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Abstract: The ultimate analysis parameters, including carbon (C), hydrogen (H), nitrogen (N),
and oxygen (O) content in biomass, were rarely found to be predicted by non-destructive tests to
date. In this research, we developed partial least squares regression (PLSR) models to predict the
ultimate analysis parameters of chip biomass using near-infrared (NIR) raw spectra of non-wood
and wood samples from fast-growing tree and agricultural residue and nine different traditional
spectral preprocessing techniques. These techniques include first derivative (sd1), second derivative
(sd2), constant offset, standard normal variate (SNV), multiplicative scatter correction (MSC), vector
normalization, min-max normalization, mean centering, sd1 + vector normalization, and sd1 + MSC.
Additionally, we employed a genetic algorithm (GA), successive projection algorithm (SPA), multi-
preprocessing (MP) 5-range, and MP 3-range to develop a PLSR model for rapid prediction. A dataset
consisting of 120 chip biomass samples was utilized for model development in which the samples
were non-wood samples of 65–67% and wood samples of 33–35%, and the model performance was
evaluated and compared. The selection of the optimum performing model was mainly based on
criteria such as the coefficient of determination in the prediction set (R2

P), root mean square error
of the prediction set (RMSEP), and the ratio of prediction to deviation (RPD). The optimal model
for weight percentage (wt.%) of C was obtained using GA–PLSR, yielding R2

P, RMSEP, and RPD
values of 0.6954, 1.1252 wt.%, and 1.8, respectively. Similarly, for wt.% of O, the most effective model
was obtained using the multi-preprocessing PLSR–5 range method with R2

P of 0.7150, RMSEP of
1.3088 wt.%, and RPD of 1.9. For wt.% of N, the optimal model was obtained using the MP PLSR-3
range method, resulting in R2

P, RMSEP, and RPD values of 0.6073, 0.1008 wt.%, and 1.6, respectively.
However, wt.% of the H model provided R2

P, RMSEP, and RPD values of 0.5162, 0.2322 wt.%, and
1.5, respectively. Notably, the limit of quantification (LOQ) values for C, H, and O were lower
than the minimum reference values used during model development, indicating a high level of
sensitivity. However, the LOQ for N exceeded the minimum reference value, implying the samples to
be predicted by the model must be in the range of reference range in the calibration set. By scatter plot
analysis, the effect of combined non-wood and wood spectra of biomass chips on rapid prediction of
ultimate analysis parameters using NIR spectroscopy was investigated. To include different species
in a model, the species have to be not only in the different values of the constituents to make a
wider range for a robust model, but also must provide their trend line characteristics in the scatter
plot, i.e., correlation coefficient (R), slope, and intercept (same slope and slope approached to 1, and
intercept is same (no gap) and approached zero, high R approached to 1). The effect of the R, slope,
and intercept to obtain the better-optimized model was studied. The results show that the different
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species affected the model performance of each parameter prediction in a different manner, and by
scatter plot analysis, which of these species were affecting the model negatively and how the model
could be improved was indicated. This is the first time the effect has been studied by the principle of
a scatter plot.

Keywords: biomass; ultimate analysis; near-infrared spectroscopy; partial least squares regression

1. Introduction

The world is undergoing a significant transition away from fossil fuels, embracing
modern renewable energy technologies to meet its escalating energy needs and demands.
Bioenergy, derived from sources such as woody biomass, agricultural residues, and or-
ganic materials and waste, is pivotal in this paradigm shift, constituting the largest share
(two–thirds) of global renewable energy utilization [1]. It is anticipated that bioenergy
will continue to have a decisive share in future net zero emission scenarios and that its
contribution to energy supply will further increase. This transition underscores the growing
significance of biomass energy within the global energy landscape. However, it is worth
noting that billions of people still rely on the inefficient use of traditional biomass for cook-
ing and heating [1]. The combustion of biomass produces air pollutants similar to those
emitted by fossil fuels, with the exception of sulfur oxides [2]. Furthermore, research has
shown that the health impacts attributed to emissions from biomass and wood combustion
can be more harmful than those from fossil fuels [3]. These emissions primarily result from
incomplete biomass combustion and the release of solid particulate matter.

The adoption of woody biomass and non-wood biomass, such as agricultural residues,
coupled with efficient combustion energy technologies, holds the potential to substantially
reduce harmful emissions into the atmosphere while increasing its contribution to energy
supply, making it a viable alternative to fossil fuels. Due to efficiency increase as compared
to traditional biomass use, it is an important cornerstone of future scenarios. Despite
significant investments in the research and development of biomass energy technologies,
a knowledge gap persists, particularly concerning efficient, low-cost determination of
biomass properties, including its elemental compositions (carbon (C), hydrogen (H), nitro-
gen (N), oxygen (O), sulfur (S), and others). During inefficient and incomplete combustion,
harmful pollutants such as carbon monoxide, sulfur oxides (SOx), nitrogen oxides (NOx),
along with particulate matter (PM2.5 and PM10) are continuously released into the environ-
ment as smoke, posing significant health risks through indoor and outdoor exposure, with
women and children being the most vulnerable [4–6].

The elemental composition of biomass has a profound impact on combustion effi-
ciency and the emission levels released into the environment. These emissions, in turn,
carry significant consequences for both the energy industry and the natural surroundings.
Energy release during biomass combustion correlates positively with carbon and hydro-
gen contents, as they are the primary contributors to its energy value [7]. High carbon
content is desirable for energy production [8], and hydrogen’s high energy content makes
it valuable [9]. During combustion, oxygen reacts with carbon and hydrogen, reducing
the available energy in biomass. Elevated oxygen and nitrogen contents decrease the
calorific value, thereby reducing energy potential [10]. Nitrogen and sulfur are undesirable
elements in biomass due to their contribution to the formation of harmful NOx and sulfur
dioxide [11,12]. To minimize environmental impact and ensure sustainable operation and
maintenance of combustion systems, low sulfur content in biomass is preferred [12]. Hence,
it is crucial to rapidly, accurately, and non-invasively assess the elemental composition
of biomass, including C, N, O, H, and S. This assessment is essential for understanding
biomass elemental composition and the potential emissions risks during energy production.

In our previous research [13], an investigation was conducted into the application of
NIR spectroscopy (NIRS) for the comprehensive analysis of the ultimate analysis parameters
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of ground biomass intended for energy utilization. The study concludes that NIRS offers
a reliable and non-destructive alternative method for rapidly assessing the elemental
composition of ground biomass for energy-related purposes. Despite the valuable findings
from previous research, these findings primarily served academic and research institutions.
However, biomass normally is made into pellet form for export and to increase energy
density where grinding is necessary before making pellets. Woodchips are especially useful,
as they are easy to use, and sometimes, ground wood is not suitable for power operations
due to the high cost and length of time necessary for sample preparation; therefore, it is a
popular source of energy for power plants because of low preparation costs. Meanwhile,
woodchip quality could be more effectively examined to achieve higher levels of plant
efficiency [14]. Hence, this study aims to improve the applicability of NIR spectroscopy
to assess the ultimate analysis parameters of chipped biomass, i.e., biomass with particle
sizes commonly found in industrial applications. In consequence, this research outcome
may directly benefit traders and energy companies, facilitating the utilization of research
outcomes without the need for extensive biomass preparation such as grinding.

