85 0.9/0.85 0.9/0.85 0.9/0.85 /

3. Energy Management Strategy for Optimal Sizing of FCHEV

The management plan for the FCHEV is one of the most important aspects in designing
an FCHEV. The primary energy management strategy flowchart is provided in Figure 5,
and the indicated procedures * (a–d) are described in the flowcharts of charging the SC,
charging the battery, discharging the SC, and discharging the battery in Figures 5–9. By
using Equations (1)–(5), we can compute the power required by the car based on the speed
load and vehicle parameters, and then investigate the signal of this energy to determine
the power mode (braking mode or acceleration mode). In braking mode, the recovered
engine energy is used to charge both the battery and the supercapacitor. In the scenario of
acceleration mode, when the necessary energy is positive, there are two possibilities: either
the fuel cell’s energy is sufficient to meet the demand, or it is not. In case of the former, we
charge both the supercapacitor and the battery after testing the charge for each of them,
as shown in Figures 6 and 7. In the event that the energy of the fuel cell is insufficient to
meet the energy demand, there are two options: in the case of a rapidly increasing energy
demand (with an increased rate of 150%), we use the discharge of the supercapacitor after
testing it, as shown in Figure 8, but in the case of a normal increase, we use the battery after
it has been tested, as shown in Figure 9.
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In the Figures, ηsc
ch and ηsc

disch are, respectively, the charging and discharging efficiency
values of the SC bank in this paper, and the random ηsc

ch and ηsc
disch values were selected,

respectively, as 90% and 85%. ηb
ch and ηb

disch are the charging and discharging efficiency
values of the battery bank in this paper, and ηb

ch and ηb
disch were considered to be 90% and

85%, respectively.

4. Multi Objective Particle Swarm Optimization (MOPSO) for Optimal Sizing of FCHEV

PSO techniques have attracted considerable interest in the field of power systems and
have been successfully applied to a variety of difficult optimization problems in power
systems. PSO-based algorithms’ primary advantages include straightforward concept,
ease of implementation, robust parameter control, and greater computational efficiency
compared to other mathematical algorithms and empirical optimization techniques. This
article discusses the use the PSO approach to determine the optimal component sizes
(FC, Battery, and SC), thereby increasing the vehicle’s efficiency and lowering its cost.
The concept of swarm intelligence is founded on the interaction of swarm groups and
evolutionary computation. The best two values in the PSO algorithm define the position of
each particle. The first is the particle’s best value after it has been saved. This is referred
to as the “local best.” Additionally, each particle has a position that indicates the value of
variables as well as a velocity that propels it toward local and global bests. A fitness function
is a special case of an objective function in that it seeks the optimal solution among all
possible solutions. Additionally, the multi-objective function considers the investment cost,
operating cost, and component weight. A PSO algorithm is composed of three essential
steps [26]:
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While the PSO algorithm is running, each object retains its best fitness value. The
particles with the best fit value compared to other particles are also calculated and updated
during each iteration. The process is repeated until the algorithm meets one of the stopping
criteria, such as the number of iterations or predefined target fitness values. The position of
each particle in the swarm is updated according to Equation (22):

Xi
k+1 = Xi

k + vi
k+1· (22)

In iteration k, X represents particle positions, and v represents particle velocities. The
velocity can be calculated using Equations (23)–(25):

vi
k+1 = k×

[
vi

k + C1r1

(
Pi

k − Xi
k

)
+ C2r2

(
Pg

k − Xi
k

)]
, (23)

K =
2

2− ø−
√

ø2 − 4ø
, (24)

ø = C1 − C2 , ø > 1, (25)

where Pi represents the best local position of the particle, Pg represents the its best global
position, C1 and C2 represent the cognitive and social factors, respectively, and r1 and r2 are
random values between 0 and 1. The difference between C1 and C2 is usually close to 2, and
it affects the size of the particle’s stride towards the local and global bests, respectively. In
this study, both values were considered to be 2 to attract the particle equally to the optimal
positions.

