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Abstract: It is a critical issue to allocate redundancy to critical smart grid infrastructure for disaster
recovery planning. In this study, a framework to combine statistical prediction methods and optimiza-
tion models for the optimal redundancy allocation problem is presented. First, statistical simulation
methods to identify critical nodes of very large-scale smart grid infrastructure based on the topologi-
cal features of embedding networks are developed, and then a linear integer programming model
based on generalized assignment problem (GAP) for the redundancy allocation of critical nodes in
smart grid infrastructure is presented. This paper aims to contribute to the field by employing a
general redundancy allocation problem (GRAP) model from high-order nonlinear to linear model
transformation. The model is specifically implemented in the context of smart grid infrastructure. The
innovative linear integer programming model proposed in this paper capitalizes on the logarithmic
multiplication property to reframe the inherently nonlinear resource allocation problem (RAP) into
a linearly separable function. This reformulation markedly streamlines the problem, enhancing its
suitability for efficient and effective solutions. The findings demonstrate that the combined approach
of statistical simulation and optimization effectively addresses the size limitations inherent in a
sole optimization approach. Notably, the optimal solutions for redundancy allocation in large grid
systems highlight that the cost of redundancy is only a fraction of the economic losses incurred due
to weather-related outages.

Keywords: redundancy allocation; generalizes assignment problem; simulation; smart grid infrastructure

1. Introduction

The advent of the smart grid, akin to previous technology revolutions in telecom and
the internet, marks a crucial milestone in modernizing our electric grid. With its imple-
mentation, technology to enhance the efficiency, reliability, and affordability of electricity
distribution is harnessed. This transformation shifts our electric system from a centralized,
producer-controlled network to a more interactive, consumer-centric model.

Addressing the grid’s declining reliability, marked by a surge in outages, the smart
grid becomes imperative. Currently, these interruptions cost Americans an estimated
USD 150 billion annually. Furthermore, with a projected 30% increase in nationwide
electricity demand by 2030, investments of around USD 1.5 trillion over the next two
decades are essential for infrastructure development [1]. By fostering this transition to
a smarter grid—a process already underway—and eventually adopting the smart grid,
electricity will become more affordable, and our environment will benefit from reduced
impact. During this transformative period, ensuring fairness, cost-effectiveness, and
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adequate customer protection will be paramount. The smart grid represents a significant
leap forward, utilizing data in megabytes to move megawatts of electricity efficiently and
reliably into the 21st century [2]. A key feature of the smart grid is its ability to conduct
continuous self-assessments, allowing it to prevent disruptions proactively rather than
merely reacting to them.

Ever-increasing energy demand coupled with increasing prices has prompted the
energy industry to develop intelligent strategies for energy tracking, control, and conser-
vation [3]. Electricity disruptions like blackouts can trigger cascading failures affecting
banking, communications, and security, particularly in winter when heating is crucial. A
smart grid enhances power system resilience, ensuring preparedness for storms, earth-
quakes, and emergencies. Its bidirectional communication reroutes power automatically
during outages, minimizing their impact. Smart grid technology swiftly detects and isolates
outages, prioritizing essential services for swift recovery. By integrating customer-owned
generators, vital facilities remain operational during crises. Moreover, it addresses aging
infrastructure, boosts energy efficiency, raises consumer awareness, and enhances national
security, utilizing locally sourced, resilient electricity. On the other hand, interoperability
among various grid components, data handling, and management across wide geographies
with different environmental conditions pose challenges for traditional smart grids [4].