The data structure of samples used for model development in this present work
was in two forms, i.e., non-wood and wood samples. As reported, the non-wood and
wood species were different in their lignocellulosic constituents. Non-wood material of
agricultural waste compost of lignin, holocellulose, α-cellulose, pentosan, and ash [15]. For
example, agricultural residues, such as hemp and sugarcane bagasse, contained higher
concentrations of cellulose and lower levels of recalcitrant lignin when compared to the
average woody biomass [16,17]. However, Hawanis et al. [18] reported that non-wood
contained lower cellulose and lignin while wood contained higher [19–21]. Therefore,
incorporating a wider range of ultimate analysis parameters (C, H, N, O, and S) as reference
values will enhance the model robustness for prediction. Previous studies have strongly
correlated ultimate analysis parameters to higher heating values in biomass [22]. Hence,
by predicting the ultimate analysis parameters and leveraging these correlations, the
fuel heating value can be characterized. This study specifically investigated the effect of
combined non-wood and wood spectra from biomass chips on rapidly predicting ultimate
analysis parameters using NIR spectroscopy (NIRS).

The volume of available published studies is limited in which wood and non-wood
biomasses are characterized concurrently. Generally, only one specific species of biomass
was used for prediction modeling, and the determination of ultimate analysis constituents
by NIRS was rarely reported. Only two reports were found, including Posom and Sirisom-
boon [23], who optimized the PLS models using NIR spectra of 80 bamboo chip samples for
evaluation of C, H, N, S, and O content. The models showed the coefficient of determination
of prediction set (R2

P) and the ratio of prediction to deviation (RPD) of 0.803 and 2.31 for
C; 0.856 and 2.65 for H; 0.973 and 6.6 for N; 0.785 and 2.19 for S; and 0.522 and 1.46 for O,
respectively. Similarly, the models developed by Zhang et al. [24] used 100 accessions of
sorghum biomass with R2

P of 0.96 for wt.% of C, 0.87 for wt.% of H, 0.86 for wt.% of N,
and 0.83 for wt.% of O.

There were two reports found in the available database that developed a model for
two similar species to evaluate ultimate analysis parameters, C, H, N, O, and S. A total of
222 rice straw and wheat straw, collected from 24 provinces of China, were used for NIRS
calibration and validation in this study where R2

P and standard error of predictions (SEP)
of independent validation were, respectively, 0.97 and 0.37% for C, 0.77 and 0.17% for H,
and 0.87 and 0.10% for N [25]. Saha et al. [26] developed models by using 276 wood chip
ground samples of pine trees of two species (Loblolly (Pinus taeda) and slash (Pinus elliottii)),
where the biomass spectra ranged from 400 to 2498 nm at 2 nm intervals. The samples were
a mix of bark, branch, needle, wood, or whole tree biomass. The prediction results show
for C (sample number (n) = 43; coefficient of R2

P = 0.90; RPD = 3.14; ratio of prediction to
interquartile (RPIQ) = 3.23); for N (n = 44; R2

P = 0.95; RPD = 4.33; RPIQ = 5.96); and for S
(n = 42; R2

P = 0.93; RPD = 3.67; RPIQ = 3.24).
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There were two reports of our group contributed to the research results of NIR pre-
diction models for ultimate analysis parameters of the non-wood and wood samples,
including Pitak et al. [27] who developed the PLS regression using the spectra obtained
by line-scan NIR hyperspectral imager in which the most effective model for the predic-
tion of C, H, and N content of 160 non-wood and wood biomass pellets including filter
cake (15 pellets), Leucaena leucocepphala (10 pellets), bamboo (15 pellets), cassava rhizome
(15 pellets), bagasse (15 pellets), sugarcane leaves (15 pellets), straw (15 pellets), rice husk
(15 pellets), eucalyptus bark (15 pellets), napier grass (15 pellets), and corn cob (15 pellets)
developed using iGA wavelength selection and standard normal variate (SNV) spectral
pretreatment and provided the highest accuracy with R2

Pp and SEP of 0.83 and 1.33% for
C; 0.84 and 0.17% for H and 0.90 and 0.098% for N; respectively. The second report was
contributed by Shrestha et al. [13], where the ground non-wood and wood samples spectra,
which were 110 samples of agricultural residues and 90 samples of fast-growing trees, were
used to develop the PLSR models combined with multi-preprocessing methods for ultimate
analysis showed R2

P and RPD for C of 0.7217 and 1.9, for N of 0.8410 and 2.7, for H of
0.7678 and 2.1, and for O of 0.6289 and 1.7, respectively.

The main objectives of this research include:

(1) Develop PLSR models using NIR raw spectra, traditional preprocessing, MP 5-range,
MP 3-range, GA, and SPA for assessing chip biomass properties for energy usage by
employing NIRS while the spectra of the biomass were from non-wood (agricultural
residue and bamboo) and wood (fast growing trees) samples.

(2) Compare the performance of the PLSR models based on R2
C, RMSEP, R2

P, RMSEP,
RPD, and bias.

(3) Study the effect of combined non-wood and wood species in model development on
model performance by scatter plot analysis.

(4) Select the better performing PLSR-based model for each ultimate analysis parameter,
compared with the performance of the ground biomass for rapidly assessing biomass
properties for energy usage.

(5) Determine the limit of quantification (LOQ) value of the proposed model calibration
set for each ultimate analysis parameter in chip biomass.

2. Materials and Methods

Figure 1 shows the overall research methodology for rapid prediction of ultimate
analysis parameters of chip biomass by NIRS using PLSR.

2.1. Sample Preparation

A total of 120 samples were collected from ten different biomass varieties, which
included wood samples and non-wood samples from various geographical locations in
Nepal. Wood samples included four fast-growing species: (1) Alnus nepalensis, (2) Pinux
roxiburghii, (3) Bombax ceiba, and (4) Eucalyptus camaldulensis. Non-wood samples were
five agricultural residues: (1) Zea mays (cob), (2) Zea mays (shell), (3) Zea mays (stover),
(4) Oryza sativa, and (5) Saccharum officinarun, and one fast-growing tree (6) Bombusa vulagris.
The biomass samples, except oryza sativa, were manually chipped into smaller pieces,
approximately sized 30 mm × 15 mm, for NIR scanning and for the reference measurement
of ultimate analysis parameters [13].

2.2. Spectral Data Collection

All chip biomass samples were scanned using an FT-NIR spectrometer (MPA, Bruker,
Ettlingen, Germany) in diffuse reflectance with sphere macro sample rotating mode, cov-
ering the wavelength range from 3594.87 to 12,489.48 cm−1, with a resolution of 16 cm−1.
The scanning process consisted of 32 scans (on average) for both sample and background
scans to collect the raw spectra. These raw spectra were acquired in a controlled laboratory
environment with air conditioning maintaining a room temperature of 25 ± 2 ◦C.
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analysis parameters of chip biomass for energy usage by NIRS using PLSR.

To compensate for the ambient influence and instrument drift on the measurement
setup, background scanning was regularly performed on a gold plate as a reference for
every new sample. Each biomass sample was scanned twice without changing its position,
and the average of its absorbance values was calculated. All the spectra were logged
as log (1/R) versus wavenumber (cm−1), where R is the diffuse reflectance from the
biomass sample.