Vi
k , known as inertia, acts as the particle moves in the same direction at the same speed.

C1r1
(

Pi
k − Xi

k
)
, is referred to as the cognitive element and causes the particle to return to a

position where it has experienced greater local fitness. C2r2

(
Pg

k − Xi
k

)
represents the social

components which cause the particle to return to the most appropriate area the swarm has
discovered thus far and follow the top neighbor’s direction before each iteration. If C2 > C1,
the particle is more attracted to local best positions; if C2 < C1, the particle is more attracted
to the global best position.

4.1. Objective Function Formulation:

In this study, the multi-objective optimization process aimed to reduce the total oper-
ating cost and optimize the sizing of the components in the FCHEV simultaneously, mainly
for the fuel cell, battery, and supercapacitor. Therefore, we aimed to increase the perfor-
mance of the FCHEV. The multi-objective function can be defined as in Equation (26) [22].

Min OF =
[

Nbatt ∗ Cb + Nsc ∗ Csc + N f c ∗ ψ ∗ C f c

]
+
[

Nbatt ∗ wb + Nsc ∗ wsc + N f c ∗ ψ ∗ w f c

]
+
(

µ f c

[∫ t2
t1

Pf cdt ∗ ε
]
+ µb

[∫ t2
t1

Pbdt
])

,

(26)

where Cb, Csc, and C f c are the cost values of the battery, supercapacitor, and FC, respec-
tively; wb, wsc, and w f c are the weights of the battery, supercapacitor, and FC, respectively,

and the price of hydrogen is µ f c in USD/kg according to the DOE 2020 [5].
∫ t2

t1
Pf cdt repre-

sents the energy required by the FC each second. We used the factor ε, where ε = 3.6
0.45∗119.96 ,

µb is the price of electricity in USD/kWh, and Pb is the power demand of the battery. The
factor ψ is used to make the FC operate at 25–40% of its rated power (maximum efficiency
region). Therefore, the multi-objective function includes the investment cost, the operating
cost, and the weights of the components.
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4.2. Optimization Parameter Settings

The multi-objective optimization problem was created in order to reduce the invest-
ment cost, the component weights, and the operating cost. Table 4 shows the optimization
parameter setting values after taking into account the maximum number of iterations,
minor constraints, and major constraints [22].

Table 4. Optimization parameter settings.

Parameter Value

Population size (N) 30

Maximum number of iterations (W) 100

[NBfc
min, NBfc

max] [0, 10]

[NBsc
min, NBsc

max] [0, 10]

[NBb
min, NBb

max] [0, 10]

Hydrogen price µfc USD 2/kg

Electricity price µb USD 0.138/kWh

5. Simulation and Results

In this section, we examine the possible use of FCHEV in two different case situations.
First, we examine the ways in which different driving cycles (SFTP-SC03, NEDC, Artemis,
and WLTP) affect vehicle economy, taking into account aspects such as hydrogen use,
operating costs, and component mass. Second, we choose the best hybrid storage solution
based on battery and supercapacitor properties such as capacity, weight, and cost.