The increasing complexity of systems highlights the significance of optimal redun-
dancy in business continuity. Systems failures can stem from a wide variety of causes
(refer to the survey article [5]) ranging from the large-scale natural or human-caused disas-
ters that can disrupt an entire region because of a defective electronic part or equipment.
Wang et al. [6] argue that diversification is an effective approach in safeguarding multi-tier
systems against disruptions resulting from failures, cyberattacks, or simply accidents. On
the other hand, designing such diversified systems poses challenges due to factors such as
combinatorial-explosive solution space and conflicting design objectives. Diversification is
proposed to be the best course of application in defending against attacks on any system.
Smart grid redundancy is a diversification technique aiming to defend the network system
against a disruption. Smart grids heavily depend on the IT infrastructure for operations
such as cloud computing and edge computing.

In addition to the tens of millions of computers and servers heavily dependent on
the reliability of IT infrastructure using the cloud computing paradigm, the developments
seen in the 5G cellular network, such as the Internet of Things (IoT) applications of smart
home, smart city and smart transportation via auto-driving have made edge computing
an indispensable infrastructure to connect cloud and end users. The emergence of the
IoT coupled with the advances in the energy management sphere has resulted in the
smart grid, also known as the Internet of Energy (IoE). Krishnan and Jacob [7] proposed a
hybrid technique in developing an Energy Management System (EMS) for a distribution
system with an IoT framework. IoE integrates several forms of energy and leverages the
internet to collect, organize, optimize, and manage energy networks. Mishra and Singh [8]
studied energy management techniques in smart cities using IoE in an effort to develop
improvements in clean energy processes.

Edge computing utilizes the resource of cloud servers to direct the data and com-
puting services to a real-time low-latency system at the edge of a network. For example,
the 5G network in the edge computing infrastructure provides high-bandwidth access to
end users on location services, data caching, video analytics, and augmented reality [9].
Unlike the data centers of cloud computing, the servers in edge computing of IOT systems
must be located close to the end users in order to provide real-time high bandwidth and
low-latency services. Thus, redundancy allocation in edge-to-cloud computing focuses
on the network structure of the end user community, such as critical nodes and links of
social connectivity [10]. The network structure of the user community can be revealed via
community detection methods [11]. ML models are popular methods of community detec-
tion in edge computing [12,13]. The IoT systems follow the power law distribution [14–17].
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Patsidis et al. [18] employed an architecture that includes edge-cloud communication to
extract data-driven insights from microgrids.

Addressing the economic models of system security, Gordon and Loeb [19] under-
scored that an information set is characterized by the loss conditioned on the probability of
a threat occurring and the vulnerability, defined as the probability of a disruption in the
model. Interruptions in the services of large-scale service companies can potentially result
in losses amounting to significant amounts of revenue. Consequently, these companies
must implement specific disaster recovery or disaster avoidance strategies [20].

As a major concern, financial cost is always a component of any redundancy model.
Companies face the challenge of determining the financial allocation for disaster recovery
and, within that, the proportion to be allocated to smart grid redundancy. In order to
protect their assets, businesses have to do their best due to the cost of redundancy allocation
resources [21,22]. It is economically efficient to protect the critical nodes and links with
redundancy resource. Multiple mathematical models have been proposed to determine the
critical nodes and links in the smart grid (see Table 1).

Table 1. Mathematical models for identifying critical nodes and links.

Class Methods Reference

Entropy-based Graph neural network [23]
NodedDeletion Mixed integer programming [24]

Network interdiction Mixed integer linear programming [25]
Maximum k-cut problem Simulated annealing [26]

The mathematical models above encounter challenges when it comes to identifying
critical nodes and links in larger-scale problems. Recently, statistical models have been ap-
plied to identify the critical nodes and links in very large networks such as social networks
and biology networks [27]. These models encompass both model-based and distribution-
based methods. They utilize the topological features of the embedding networks for model
training and validating the outcomes of critical nodes and links (See Table 2).

Table 2. Mathematical models for identifying critical nodes and links.