Each sample was then subjected to a reference measurement of C, H, N, and S by
a CHNS/O analyzer. This analyzer employs the flash dynamic combustion method,
inducing complete combustion of the biomass sample within a high-temperature reac-
tor (about 1800 ◦C), allowing for an accurate and precise determination of the ultimate
analysis parameters.



Energies 2024, 17, 439 6 of 22

2.3. Reference Analysis

The wt.% of C, H, N, and S on a dry basis in the chip biomass were determined at
the Scientific and Technological Research Equipment Center (STREC) at Chulalongkorn
University, Bangkok, Thailand, using CHNS/O analyzer (Thermo Scientific TM FLASH
2000, Waltham, MA, USA) [13]. The wt.% of O on a dry basis is calculated as:

wt.% O = 100 − wt.% C − wt.% H − wt.% N − wt.% S − wt.% ash (1)

Here, wt.% ash is determined using a thermogravimetric analyzer (TG 209 F3 Tarsus,
Netzsch, Bavaria, Germany) by combusting biomass within the temperature range between
35 to 700 ◦C.

2.4. Outlier and Standard Error of Laboratory

Outliers on the reference data were identified and removed using the following equation:(
Xi − X

)
SD

≥ |±3| (2)

where, Xi is the measured value of sample i, X is the average, and SD is the standard
deviation of the measured values of all samples [13,28].

2.5. Spectral Preprocessing and Model Development

As shown in Figure 1, this study incorporates nine different types of spectral prepro-
cessing applied to the raw spectra. These methods include constant offset, SNV, MSC, sd1,
sd2, vector normalization, mean centering, sd1 + vector normalization, and sd1 + MSC.

Five different types of PLSR-based regression models, namely Full-PLSR, MP PLSR–5
range, MP PLSR-3 range, GA–PLSR, and SPA–PLSR, were developed to compare and
select the best-performing model for each ultimate analysis parameter to establish a reli-
able and non-destructive alternative method for rapidly assessing biomass properties for
energy usage [13].

The primary objective of the MP method is to optimize model performance by ap-
plying various preprocessing techniques to different divided sections within the entire
wavenumber range. A built-in code in MATLAB R2020b was utilized to obtain a combi-
nation set of different preprocessing techniques based on the desired number of random
pairs. The optimal combination set for each selected number of random pairs is deter-
mined through a cross-validation procedure using PLSR on reference and spectroscopic
data. Using the selected combination set of preprocessing techniques, the PLSR model
was developed. Here, we generate a combination set of preprocessing techniques using
seven different options: 0 = empty (all absorbance values = 0), 1 = raw spectra, 2 = SNV,
3 = MSC, 4 = sd1, 5 = sd2, and 6 = constant offset. In the MP approach, two methods were
adopted: in the MP PLSR-5 range method, the spectral range is divided into five equal
sections, while in the MP PLSR-3 range method, it is divided into three sections. The best
MP combination set for model development is then determined [13].

Both GA and SPA were employed to select concise and influential wavenumbers,
aiming to prevent overfitting and result in an improved prediction model [27]. GA, inspired
by Charles Darwin’s theory of natural selection, utilizes an optimization technique that
generates a population of potential solutions and evolves them over multiple generations
through selection, crossover, and mutation. Starting with one wavenumber, each iteration
adds a new one to the selection, ultimately reducing redundant information in the chosen
wavenumbers [29]. Similarly, SPA is a forward feature selection method that begins with an
empty set and iteratively adds one wavelength at a time to the subset. In each iteration, the
wavelength contributing the most to the model, based on correlation, is selected and added
to the subset. This process effectively reduces dimensionality by eliminating multicollinear
and redundant variables using SPA [30–32].
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2.6. Limit of Quantification (LOQ)

Based on the SD of the response to slope method from the calibration model, LOQ,
which represents the lowest concentration of the analyte that can be detected and quantified
with an acceptable level of accuracy and precision [28,33], is calculated as follows:

LOQ = 10
σc

Sc
(3)

where, σC is the residual standard deviation, i.e., the precision obtained from measured
and predicted values of the calibration set, and SC is the slope of the model regression line.

3. Results and Discussion

Table 1 shows the number of non-wood samples and wood samples in the calibration
set and validation set. The wood sample number is about 33–35% of the total sample
number; hence, the non-wood sample number is 65–67%. Out of 120 samples, the number
of outlier samples can be evaluated by the data in Table 1.

Table 1. The number of non-wood samples and wood samples in calibration set and validation set.

Parameter Total Sample
Calibration Set Validation Set

Wood Non-Wood Total Wood Non-Wood Total

wt.% C 111 31 58 89 8 14 22
wt.% H 119 32 63 95 8 16 24
wt.% N 116 31 62 93 9 14 23
wt.% O 102 28 54 82 8 12 20

Table 2 presents statistical data for the ultimate analysis parameters of chip biomass
obtained using CHNS/O elemental analyzer (Thermo ScientificTM FLASH 2000). This data
was used in both the calibration and prediction sets for model development. S content in
the chip biomass was not detected, possibly due to its very low content falling below the
detection threshold. Therefore, a PLSR-based model for S content in the chip biomass was
not developed in this study. The wt.% of O is calculated using Equation (1).

Table 2. The statistical data of the ultimate analysis parameters of the chip biomass obtained using
CHNS/O elemental analyzer used in PLSR model development.

Parameter NT
Calibration Set Validation Set

NC Max Min Mean SD NP Max Min Mean SD

C (wt.%) 111 89 48.7500 38.9300 44.6330 2.1380 22 47.2800 49.7550 44.4439 2.0878
H (wt.%) 119 95 6.6200 4.9100 5.7620 0.3485 24 6.5700 4.9500 5.6490 0.3411
O (wt.%) 102 82 51.1200 37.3600 44.6322 2.8521 20 48.8000 38.8500 45.1159 2.5149
N (wt.%) 116 93 0.9100 0.0000 0.2987 0.2250 23 0.6200 0.0000 0.2714 0.1645

Table 3 shows the results of the PLSR-based model for ultimate analysis (wt.%) of chip
biomass, where the bolded model shows the best performance. However, it is essential to
consider the recommendation provided by Williams et al. [34], where with an R2

P value
between 0.66–0.81, the model can be used for rough screening and other suitable calibration
purposes. Therefore, C, O, and N models were. For the H model, according to Williams
guideline [34], a model with an R2

P value between 0.50–0.64 is only suitable for very rough
screening. Likewise, every model of biomass chips for ultimate analysis parameters was in
alignment with the recommendation from Zornoza et al. [35], in which any model with an
RPD value below 2 was deemed insufficient for any application.
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Table 3. Results of the PLSR-based model for ultimate analysis (wt.%) of chip biomass, bolded model
showing the best performance.