5.1. FCHEV Simulation in Different Driving Cycle

Figure 10A–D depicts the effect of speed profile on fuel consumption in the Artemis,
WLTP, NEDC, and SFTP-SC03 driving cycles. In comparison to different driving cycles,
the SFTP-SC03 driving cycle has a low fuel consumption of about 5.61 g/km shown in
Figure 10D. This is because the SFTP-SC03 driving cycle includes low acceleration processes,
causing the system to downsize the fuel cell by about 35.37 kW due to the low power
demand on the engine side, as shown in Figure 11D. Note that although the maximum
speed value in the Artemis driving cycle of 111.5 km/h as shown in Figure 10A is lower
than that of the NEDC driving cycle of 120 km/h as shown in Figure 10C, the choice of
fuel cell size In the Artemis driving cycle, it was larger than the NEDC driving cycle, and
this is due to the magnitude of the accelerations in the Artemis driving cycle, which was
very large, which affected the energy required by the fuel cell as shown in Figure 11A
compared to the NEDC drive cycle shown in Figure 11C, this interpretation is confirmed
by the comparison of the NEDC driving cycle in Figures 10C and 11C with the SFTP-SC03
driving cycle in Figures 10D and 11D, so we note the system taking a larger fuel cell size in
the SFTP-SC03 driving cycle, although it has the highest speed in The NEDC drive cycle
is very large compared to the SFTP-SC03 drive cycle. Comparing the results also for the
WLTP driving cycle shown in Figure 10B with other driving cycles shows that this cycle
took the highest value for fuel consumption as well as the maximum energy value for the
fuel cell, and this is mainly due to the large acceleration ratio shown in Figure 10B, which
increased the percentage The energy required from the EV is as shown in Figure 11B, which
increases fuel consumption, and make the system give more size for the FC. The analysis of
the results reveals that various factors influence a vehicle’s fuel use. To begin, when the
vehicle moves through the air, it encounters air resistance, known as aerodynamic drag.
The faster the vehicle’s speed, the greater the aerodynamic drag, resulting in increased fuel
consumption. Second, rolling resistance created by road tires impacts fuel consumption.
Higher speeds result in increased rolling resistance, which increases fuel consumption.
Furthermore, engine efficiency has a significant impact on fuel consumption. Engines
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perform best in the low to mid-range of RPM. As the vehicle’s speed increases, the engine
may have to work harder, resulting in decreased efficiency and increased fuel consumption.
Finally, transmission gearing influences fuel consumption. Lower gears perform better at
slower speeds, whereas higher gears perform better at faster speeds. As a result, fuel usage
might vary depending on the vehicle’s speed and gearing. The results are summarized in
Table 5.
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Table 5. Multi-Objective PSO Results.

Decision Variables

Driving Cycles
Artemis WLTP NEDC SFTP-SC03

Distance (km) 22.14 23.26 10.9314 5.78
Max Speed (km/h) 111.5 131.3 120 88.5

Average Speed (km/h) 38.37 46.49 33.1533 34.91
FC max Power (kW) 35.9446 38.1160 34.5545 35.3765
Number of batteries 3 5 3 3

Number of SCs 2 3 1 2
Fuel Consumption (g/km) 6.7589 7.3799 5.8761 5.61
Operating Cost (USD/km) 3.44 × 103 2.63 × 103 1.21 × 103 1.26 × 103

Components weight (kg) 165.62 220.37 151.82 165.62

5.2. Choosing the Best Battery with the Best SC for FCHEV

Figure 12A,B show the simulation results for the ESHR and Maxwell SC types when
fuel consumption is considered. In addition, Figure 12C,D show the simulation results
for the ESHR and Maxwell SC types when the running cost is considered respectively.
Furthermore, the weight, cost, and capacity of each battery and supercapacitor are distin-
guishing features. The PSO algorithm evaluated the optimal fitness function value based
on this information and the driving conditions, and the battery type with the lowest fitness
function value was picked as the best alternative. Figure 12A,D presents the comparison
results between the different batteries with ESHSR SC, it was clear that using a Lithium-Ion
battery with a nominal capacity of 9.46 Ah, a maximum voltage of 75 V, and a cost of
165 USD/kWh resulted in the least amount of fuel consumption by about 29.27 g given in
Figure 12A and the lowest operating cost 6838 are presented in Figure 12C for the electric
vehicle in the SFTP-SC03 driving cycle. It is worth noting that the battery’s huge capacity
had the greatest impact on reducing hydrogen consumption, as it was critical in decreasing
the fuel cell’s operation and, as a result, lowering the rate of hydrogen consumption and
operating expenses. After selecting the best type of battery, namely Li-ion, for the driving
conditions in the first case study, we selected the best type of supercapacitor (ESHSR-
3000CO or Maxwell BCAP0003) for the driving conditions with the lowest fitness function
value in the second case study. It should be mentioned that the Maxwell BCAP0003 with
Lithium-Ion battery is the best case for FCHEVs in a variety of driving scenarios. Despite
the fact that the cost of ESHSR-3000CO SC (5000 USD/kWh) is lower than that of Maxwell
BCAP (USD 3500/kWh), the adoption of Maxwell BCAP SC allowed for the lowest fuel
consumption presents in Figure 12B and the lowest operating cost present in Figure 12D By
the values (29.84 g and USD 6798) respectively compared to ESHSR-3000CO (29.97 g and
USD 6834). This occurred owing to the high capacity of the Maxwell supercapacitor, which
made fuel cell operation easier by lowering hydrogen consumption and operating costs by
around 0.43% and 0.53%, respectively. With driving cycles of more than 600 s, the savings
in fuel consumption and operating costs would be significant.
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5.3. Influence the Driving Cycle Condition on Vehicle Performance: A Comparative Study