Class Methods Reference

Model-based Structure–mechanics [28]
Distribution-based Tracy–Widom distribution [29]

Once the critical nodes are identified, redundancy resources are allocated based on the
importance of components (nodes) in smart grid infrastructure. The redundancy allocation
problem (RAP) is typically formulated with two alternative objectives: maximizing the
reliability within the budget constraints or minimizing the system costs to satisfy the
minimum system reliability. Kulturel-Konak et al. [30] proposed two integer programming
(IP) models to address these alternative RAP objectives, and pointed out that these IP
models can be converted into 0–1 IP with additional binary decision variables. Shao [31]
introduced a non-linear 0–1 IP solution formulation for RAP and provided a specialized
dynamic programming method for obtaining optimal solutions.

The RAP is typically framed as a highly nonlinear optimization problem, as discussed
by Kulturel-Konak et al. [30] and Shao [31]. However, in the context of this paper, we
leverage the property of logarithmic multiplication to reformulate the nonlinear problem
as a linearly separable function and introduce a linear integer programming model in the
next section. This transformation significantly simplifies RAP, making it more amenable to
efficient solutions.

This paper presents a novel linear integer programming (LIP) approach to address
RAP based on the generalized assignment problem (GAP). Over the past few decades, a
variety of heuristic findings have emerged for GAP, which can be readily applied to smart
grid redundancy allocation [32,33]. Devi et al. [34] conducted an extensive literature review
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and classified 280 papers on RAP according to the methods employed. Our model here is
more general than GAP, with applications extending to various scenarios, including multi-
skilled workforce assignment [35], the assignment of unmanned aerial vehicles (UAV) [36],
optimal preventive maintenance scheduling for related applications and heuristics (see
the recent paper by [37] and its references), and the development of the model regarding
multi-skilled workforce applications with heuristics [38,39].

In the multi-skilled multi-period workforce assignment problem [35], all variables are
binary, while the unmanned aerial vehicles model [36] presents an integer programming
(IP) model for the facility location problem (FLP), which is a special case of RAP, and the
equivalent quadratic model. The FLP model is different from the LIP model in this study.
The task assignment problem [37] is a multi-resource generalized assignment problem
(MRGAP) with binary variables, which is also totally different from the GRAP LIP model
in this study, where y is an integer variable. Similar differences arose in other papers on
GAP, which considered binary variables in the model. The GRAP LIP model with integer
variable is a generalized model, since the number of resources (total contributions of
resources) should be integer instead of binary, and this formulation can reduce the number
of variables and constraints with a linearly separable function. Given that the conversion
from integer variables to binary variables with binary expansion always increases the
number of variables, the model proposed here significantly reduces the complexity of the
problem, and thus the computational time.

The rest of the paper is organized as follows. In Section 2 a framework combining
statistical simulation and optimization models to identify the critical nodes in the edge
computing infrastructure using a power grid system is presented as an example, and then
the redundancy resource allocation with a linear integer programming model is optimized.
In Section 3, the computational results in critical nodes are reported. Section 4 provides a
summary of conclusions drawn from this study.

2. Materials and Methods
2.1. Statistical Simulation and Optimization Framework

Statistical simulation for critical nodes is based on the random matrix theory that uses
the probability distribution of eigenvalues, such as the Tracy–Widom (TW) distribution [29].
TW distribution describes the fluctuations of maximal eigenvalues of random large matrix
models. Due to its universal character, it is one of the most popular laws in probability
theory. Since the TW law holds only for random matrix, any significant deviation for a
matrix would indicate that it is not a random matrix.

The critical nodes detection problem can be formulated as a special case of clustering,
where critical nodes are assigned to a particular cluster, while the remaining nodes form
some disconnected clusters. The number of singleton clusters increases as the number
critical nodes increases.