Parameter Algorithm Preprocessing LVs
Calibration Set Prediction Set

R2
C RMSEC R2

P RMSEP RPD Bias

wt.% C Full–PLSR sd2 (g = 5, s = 5) 10 0.8215 0.8982 0.6489 1.2081 1.7 0.0854
GA–PLSR sd2 (SW: 306) 9 0.8078 0.9320 0.6954 1.1252 1.8 0.0053
SPA–PLSR sd2 (SW: 634) 10 0.8030 0.9435 0.6520 1.2028 1.7 0.1036
MP–PLSR: 3 range Combination set: 4,2,4 9 0.7132 1.1386 0.5514 1.3655 1.5 −0.1433
MP–PLSR: 5 range Combination set: 4,1,4,3,1 13 0.8628 0.7875 0.5467 1.3727 1.5 −0.1226

wt.% H Full–PLSR sd1 (g = 5, s = 5) 6 0.5086 0.2429 0.4996 0.2361 1.5 −0.0660
GA–PLSR Vector normalization (SW: 67) 11 0.5456 0.2336 0.5162 0.2322 1.5 −0.0781
SPA–PLSR sd2 (SW: 22) 15 0.5172 0.2408 0.4478 0.2481 1.4 −0.0586
MP–PLSR: 3 range Combination set: 5,5,0 7 0.5179 0.2406 0.4711 0.2428 1.4 −0.0644
MP–PLSR: 5 range Combination set: 5,4,4,0,4 8 0.5964 0.2201 0.4877 0.2389 1.4 −0.0625

wt.% O Full–PLSR sd2 (g = 5, s = 5) 8 0.6243 1.7376 0.6362 1.4788 1.7 0.0814
GA–PLSR Mean Centering (SW: 1025) 11 0.6347 1.7134 0.6064 1.5381 1.6 0.2414

SPA–PLSR Min–max normalization
(SW:354) 11 0.5800 1.8370 0.5815 1.5860 1.6 0.3466

MP–PLSR: 3 range Combination set: 4,5,0 11 0.6572 1.6597 0.6153 1.5207 1.6 0.1064
MP–PLSR: 5 range Combination set: 2,5,2,1,5 15 0.8097 1.2366 0.7150 1.3088 1.9 0.0733

wt.% N Full–PLSR MSC 10 0.7232 0.1177 0.5865 0.1035 1.6 −0.0065
GA–PLSR SNV (SW: 39) 10 0.5916 0.1429 0.5625 0.1064 1.5 −0.0132

SPA–PLSR Min–max normalization
(SW:413) 7 0.6396 0.1343 0.5869 0.1034 1.6 −0.0190

MP–PLSR: 3 range Combination set: 4,0,0 15 0.8656 0.0820 0.6073 0.1008 1.6 0.0191
MP–PLSR: 5 range Combination set:1,4,4,1,0 7 0.6436 0.1335 0.5700 0.1055 1.5 0.0143

3.1. wt.% of C

Table 3 presents the results of the PLSR-based model within the full wavenumber
range of 3594.87–12,489.48 cm−1 for the wt.% C of chip biomass, with the best–performing
model highlighted in bold.

The model, developed using GA–PLSR with spectrum preprocessing involving the sd2,
a gap, and segments of five each, along with nine LVs, provided better results. It achieved
R2

C, RMSEC, R2
P, RMSEP, RPD, and bias values of 0.8078, 0.9320 wt.%, 0.6954, 1.1252 wt.%,

1.8, and 0.0053 wt.%, respectively. By determining RMSEP, these results represent a 6.8566%
improvement in the model performance compared to Full-PLSR. Utilizing Equation (3),
the LOQ value was calculated as 9.3724 wt.% for C. Notably, the LOQ value is lower than
the minimum wt.% C value used during model development, indicating that the model
exhibits high sensitivity and can quantify wt.% C starting from 9.3724 wt.%.

Figure 2a shows a scatter plot comparing the predicted and measured wt.% of C,
which was obtained using GA–PLSR. The trend line for the prediction set and calibration
set overlap, indicating the same slope. The slope shows the rate of change of Y (measured
value) as a function of the rate of change of X (predicted values) [34] or vice versa, hence
indicating that predicted values of both sets of data have changed with the same rate and
this characteristic is same for the models for O and N shown in Figure 2c,d.

Figure 3 displays the average sd2 absorbance values obtained after preprocessing,
highlighting 306 selected wavenumbers (marked in red) identified through GA. These
wavenumbers fall within the full spectral range of 3594.87–12,489.48 cm−1. Peaks were
observed at 3722, 4091, 5181, and 5285 cm−1, all of which might have the potential to en-
hance the model performance. The wavenumbers 3722 cm−1 and 4091 cm−1 are associated
with the C–H aromatic functional group, specifically the C–H aryl material type [36]. The
peak at 5181 cm−1 corresponds to a combination of O–H stretching and HOH bending,
indicative of polysaccharides [36]. Similarly, the peak at 5285 cm−1 is associated with the
functional group of O–H hydrogen bonding between water and exposed polyvinyl alcohol
OH groups [36].
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Figure 2. Measured versus predicted value in calibration and prediction sets for (a) wt.% of C,
(b) wt.% of H, (c) wt.% of O, and (d) wt.% of N.
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Figure 3. The second derivative absorbance value of studied biomass obtained using the sd2 prepro-
cessing with a selection of important wavenumber obtained from GA for prediction of wt.% of C,
within the full wavenumber range of 3594.87–12,489.48 cm−1.
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Previous studies by Zhang et al. [24] and Posom and Sirisomboon [23] have demon-
strated that vibrational bands related to C–H aromatic, C–H stretching, N–H stretching,
N–H deformation, O–H stretching, HOH bending, O–H hydrogen bonding, and similar
factors play a crucial role in predicting the wt.% of C in various biomass varieties. These
findings align with the vibration bands observed in our study, providing support for our
results and suggesting that these selected peaks likely have a significant influence on the
model performance.

3.2. wt.% of H

The model developed using GA–PLSR with vector normalization as preprocessing
showed the best performance with 11 LVs (Table 3). It selected 67 important wavenumbers
using GA. The model performance, in terms of R2

C, RMSEC, R2
P, RMSEP, RPD, and bias

values, was 0.5456, 0.02336 wt.%, 0.5162, 0.2322 wt.%, 1.5, and −0.0781 wt.%, respectively.
Compared with Full-PLSR, the GA improved the PLSR model accuracy by 1.6743%. The
LOQ value was calculated as 2.3484 wt.%, which is lower than the minimum reference
value used for the model development. This suggests that the selected model is sensitive
and can sensitively quantify H from 2.3484 wt.%.

Figure 2b displays a scatter plot comparing the predicted and measured wt.% of
H, which was obtained using GA–PLSR. It is clear that the trend line for the prediction
set exhibits an offset in relation to the trend line of the calibration set and the 45-degree
line. This offset raises concerns about the model constant bias along the range of the data,
indicating the overestimating model.

Figure 4 displays the average absorbance values within the range of 3594.87–12,489.48 cm−1.
These values were obtained after preprocessing using vector normalization and highlight
67 selected wavenumbers, marked in red, which were identified using GA. Significant
peaks were observed at the wavenumbers 4019, 4850, 5155, and 9852 cm−1, respectively,
and these may have an influence on the model performance. The peak at 4019 cm−1 is asso-
ciated with the spectra–structure combination of C–H stretching and C–C stretching, with
the material type being cellulose [36]. The peak at 4850 cm−1 corresponds to the functional
group of N–H combination bands found in secondary amides within proteins [36]. The
peak at 5155 cm−1 is related to the combination of O–H stretching and HOH bending, with
the material type being water [36]. Finally, the peak at 9852 cm−1 is associated with the
second overtone of the fundamental stretching band of N–H asymmetric stretching, and
the material type is aromatic amine [36].
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In comparison to previous studies conducted by Shrestha et al. [13], Zhang et al. [24],
and Posom and Sirisomboon [23] that focused on measuring the wt.% of H in biomass
using NIRS, our study discovered similar peaks within the range of 4000–9900 cm−1

and vibration bands such as O–H stretching, HOH bending, C–H stretching, and C–C
stretching. Therefore, our study findings align with these earlier studies on this specific
aspect. However, when evaluating the overall performance of various PLSR-based models,
this study suggests that the wt.% of H was not sufficiently explained by the vibration of
those mentioned bonds.