A comparative study was added to the paper. The driving conditions and car char-
acteristics, mainly vehicle weight 860 kg and vehicle frontal area 2.75, were applied, the
same as for Bendjedia’s study. Bendjedia et al. [19] showed the influence of the driving
cycles on the ESS design in a comparison study using the New European (NEDC) driving
cycle and the Assessment and Reliability of Transport Emission Models Inventory Systems
(ARTEMIS) driving cycle, confirming that there is a big influence of the driving cycle on
the ESS sizes and fuel consumption.

It is clear from reading results presented in Figures 13 and 14 that the fuel consumption
in this study is lower than in Ahmed’s study, as the results showed the contribution of
using the new strategy in reducing the fuel consumption in the Artemis and NEDC and
driving cycles by 20% and 49%, respectively. Although the maximum power of the fuel cell
in this study is greater, this is due to the good control of the strategy during the simulation
where the fuel cell consumes a percentage of the fuel according to the required effort. On
the other hand, we note that the size of the fuel cell in this study is smaller. This is due to
the optimal choice of the fuel cell model which was confirmed by two experimental studies
for the two types of fuel cells where the ideal parameters were obtained for both studies,
which made the results very strong.
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6. Conclusions and Recommendations for Future Studies

In conclusion, fuel cell hybrid electric vehicles (FCHEVs) represent an effective solution
for reducing greenhouse gas emissions and conserving fossil fuels. This study employed
the multi-objective particle swarm optimization algorithm in MATLAB code to optimize
the sizing and energy management strategy at the same time for FCHEVs. The model
was applied to four driving cycles, and the results showed that the selection of a Li-ion
battery with Maxwell BCAP0003 as a secondary power source reduced fuel consumption
by about 0.43% compared to ESHSR-3000CO. The study highlights the significant impact of
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the type of secondary power sources, batteries, and driving conditions on the performance
of FCHEVs. It is hoped that this research will pave the way for further studies to simulate
fuel cell trains in cities such as Ouargla.
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Nomenclature

Bi-DC Bidimensional Direct Current
DOE U.S. Department of Energy
FCHEV Fuel Cell Hybrid Electric Vehicles
FCVs Fuel Cell Vehicles
FCEVs Fuel Cell Electric Vehicles
HESS Hybrid Energy Storage System
ICEVs Internal Combustion Engine Vehicles
MAS Multi-Agent System
MOO Multi-Objective Optimization
NBbatt Number of batteries
NBFC Number of Fuel-Cells
NBSC Number of Supercapacitors
OC Operating Cost
PEMFC Proton-Exchange Membrane Fuel Cell
MOPSO Multi-Objective Particle Swarm Optimization
SC Supercapacitor
SOCb State of charge of battery
SOCsc State of charge of supercapacitor
DOD Depth of Discharge
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