The largest eigenvalues of the adjacency matrix associated with the critical nodes
cluster has the TW distribution. Instead of using parametric bootstrap to estimate the
TW distribution, it is computationally efficient to run a few simulations to compute the
mean and the variance of the distribution. Figure 1 illustrates the statistical simulation–
optimization framework used in this study.
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A presentation of the framework in Figure 1 is provided in Algorithm 1 below:

Algorithm 1. Statistical simulation–optimization framewor

1 Compute the Laplacian matrix Lnxn
2 Generate eigenvectors V
3 Form |E|nxn matrix
4 Sort eigenvalues λ
5 Remove eigenvalues λ ≈ 0
6 Store the largest k eigenvalues in |E|nxn matrix
7 Normalize |E|nxn matrix
8 I f the matrix |E|nxn follows TW distribution
9 Apply clustering method
10 IP optimization
11 Form the clusters
12 Apply CNP reduction model
13 Identify the critical nodes

IP: Max x0 = ∑n−1
i=1 ∑n

j=i+1 wij∑
c_max
k=1 xikxjk

14 Minimize total connectivity
CNP: MinF(n1, · · · , nL, L) = 1

2 ∑L
l=1 nl · (nl − 1)

15 If (total connectivity is min.)
Critical Nodes are found

16 Allocate resources to improve resilience

To compute the eigenvalues of the graph network, a spectral clustering method is
used. Initially, the Laplacian matrix is computed, followed by generating eigenvectors. The
eigenvectors form an n by n matrix, where each row represents a node, and each column
stores an eigenvalue. These eigenvalues are sorted incrementally with those close to zero
being removed.

Once the eigenvalues are sorted, the largest k eigenvectors are chosen and stored in a
new n by k matrix, which is subsequently normalized. TW distribution on the new matrix
of eigenvalues can be assessed. If the matrix of eigenvalues follows the TW distribution,
the clustering method described below is applied to the normalized matrix of eigenvalues
to obtain the labels and scores.

The simulation yields a normalized matrix of eigenvalues that can be used to compute
the value of signed weight wij on each edge in the cluster; the critical nodes of that cluster
can be computed with the following Integer Programming (IP) optimization model.

IP : max x0 = ∑n−1
i=1 ∑n

j=i+1 wij∑c_max
k=1 xikxjk (1)

s.t.
c_max

∑
k=1

xik = 1 i = 1, n (2) (2)

denoted by xik, which is equal to 1 if node i is in cluster k, and c_max is the maximum
number of clusters formed. After the clusters are formed, the critical nodes are identified
using a connected node pairs (CNP) reduction model to minimize the total connectivity of
the computer network.

Minimize F(n1, · · · , nL, L) =
1
2∑L

l=1 nl · (nl − 1) (3)

nl , l = 1, . . ., L, is the number of nodes in each cluster. Once the critical nodes are
identified, resources can be allocated to improve the resilience of the network.

2.2. Optimization Model for Redundancy Allocation

This section refers to the computer network for the GRAP model based on the rela-
tionship between the computer network and power system. The smart grid is the interface
between computer network and power system. The computer network is used to control
the operation of the power system, and the status of the power system is monitored by the
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computer system. Before presenting a general linear IP model for the general redundancy
allocation problem (GRAP), the notations for the optimization model are given as follows.

Parameters and Variables:
D—number of potential disruption +1;
pd—probability of disruption d occurring, pd ∈ (0, 1) and ∑D

d=1 pd = 1;
M—number of components the smart grid needs to perform;
wm—importance weight of components (nodes) in smart grid m, wm ∈ (0, 1) and

∑M
m=1 wm = 1;

nm—number of solutions available for component (node) m to select from;
Xmi—1 if solution i ∈ {1, . . . , nm} is chosen for component (node) m, or 0 otherwise;
Cmi—cost of choosing solution i for component (node) m;
Smid—survivability of solution i for component (node) m against disruption d;
vmid—probability of failure for solution i for component (node) m against disruption d

(i.e., vmid = 1 − Smid).
fmd(Xm1, . . . , Xmnm) is a function on vector (Xm1, . . . , Xmnm) for m = 1, . . . , M and

d = 1, . . . , D.
Umd(Ymd) is the utility function for vector Ymd = fmd(Xm1, . . . , Xmnm) for m = 1, . . . , M

and d = 1, . . . , D when Ymd is the total contribution of solutions Xmi, (i = 1, . . . , nm).
The redundancy allocation problem determines the redundancy level of components

(nodes) in a system to maximize its reliability, subject to a set of constraints. Here, a general
redundancy allocation problem (GRAP) is provided.