3.3. wt.% of O

Assuming that the S content in chip biomass is negligible, as its wt.% is too low
to be detected by the instrument, we calculated the wt.% of O in the chip biomass for
120 samples using Equation (1). The wt.% of ash content for each biomass was determined
using a TGA. Table 3 presents the optimal results from five different types of PLSR-based
models. The most effective model was developed using the MP PLSR 5-range method,
incorporating a spectral preprocessing combination set of 2, 5, 2, 1, and 5, which corre-
sponded to the following ranges: 3625.72–5392.30 cm−1 with SNV, 5400.02–7166.59 cm−1

with the sd2, 7174.31–8940.89 cm−1 with SNV, 8948.60–10,715 cm−1 with raw spectra, and
10,722.9–12,489.48 cm−1 with the sd2. This model employed 15 LVs. Figure 2c illustrates
the scatter plot comparing measured versus predicted wt.% of O obtained from the MP
PLSR 5-range method. This method yielded R2

C of 0.8097, RMSEC of 1.2366 wt.%, R2
P

of 0.7150, RMSEP of 1.3088 wt.%, RPD of 1.9, and a bias of 0.0733 wt.%. Compared with
Full-PLSR method performance, the MP PLSR 5-range method significantly improved the
model accuracy by 11.4913%. The LOQ value for wt.% of O was calculated as 12.4424 wt.%,
which is lower than the minimum wt.% of O used during model development. This indi-
cates that the model is highly sensitive and can quantify O content in chip biomass from
12.4424 wt.%.

Figure 5 displays the regression coefficient plot for wt.% of O content in chip biomass
obtained from the MP PLSR 5-range method. Several notable peaks were observed at 3650,
4405, 8163, and 8621 cm−1, each potentially exerting a significant influence on the model
performance. Specifically, the peak at 3650 cm−1 corresponds to the O–H functional group
found in the primary alcohols, characterized by the fundamental stretching vibrational
absorption band of O–H [36]. The peak at 4405 cm−1 represents the combination of
O–H stretching and C–O stretching, with cellulose as the material type [36]. The peaks
at 8163 cm−1 and 8621 cm−1 are associated with the second overtone of the fundamental
stretching band of C–H and the fourth overtone of the fundamental stretching band of C=O,
respectively, which are typically found in hydrocarbons and aliphatic compounds [36].
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When compared with previous studies on wt.% of O in biomass, such as those by
Shrestha et al. [13], Zhang et al. [24], and Posom and Sirisomboon [23], this study reveals
some contradictory peaks. However, the vibrational bands, such as O–H from primary
alcohol, C=O stretching, and C–H stretching, among others, were similar. These findings
supports the research result of this study, suggesting that the significant peaks observed
in this study have an impact on the development of the model for assessing wt.% of O in
chip biomass.

3.4. wt.% of N

The best model for rapid prediction of wt.% of N was obtained using the MP PLSR
3-range method with a spectral preprocessing combination set of 4, 0, and 0 (Table 3). This
set corresponds to the sd1 from 3594.87 to 5492.59 cm−1 and zero absorbance from 7498.314
to 12,489.48 cm−1. Figure 2d illustrates the scatter plot of measured versus predicted wt.%
of N content in the chip biomass, obtained from the MP PLSR 3-range method with 15 LVs.
The best–performing model achieved an R2

C of 0.8656, RMSEC of 0.0820 wt.%, R2
P of 0.6073,

RMSEP of 0.1008 wt.%, RPD of 1.6, and a bias of 0.0191 wt.%. These results indicate that
within the range 3594.87–5492.59 cm−1 (refer Figure 6), by effectively correcting baseline
shifts and assigning zero absorbance value within the remaining wavenumber range, the
model performance is enhanced. Compared with Full-PLSR using RMSEP value, the MP
PLSR 3-range method improved the model performance by 2.5473%. However, based on
R2

C and R2
P values, the selected model indicates overfitting. This suggests that our model

fits the training data too closely, and too much less accurate in prediction the validation
set. This was discussing in Section 5 Comparison of Model Performance between Using
Chipped and Ground Biomass Spectra by refer to Cawley and Talbot [37].
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Figure 6 illustrates the regression coefficient plot for the wt.% of N in chip biomass,
obtained using the multi-preprocessing PLSR 3-range method. Significant peaks that could
potentially influence the model performance were observed within the wavenumber range
of 3594.87–5492.59 cm−1 only. These significant peaks were noticed at wavenumbers 3693,
4019, 4365, 4505, 4701, and 5285 cm−1. Specifically, the peak at 3693 cm−1 is associated
with the function group of C–H aromatic C–H bands, characterized by the material type
C–H aryl. At 4019 cm−1, the peak represents functional groups with a combination of C–H
stretching and C–C stretching from cellulose [36]. The peak at 4365 cm−1 corresponds
to CONH2, specifically due to C=O bonded to the N–H of the peptide link termed the
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α–helix structure [36]. The peak at 4505 cm−1 is associated with the N–H combination
band [36]. Similarly, the peak at 4701 cm−1 corresponds to the function group of N–H/C=O
combination from polyamide II [36]. Lastly, the peaks at 5285 cm−1 are associated with O–H
hydrogen bonding between water and exposed polyvinyl alcohol OH [36]. These peaks
are crucial in understanding the composition of the chip biomass and are important for
model development and analysis. Furthermore, in the range of 7498.314–12,489.48 cm−1,
the regression coefficient value equals zero. This indicates an insufficient linear relationship
between the dependent (spectral information) and independent (reference value) variables
in this range, and it does not significantly contribute to the predictive model for the
prediction of wt.% of N.

The previous study conducted by Posom and Sirisomboon [23], which aimed to
evaluate the wt.% of N in bamboo, also revealed significant peaks within the range of
4424 to 6920 cm−1. Similarly, Shrestha et al. [13] conducted a study on wt.% of N in
ground biomass from the same source and exhibited important peaks within a similar
range, specifically within 4019 to 6711 cm−1. This finding aligns with the results of our
study, providing additional support for our research. It is noteworthy that in both studies,
common vibrational bands, such as N–H stretching, C=O stretching, C–H stretching, C–C
stretching, aromatic C–H, and O–H bonds between water and alcohol, among others, were
identified. This consistency in vibration bonds reinforces our study findings and suggests
that these specific peaks likely play a crucial role in influencing the model performance.

4. Effect of Non-Wood and Wood Samples on Model Performance

Table 4 shows the reference values of wt.% of C, H, N, and O of non-wood and wood
samples in calibration and validation sets. From Figure 2 and Table 4, it is obvious that the
range of every element content is wider after the two sets were combined for modeling.
Therefore, the models can now be regarded as more robust models than only one set was
used. From Figure 2a,c, the range of wt.% of C and O of wood samples was narrower than
those of the non-wood samples which were extended more to the lower wt%. Figure 2d
illustrates the opposite way, where the value range of N of wood samples was lower and
narrower than those of the non-wood samples. Therefore, models for wt% of C, O, and N
had better performance than that of the H model. The wood sample reference values of
H were grouped together and more or less had the same range as the range of non-wood
samples. (Figure 2b).

Table 4. The range of wt.% of C, H, N, and O of non-wood and wood samples in calibration and
validation sets.

Parameter
Calibration Set Validation Set

Wood Non-Wood Wood Non-Wood

wt.% C 47.77–42.33 48.75–39.93 47.28–41.02 47.24–39.76
wt.% H 6.36–4.91 6.62–4.97 6.57–4.95 5.87–5.36
wt.% N 0.60–0.00 0.91–0.00 0.40–0.00 0.62–0.12
wt.% O 47.40–41.68 51.12–37.36 47.43–45.14 48.80–38.85

The literature shows that the one species model of non-wood, which were bamboo
wood chips [23] and sorghum [24] for evaluation of ultimate analysis parameters, C, H, N,
O, and S had better performance than our combined non-wood and wood models as the
results described in the introduction of this manuscript. Similarly, the two similar species
of rice straw and wheat straw model [25] and the pine tree of two species (Loblolly (Pinus
taeda) and slash (Pinus elliottii)) model [26] indicated better prediction performance, though
they were homogeneous ground samples which might make their model performance
better than the chip ones due to less scattering problem. Shrestha et al. [13] worked with
ground samples of the same batch of non-wood and wood samples. Spectra from this
experiment showed better R2

P and RPD for C, N, H, and O, which is claimed to be due to
the same merit of homogeneous samples.
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Using larger biomass particle sizes, Pitak et al. [27] combined the non-wood and wood
biomass pellet NIR spectra obtained by averaging every pixel spectrum of the pellets from
a hyperspectral image (HSI). This approach provided better performance in predicting
elements from the ultimate analysis than our model, i.e., in-detail data collection by the
HSI leads to significant improvements.

Figure 7 shows the scatter plots of the highest performance models in this study in
predicting the C, H, O, and N content of the wood and non-wood samples, which is the
same as Figure 2, but the difference is Figure 7 shows the simple regression lines of each
group of non-wood and wood samples both for calibration set and prediction set. For better
vision, Table 5 shows the numeric data of R2, slope, and intercept calculated from the scatter
plots of wood and non-wood calibration and prediction sets. Williams et al. explained that
the slope of the trend line plotted between Y (measured value) and X (NIR predicted value)
indicated the rate of change of Y as a function of the rate of change of X [34]. The intercept
of different species illustrated the same trend as slope interpretation, especially when the
slope is more than 1, the intercept was with a minus sign, and if less than 1, the intercept
was with a plus sign. While the slope was 1, the intercept was low, close to zero, and when
the slope was more or less than 1, the intercept was high, far from zero.
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Figure 7. The scatter plots of optimized model for wt.% of (a) C, (b) H, (c) O, and (d) N where the
simple regression lines of non-wood group and wood group illustrated both in calibration set and
validation set.
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Table 5. The trend line characteristics of the wood and non-wood species in scatter plots of the best
models for C, H, N, and O.

Element
Wood Non-Wood

R2
C R2

P SlopeC SlopeP InterceptC InterceptP R2
C R2

P SlopeC SlopeP InterceptC InterceptP

C 0.7243 0.6456 0.8353 1.0139 7.5532 −0.8994 0.7962 0.7681 1.0243 1.2109 −1.0960 −9.1465
H 0.2683 0.5028 0.7876 0.7066 1.2085 1.7444 0.6111 0.7185 1.0342 1.1318 −0.1925 −0.9224
N 0.8335 0.5486 0.8915 0.7670 0.0197 0.0502 0.8454 0.6289 1.0368 0.8541 −0.0139 0.0708
O 0.6187 0.0992 0.8272 0.1840 7.8316 37.2740 0.8311 0.8063 1.0209 0.9519 −0.9462 2.3866

R2
C: Coefficient of determination in the calibration set, R2

P: Coefficient of determination in the valida-
tion set, SlopeC: Slope of trendline in the calibration set, SlopeP: Slope of trendline in the validation set,
InterceptC: Intercept in the calibration set, InterceptP: Intercept in the validation set.

The perfect relationship between the reference values and the predicted values is when
the correlation coefficient (R) and slope are equal to 1 and the intercept is equal to zero [34].

From Table 5, for the C model, the non-wood samples contributed slightly more merit
on calibration model performance than wood samples for more R the slope was closer to 1,
and the intercept was closer to zero. But the prediction set of non-wood provided a steeper
slope and intercepted far more from zero.

By the same way of interpretation, the model for H obtained more merit from non-
wood samples, while for the wood samples, the R of the trend line was very low, the slope
was far from 1, and the intercept was slightly far from zero. The incongruous trend lines of
both sets makes the overall performance of the model worse as shown in Table 3.

For the N model, the wood and non-wood calibration set samples more or less had the
same trend line characteristics, which supplement the good calibration model performance,
though the prediction sample set of both biomass species trend line characteristics shows
less R and slope far from 1 led to overfit calibration models of both biomass groups (Table 5).

For the O model, the non-wood group had better trend line characteristics and con-
tributed good merit to the model, while the poorer trend line characteristics of the wood
group made the overall model inferior but by a small portion because the number of sam-
ples in the non-wood group was much more (Table 5). By the strong merit of the non-wood
group, the overall model performance for O prediction was fairly acceptable (Table 3).

Tables 6–9 show the trend line characteristics, including R2, slope, and intercept of
each specific plant of wood and non-wood samples used in the optimized models for
evaluation of C, N, H, and O, respectively. It was observed that most of the R2

P of every
plant was equaled to 1 for the samples of those plants in the optimized model, with
only two samples connected to a straight line. Therefore, we ignored interpreting of the
trend line characteristics of the prediction set, and only the R2

C, slope, and intercept of
the calibration set will be interpreted. As indicated by Williams et al. [34], when the R
approached 1 and the slope approached 1 and the intercept approached zero, the model
approached excellence. Therefore, to include different species in a model, the species have
to be not only in the different values of the constituents to make a wider range for a robust
model, but also they must provide the characteristic of the same rate of change of NIR
predicted values with the measured values (same slope and slope should approach 1, and
intercept is same (no gap) and approached zero). As expected, the trend of R2, slope, and
intercept of different species were not the same for their different characteristics. However,
in some species whose characteristics were similar, the trends were common supported the
each other but might positively or negatively to the prediction performace of the model.
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Table 6. The trend line characteristics of specific biomass species for Carbon evaluation
optimized model.