(GRAP)
maxS = ∑D

d=1 pd

[
∑M

m=1 wmUmd(Zmd)
]

(4)

s.t.
∑nm

i=1 Xmi ≥ 1, ϕoρ m = 1, . . . , M, (5)

∑M
m=1 ∑nm

i=1 CmiXmi ≤ B, (6)

Xmi ∈ {0, 1}, ϕoρ m = 1, . . . , M ανδi = 1, . . . , nm (7)

Ymd = fmd(Xm1, . . . , Xmnm), ϕoρ m = 1, . . . , M,ανδ d = 1, . . . , D, (8)

Ymi ≥ 0, ϕoρ m = 1, . . . , M ανδi = 1, . . . , nm (9)

The objective function in this case aims to maximize the survivability of all components
(nodes) against all potential disruptions. Also, a node m fails against disruption d only when
all of its selected solutions fail at the same time. For a node m and a disruption d, Ymd is
the total contribution of applying all or some of the available solutions Xmi (i = 1, . . . , nm).
The utility of such a solution is equal to Umd(Ymd). It is worth mentioning that GRAP is
written in a generic format. When estimating the functions and parameters, one possibility
is to use game theory [40,41].

Moreover, it is important to note that GRAP is a non-linear integer program. However,
if Ymd = ∑nm

i=1 amiXmiform = 1, . . . , Mandd = 1, . . . , D, and Umd(Ymd) = Ymd where ami is a
constant weight, then the objective function is a linear function. This is a special case of the
generalized assignment problem (GAP) [37], which involves assigning a set of tasks to a set
of agents when each agent is constrained by a single resource type that is limited in supply.
A variety of exact and heuristic algorithms are available for GAP (see, for example [28,29]
for a recent survey). Various exact and heuristic algorithms are available for GAP [32,33].

In the following section, the transformation of the GRAP into a mathematical model
with separable objective function and linear constraints is demonstrated, converting it into
a GAP. The logarithm of equality (8) results in the following.

log(Ymd) = log
(
∏nm

i=1 vXmi
mid

)
= ∑nm

i=1 Xmi(log(vmid)) (10)

and
−log(Ymd) = ∑nm

i=1 Xmi(−log(vmid)) (11)
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Let Zmd = −log(Ymd) and Kmid = −log(vmid). Since 0 ≤ vmid ≤ 1, we have Kmid ≥ 0,
and thus, we have

Zmd = ∑nm
i=1 KmidXmi, ϕoρ m = 1, . . . , M, d = 1, . . . , D (12)

Note that ∏nm
i=1 vXmi

mid = 2−zmd . With this in mind, the GRAP transforms into the following:
(GRAP)

Maximize S∗ = ∑D
d=1 Pd

[
∑M

m=1 wm
(
1 − 2−Zmd

)]
= ∑D

d=1 Pd

[
∑M

m=1 −wm2−Zmd
]

∑D
d=1 Pd

[
∑M

m=1 wm

] (13)

s.t.
(5–7, 12)

Zmd ≥ 0, ϕoρ m = 1, K, M ανδi = 1, K, D (14)

Since pd for d = 1, . . ., D is an array of constants in the objective function, it is not part
of any constraint. In order to maximize S* for a given d, the following function needs to
be optimized:

min∑M
m=1 wm2−zmd (15)

Since wm for m = 1, . . ., M, is also an array of constants and the decision variable is Zmd,
for each m, 2−Zmd needs to be minimized subject to the constraints and Zmd must be as large
as possible. This proves that the RAP is equivalent to the resulting linear integer program.