Carbon (wt.%)

Particular Biomass Species R2
C R2

P SlopeC SlopeP InterceptC InterceptP

Wood

Euca 0.6779 1.0000 0.9808 5.4617 0.8006 −202.6600
Pine 0.2502 1.0000 0.2264 1.0848 36.2520 −3.7219
Alnu 0.7491 1.0000 0.7254 −16.8990 12.7000 819.4200
Bombax 0.8110 1.0000 1.1270 0.9097 −5.3606 4.1430

Non-Wood

Zea mays-Cob 0.2480 0.9542 0.6228 1.8112 16.7390 −35.8510
Zea mays-Stover 0.6332 1.0000 1.7168 0.2151 −32.1370 33.6140
Zea mays-Shell 0.3300 0.4618 0.8945 0.2524 5.0232 34.2500
Ricehusk 0.3770 1.0000 0.9257 2.5087 2.9918 −62.7580
Bagass 1.0000 1.0000 2.6090 −0.1076 −70.2900 48.2050
Bamboo 0.9313 1.0000 1.3789 7.6002 −17.0530 −297.8600

Table 7. The trend line characteristics of specific biomass species for Nitrogen evaluation
optimized model.

Nitrogen (wt.%)

Particular Biomass Species R2
C R2

P SlopeC SlopeP InterceptC InterceptP

Wood

Euca 0.5701 1.0000 0.7531 0.4663 0.0233 −0.0135
Pine 0.2317 1.0000 0.2828 0.8790 0.0283 0.0543
Alnu 0.5878 0.9633 0.5742 1.2687 0.1426 −0.1337
Bombax 0.9410 1.0000 1.1614 −2.0520 −0.0748 0.6245

Non-Wood

Zea mays-Cob 0.6807 0.5554 0.8615 1.1809 0.0443 −0.0372
Zea mays-Stover 0.6200 1.0000 0.9025 0.2654 0.0472 0.4721
Zea mays-Shell 0.8641 0.6536 1.1203 1.0135 −0.0629 0.0569
Ricehusk 0.8848 1.0000 1.1485 0.2615 −0.0518 0.2394
Bagass 0.4801 1.0000 0.2992 −1.7907 0.0333 0.5128
Bamboo 0.8200 1.0000 1.4186 1.6937 −0.1260 −0.0966

Table 8. The trend line characteristics of specific biomass species for Hydrogen evaluation
optimized model.

Hydrogen (wt.%)

Particular Biomass Species R2
C R2

P SlopeC SlopeP InterceptC InterceptP

Wood

Euca 0.7289 1.0000 1.5193 0.8197 2.9877 0.9851
Pine 0.0462 N/A 0.4235 - 3.3450 5.7900
Alnu 0.0701 1.0000 −0.9476 −0.0456 11.1870 6.0566
Bombax 0.1629 1.0000 0.5887 0.2547 2.5182 4.4059

Non-Wood

Zea mays-Cob 0.2752 1.0000 1.4447 −0.7296 −2.6372 9.7617
Zea mays-Stover 0.1173 0.7335 1.2590 1.2413 −1.5538 −1.7143
Zea mays-Shell 0.0404 0.6033 0.3791 6.5956 3.8515 −34.5000
Ricehusk 0.7273 0.9896 1.5136 −1.5656 −2.7759 13.3580
Bagass 0.0067 1.0000 −0.1394 −4.9031 6.4990 34.7330
Bamboo 0.4456 0.7685 0.9438 1.0741 0.4841 −0.4794
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Table 9. The trend line characteristics of specific biomass species for Oxygen evaluation
optimized model.

Oxygen (wt.%)

Particular Biomass Species R2
C R2

P SlopeC SlopeP InterceptC InterceptP

Wood

Euca 0.3842 1.0000 0.5993 0.3416 18.5080 29.7010
Pine 0.2854 1.0000 0.3913 −0.0362 27.5290 47.1430
Alnu 0.4993 1.0000 0.5014 0.9362 23.0630 4.5052
Bombax 0.7459 1.0000 1.3490 −1.1972 −15.4990 100.4800

Non-Wood

Zea mays-Cob 0.6501 1.0000 1.3700 8.9169 −17.1250 −368.0300
Zea mays-Stover 0.8611 1.0000 1.5098 −0.3972 −22.8340 64.3960
Zea mays-Shell 0.3063 0.7989 0.8399 2.0886 6.9934 −48.2230
Ricehusk 0.9499 1.0000 1.0623 0.3529 −2.3570 25.9720
Bagass 1.0000 NA 0.0784 NA 42.8950 NA
Bamboo 0.9301 1.0000 1.1793 3.0761 −8.5173 −95.5720

From Tables 6–9, as expected, the intercept of different species illustrated the same
trend as slope interpretation, especially when, by the fact, the slope is more than 1 the
intercept was with minus sign, and if less than 1 the intercept was with plus sign. While
the slope was 1, the intercept was low, closer to zero, and when the slope was more or less
than 1, the intercept was high, far from zero.

Therefore, the following were the effects of specific species on the performance of the
optimized models interpreted by scatter plot analysis using the R2 and slope of the trend
line of the specific plant in the model developed.

For C (Table 6), by R2
C interpretation, most non-wood species (agricultural waste)

except bagasse and bamboo show unacceptable trend lines compared to wood species
samples except pines. Therefore, including the mentioned non-wood species caused a poor
effect on the C model. By interpretation of slope, there were three groups of slope (by value
round up), i.e., 1 including Eucalyptus, Alnus and Bombax in wood species and corn cob,
corn shell, rice husk, and bamboo in non-wood species, less than 1 including pine in wood
specie, and more than 1 including corn stover and bagasse indicating unequal slope of
different species in the same optimized model show the effect of specific species on model
performance. These can be summarized that for the model to be better, pine and corn stover
should not be included in modeling for C prediction.

By the same way of interpretation, from Table 7, the optimized model for N, pine, and
bagasse should not be included; from Table 8, for H, pine, Alnus, corn shell, and bagasse
should not be included; and from Table 9, for O, pine should not be included for better
performance of the models. These were due to the poor R and slope of the eliminated
species, which were not in accordance with the other species.

These results show that the different species affected the model performance of each
parameter prediction in a different manner, and by scatter plot analysis, which of these
species were affecting the model negatively and how to improve the model performance
were indicated.

5. Comparison of Model Performance between Using Chipped and Ground
Biomass Spectra

In this section, the model performance of chipped biomass for ultimate analysis
parameters to the model of ground biomass [13] derived from the same sample varieties is
compared. The comparison is based on the metrics R2

C, RMSEC, R2
P, RMSEP, and RPD.

The results demonstrate that chipped biomass generally performs less effectively in these
models compared to ground biomass, except for wt.% of O.

For wt.% of C and wt.% of H, both chipped and ground biomass models demonstrated
better performance when employing the GA–PLSR model. This outcome aligns with
expectations, as GA optimizes feature selection to maximize fitness, while PLSR maximizes
covariance between absorbance values and areas of interest.
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For wt.% of C, the GA–PLSR model applied to ground biomass yielded an R2
C of

0.7851, RMSEC of 0.9753 wt.%, R2
P of 0.7217, RMSEP of 0.9740 wt.%, and RPD of 1.93 [13].

In contrast, the model applied to chipped biomass performed less effectively (Table 2).
Therefore, it is recommended to adopt the GA–PLSR model with sd2 preprocessing on
ground biomass when evaluating wt.% of C.

Similarly, the GA–PLSR model applied to ground biomass outperforms that of chipped
biomass for wt.% of H. Ground biomass yielded an R2

C of 0.8814, RMSEC of 0.1041 wt.%,
R2

P of 0.7678, RMSEP of 0.1434 wt.%, and RPD of 2.14 [13], whereas chipped biomass lagged
behind (Table 2). Hence, for wt.% of H, the GA–PLSR model with spectral preprocessing
from SNV on ground biomass is recommended.

Regarding wt.% of N, the MP PLSR 5-range method exhibited superior model perfor-
mance on ground biomass, as evidenced by R2

C, RMSEC, R2
P, RMSEP, and RPD values

of 0.8682, 0.0675 wt.%, 0.8410, 0.0973 wt.%, and 2.65, respectively [13], when compared to
chipped biomass performance obtained from the MP PLSR 3-range method (Table 2). This
underscores the suitability of ground biomass for evaluating wt.% of N.

Surprisingly, in contrast, for wt.% of O, the model derived from chipped biomass ex-
celled, despite both models utilizing the MP PLSR 5-range method. In the ground biomass,
R2

C, RMSEC, R2
P, RMSEP, and RPD values were 0.6674, 1.4461wt.%, 0.6289, 1.5275 wt.%,

and 1.71, respectively [13], which fell short of chipped biomass results. Hence, it is recom-
mended to adopt the MP PLSR-5 range method with the preprocessing combination set of
2, 5, 2, 1, and 5 for assessing wt.% of O in chipped biomass. This could be due to ash de-
termination, where ash directly influences %O determination based on Equation (1). Also,
ash is typically accumulating in small particles, i.e., the time of grinding in conjunction
with subsampling can have an influence on ash determination.

All the above comparisons and findings underscore the importance of selecting the
appropriate PLSR-based model for precise analysis of ultimate analysis parameters, de-
pending on the specific parameter of interest. There could be several factors that contribute
to the lower performance of the chipped biomass model, which can be addressed to im-
prove the model performance. The key contributing factor to this performance difference
is obviously the particle size of the biomass samples. Chipped biomass typically con-
sists of larger and different sizes of particles, leading to increased scattering of NIR light
during sample scanning. Consequently, the spectra generated from chipped biomass can
be of lower quality, resulting in weaker correlations between spectral data and reference
data [38]. Additionally, ground biomass exhibits a more compact and uniform sample
structure, reducing the likelihood of NIR light leakage during scanning. Another significant
factor affecting the lower model performance is the moisture content in biomass samples.
Chipped biomass often contains higher moisture levels, and water has the property of
absorbing NIR light in the near-infrared region [39]. This NIR absorption interferes with
the measurements and can introduce inaccuracies, particularly for elements like C, H, O,
and N.

In the chipped biomass models, it is evident that the performance of the prediction
set consistently lags behind that of the calibration set. This suggests that the model closely
overfits the calibration data, capturing both valuable information and noise or random
variations [40]. In the machine learning context, Cawley and Talbot [37] emphasized that
overfitting in model selection is likely to be most severe when the sample size is small and
the number of hyperparameters to be tuned is relatively large [41]. In our case, the number
of latent variables of the best models was high.

Consequently, when new samples are introduced into the prediction set, the model
may struggle to generalize and provide accurate predictions. Furthermore, the presence
of outliers in the prediction set, which were not accounted for in the calibration set, can
further negatively impact the model performance [42].

The performance of ground biomass is better compared to chipped biomass due
to several factors. Ground biomass allows for better sample homogenization, ensuring
uniformity and consistent composition. Additionally, it offers more control over sample
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thickness, as chips may vary in thickness, affecting accuracy. Moreover, ground samples
reduce light-scattering effects and enable improved penetration of the NIRS signal, allowing
for precise and accurate logging of spectral information.

6. Conclusions

In this study, PLSR-based models were developed and compared using FT–NIRS to
analyze the ultimate analysis parameters of combined non-wood and wood chip biomass,
specifically focusing on wt.% of C, H, O, and N content. All chipped biomass samples
were scanned within 3594.87–12,489.48 cm−1 on the diffuse reflectance with sphere macro
sample rotating mode, with a particular emphasis on their suitability for energy application.
The model with the optimum performance was selected based on trade-off parameters of
R2

C, RMSEC, R2
P, RMSEP, RPD, and bias.

The optimum model performance analysis reveals that the model selected for predict-
ing the wt.% of C, H, N, and O in chipped biomass is suitable primarily for initial rough
screening. It is recommended to adopt the multi–preprocessing PLSR 5-range method
chipped biomass model for wt.% of O content analysis as an alternative method for rapid
assessment. However, for the evaluation of wt.% of C, H, and N content, the chipped
biomass model performance falls short of the model developed for ground biomass by
Shrestha et al. [13]. Thus, it is advisable to use the chipped biomass model solely for initial
screening before biomass trading. For a more comprehensive and accurate analysis, it is
recommended to grind the chip biomass samples within the range of 0.01 to 3080 µm and
employ the GA–PLSR model with sd1 for wt.% of C, GA–PLSR with SNV for wt.% of H,
and the MP PLSR 5-range method with combination set of 4, 4, 5, 3, and 4 for wt.% of N, as
developed by Shrestha et al. [13]. The LOQ values for C, H, and O were below the model
minimum reference value, demonstrating high model sensitivity. However, the LOQ value
for N exceeds the minimum reference value, indicating the model detection limit to the
minimum value in the calibration sample set range.

By analysis of scatter plots of measured constituent and NIR predicted constituent, the
effect of including different biomass species (non-wood and wood species) in the modeling
samples was studied. It was concluded that to include different species in a model, the
species had to be not only in the different values of the constituents to be predicted to make
a wider range for a robust model, but also the different sample species must provide the
same rate of change of NIR predicted values with the measured values in the scatter plot
(same slope and slope approached to 1, and intercept is same (no gap) and approached
zero) for the high-performance model if R is approached to one. The results show that the
different species affected the model performance of each parameter prediction in a different
manner, and by scatter plot analysis, which of the species affecting the model negatively
were identified and dictated how to improve the model performance.

To ensure the model robustness and reliability, it is crucial to expand it by incorporat-
ing a wider array of representative non-wood and wood species biomass samples, but the
different species must provide the same rate of change of NIR predicted values with the
measured values in the scatter plot. Validation and updation using additional unknown
samples of the same species are essential for the model effective applicability. Furthermore,
exploring alternative machine learning algorithms alongside the recommended model
could enhance its practicability. These steps will contribute to not just a more comprehen-
sive and versatile model but also increase its ability for real-world application and improve
its overall reliability.
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Abbreviations

% percentage R Correlation coefficient
C carbon R2 coefficient of determination

CHNS CHNS Elemental analyzer R2
C

coefficient of determination of
calibration set

GA genetic algorithm R2
P

coefficient of determination of
validation set

H hydrogen RMSEC
root mean square error of
calibration set

LVs latent variable number RMSEP
root mean square error of prediction
set

LOQ Limit of quantification RPD ratio of prediction to deviation
Max maximum S sulfur
Min minimum SD standard deviation
MP multi-preprocessing sd1 first derivative
MSC multiplicative scatter correction sd2 second derivative
N nitrogen SEC standard error of calibration set
NT total number of samples SEP standard error of validation set
Nc number of samples in calibration set SNV standard normal variate
NIRS near infrared spectroscopy SPA successive projection algorithm
Np number of samples in validation set SW selected wavenumber
O oxygen TGA thermogravimetric analysis
PLSR partial least squares regression wt.% weight percentage
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