maxS ∗ ∗ = ∑D
d=1 pd

[
∑M

m=1 wmZmd

]
(16)

s.t. (5–7) and (9–10)
Since Zmd = ∑nm

i=1 KmidXmi, the RAP is restated as the following generalized assign-
ment problem.

maxS ∗ ∗∗ = ∑D
d=1 pd∑M

m=1 wm∑nm
i=1 KmidXmi (17)

s.t.
∑nm

i=1 Xmi ≥ 1, ϕoρ m = 1, . . . , M, (18)

∑M
m=1 ∑nm

i=1 CmiXmi ≤ B, (19)

Xmi ∈ {0, 1}, ϕoρ m = 1, . . . , M ανδi = 1, . . . , nm (20)

Constraints (19) are capacitated with the budget limit. Following our recently pub-
lished method (the r-flip paper [42] and recent papers [35,43]), an r-flip local search heuristic
is implemented to improve the assignment. In this r-flip heuristic, r = 2, 3, and 4 for the
assignment of both components (nodes) and assets that components (nodes) choose from
to improve the survivability. The improvement process based on the r-flip heuristic is
implemented by the Tabu Search algorithm with an embedded strategic oscillation, which
is a search strategy originally proposed as part of tabu search aiming to find solutions in a
critical boundary of the search space [44].

3. Results

The statistical simulation and optimization experiments are coded in R. A power
grid dataset is chosen to illustrate the proposed framework (Figure 2). The dataset has
4941 nodes and 6594 edges, with a maximum distance of 45 between the pair of nodes in
the graph [45]. The distance between pairs of nodes in a network is the number of edges
in a shortest path (also called a graph geodesic) connecting them, which is also known as
the shortest-path distance (or geodesic distance). The minimal distance for 90% of node
pairs is 26.
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The distribution of degree nodes in the power grid follows the power law distribu-
tion with p value = 0.76, which is greater than 0.05, so the data follow the power law
distribution [46]. Figure 3 shows the degree distribution of nodes in the power grid.
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The eigenvector of nodes is obtained using the Spectrum function and the smallest
eigenvalues are removed from the matrix. Following the TW distribution test, the critical
nodes are identified by the optimization model (1)–(4). Figure 4 highlights the results of
the spectral clustering of critical nodes with large vector sizes. Figure 5 shows the network
structure after the critical nodes are removed from the graph. The cost of redundancy
allocation is computed based on the critical nodes by a heuristic algorithm. Table 3 displays
the network nodes’ connectivity after the critical nodes are removed and the average nodes’
connectivity values are measured by the complement of fragmentation score.
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Table 3. Statistical learning of embedding networks to identify critical nodes and links.

Number of Removed Critical Nodes Connectivity

5 0.0615851
10 0.0605954
15 0.0592443

To evaluate the impact of resource allocation costs on the redundancy of critical nodes
using benchmark datasets, critical nodes are identified based on a reliability threshold
ranging from 98% to 99% for the power grid system. In this study, power transformers
are examined as the primary components. The cost of a power transformer ranges from
USD 600,000 to 4,000,000, with a 15-year life cycle [47]. A cost between USD 600,000 and
USD 4,000,000 is assigned for the critical nodes. Table 4 presents the costs associated with
redundancy on critical nodes to maintain 98.79-99.74% reliability (connectivity). The table
also provides the range of values for nodes of the smart grid. A Congressional Research
Service study in 2012 estimated the inflation-adjusted cost of weather-related outages at
USD 25 to 70 billion annually [48]. Notably, the cost of redundancy is only a small fraction
of the economic losses resulting from weather-related outages.

Table 4. Cost of redundancy on critical components in the power grid system.

PowerGrid Size Critical Nodes Cost of Redundancy (USD) Reliability

South Carolina cities 500 13 13,744,377 99.74%
Texas cities 2000 17 19,378,002 99.66%
Texas state 6717 31 47,454,580 99.63%
Midwest 24,000 59 104,646,071 99.61%

West-East US 80,000 156 312,855,059 98.79%

4. Discussion

The smart grid incorporates proven technologies to optimize its assets—from power
plants to distribution substations and critical infrastructure. These advancements lead to
increased power flow through existing assets and provide utility-providers with precise
insights, enabling them to assess the necessity for additional power plants accurately.
Operational enhancements span improved load factors to reduce system losses, resulting
in a net reduction in utility costs and enhanced overall efficiency.

The incorporation of redundancy into critical nodes significantly mitigates the risk of
system failure or disruption by establishing alternative pathways or resources in the event
of a component failure. This design principle fortifies the system against vulnerabilities
associated with single points of failure of critical nodes, whether stemming from a natural
disaster or a targeted attack. Redundancy encompasses the integration of backup systems
or critical nodes poised to seamlessly take over in case of a failure, ensuring uninterrupted
operations even if a specific part of the infrastructure associated with critical nodes mal-
functions. The effectiveness of redundancy in risk reduction is quantified through the
measure of business continuity, as indicated in Table 4. However, it is imperative to strike a
balance between the costs and benefits associated with redundancy, particularly in terms
of availability.

The results of this study highlight the key strategies to improve the reliability of the
smart grid:

• Redundancy planning—Identify critical components in the smart grid infrastructure.
Allocate redundancy by duplicating these components, ensuring backup systems are
in place to seamlessly take over in case of failures;

• Risk assessment—Conduct a thorough risk analysis to understand potential failure points.
Allocate redundancies to the most vulnerable areas identified during this assessment;
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• Advanced monitoring—Implement real-time monitoring systems to detect anomalies
and potential failures. Use data analytics to predict failure patterns and allocate
redundancies accordingly.

5. Conclusions

In the face of unforeseen events or disruptions, redundant critical nodes facilitate
swifter recovery, thereby minimizing the impact on essential services. By enhancing fault
tolerance, redundancy enables the system to persist even when critical nodes experience
faults or errors. This proves critical in maintaining the delivery of vital services and
preventing cascading failures. Moreover, redundant critical nodes contribute to accelerated
recovery times in the event of a failure. Failover mechanisms can autonomously switch
to backup components, reducing downtime and ensuring continuous operation. This
multifaceted approach to risk management highlights the pivotal role of redundancy in
bolstering the resilience and reliability of critical nodes of the smart grid.

In this paper, a framework that combines statistical learning and optimization to
identify critical nodes in the smart grid infrastructure is presented. To optimize the re-
source allocation for critical nodes, a general redundancy allocation model based on the
generalized assignment problem (GAP) is proposed. It includes the generalized redun-
dancy allocation problem (GRAP) as a special case. An equivalent linear GAP of GRAP is
provided. The redundancy allocation problem can help determine the redundancy level of
nodes in smart grids to maximize system reliability.

Power outages pose an extensive list of risks, including but not limited to economic,
health, and public safety. Weather-related outages alone are estimated to cost between USD
25–70 billion in the US annually [49]. Thus, it is vital to develop risk assessment and quick-
response plans. The combinatorial statistical simulation and integer programming-based
optimization approach proposed in this study offers an efficient framework for managers
and decision-makers in determining the critical components of smart grids and optimizing
redundancy allocation for a well-planned, organized, and coordinated course of action to
be followed in disaster recovery.

Another implication of this study for managers relates to improvements in the capabil-
ity to the assess risks and vulnerabilities of the smart grid for redundancy allocation, while
using limited resources in the most efficient way. The performance of smart grids is closely
related to the reliability and uncertainties involved. Thus, risk assessment to systematically
detect vulnerabilities with the potential to result in grid failures is an essential component
of the future of smart grids.
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