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Abstract: The goal of increasing efficiency and durability of fuel cells can be achieved through
optimal control of their operating conditions. In order to implement such controllers, accurate
and computationally efficient fuel cell models must be developed. This work presents a hybrid
(physics-based and data-driven), control-oriented model for approximating the output voltage
of proton exchange membrane fuel cells (PEMFCs) while operating under dynamical conditions.
First, a physics-based model, built from simplified electrochemical, membrane dynamics and mass
conservation equations, is developed and validated through experimental data. Second, a data-
driven, neural network (echo state network) is trained, fitted and tested with the same dataset. Then,
the hybrid model is formed as a parallel structure, where the simplified physics-based model and
the trained data-driven model are merged through an algorithm based on Gaussian radial basis
functions. The merging algorithm compares the output of both single models and assigns weights for
computing the prediction of the hybrid result. The proposed hybrid model structure is successfully
trained, validated and tested with an experimental dataset originating from fuel cells within an
automotive PEMFC stack. The hybrid model is assessed through the mean square error index, with
the result of a low tracking error.

Keywords: PEMFC; hybrid model; ESN; radial basis functions

1. Introduction

The evidence of climate change induced by human activity has pushed the search
for sustainable forms of production, storage and conversion of energy. Hydrogen has
emerged as a promising energy carrier in a future low-carbon economy, and fuel cells are
likely the ideal option for converting hydrogen’s chemical energy into electrical energy.
Different types of fuel cells offer specific advantages for specific sectors. Low-temperature
proton exchange membrane fuel cells (PEMFCs) have shown to be specially suitable to
replace hydrocarbon-based engines in heavy duty vehicles. In order to achieve this goal,
the durability and efficiency of PEM fuel cells must be improved. Some studies have set
the durability goal in 25.000 h for these applications [1].

Fuel cells are complex devices that transform chemical energy into electricity through
electrochemical reactions. Specifically, a low-temperature PEM fuel cell is fed with hydro-
gen in the anode side and oxygen (air) in the cathode side. The hydrogen undergoes an
oxidation reaction, releasing electrons that travel through an external circuit to feed an
electrical load. Positive hydrogen ions then travel through a membrane to the cathode side
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and join, through a reduction reaction, with the oxygen and the electrons returning from
the external circuit. This is an exothermic process, with water as the main byproduct [2].

Applications of PEMFCs include their use in stationary implementations such as
residential micro-combined cooling heating and power systems (CCHP) [3]. In this case,
not only the electrical energy produced by the fuel cell is used but also the heat produced in
the reactions is used for residential heating. Also, big advancements are being performed
in the automotive industry to integrate PEM fuel cells in the powertrain of transportation
vehicles [4].

The objective of extending PEMFCs’ useful lifetime and improve their efficiency is
possible by applying proper control strategies. It has been proved that the integrity and
performance of PEM fuel cells are highly dependant on their operating conditions. There
exist relations between conditions, such as load profile or operating temperature, and
the degradation of platinum in the cathode catalyst layer (CCL) [5]. Also, the corrosion
of the carbon support in the catalyst layer can be explained through the values of fuel
cell humidity and load profile [6]. Mathematical expressions for several degradation
mechanisms, including dissolution and oxidation of platinum in the CCL, as a function of
the operating humidity, voltage and temperature, have been proposed and validated [7].
Studies on PEMFC automotive applications have developed semi-empirical models that
relates CCL durability to fuel cell conditions of operation [8].

Extending durability and decreasing degradation of PEM fuel cells are topics in which
large research efforts are being invested. Health-aware control designs have been proposed
also from the point of view of the energy management system installed in hybrid power
electric vehicles, that is, vehicles where the power source alternates between a PEM fuel
cell and a battery. This approach focuses on the control of the power delivered by the fuel
cell and has given very promising results. Health-aware control through a reinforcement
learning-based control is proposed in [9]. Also, a model predictive controller in conjunction
with a machine learning-based model is proposed in [10] for decreasing a fuel cell hybrid
electric bus.

In summary, improvements in fuel cell durability and efficiency depend on optimal
control of the operating conditions and, for such control, accurate and computationally
efficient models are required. Due to the complex and nonlinear interactions between their
constitutive physical parameters, internal states and external operating conditions, fuel
cells are challenging systems for modeling tasks.

Some models have proposed the combination of static and dynamic fuel cell behavior
for prognosis purposes [11]. Also, in order to simplify the high non-linearity of fuel
cell analytical expressions, there are linearized parameter-varying models [12]. PEMFC
dynamics have also been modeled using equivalent electric circuits [13]. There has been
extensive research on developing physics-based models of the PEMFC and its auxiliary
systems, with several degrees of accuracy and computational cost [14].

In general, there is increasing interest in complementing models derived from the
knowledge of underlying physical phenomena, with models built exclusively from data.
The goal is to leverage strengths in the physic-based and data-driven modeling approaches,
respectively. Hybrid architectures aim to model complex, nonlinear behaviors, systems
with non- constant parameters or non-stationary processes. Hybrid models for complex
nonlinear systems have been proposed in areas such as manufacturing [15]; the food
industry [16]; the chemical/oil/gas industry [17–19]; and biological systems [20–22].

In research areas closer to fuel cell research, hybrid models are used for estimating
the lifetime of lithium ion batteries by merging neural networks and Kalman filtering
state estimation [23]. In this structure, the neural network forecasts future values of the
observation variable (output measured variable), that is, the neural network replaces the
observation equation. The function of the Kalman filter is to estimate the hidden state
variables. In [24], a hybrid structure composed of a neural network and Kalman filter is
presented to perform state estimation and forecasting.
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The present work proposes a hybrid, control-oriented model to forecast the output
voltage of a PEMFC operating under dynamical conditions. The goal of this paper is to fill
the research gap in computationally efficient PEMFC models that is able to represent be-
haviors of fuel cells that are hard to forecast and that appear when the operating conditions
vary dynamically. The most important contribution of this work is the design, implemen-
tation and validation of a hybrid modeling structure formed by three main components:
a simplified physics-based model, an echo state network (ESN) and a merging algorithm
based on Gaussian radial basis functions (GRBF). The novel features of the present work
are detailed next:

1. The dataset used to train, test and validate the hybrid model comes from experiments
where the operating conditions, and thus the profile of the output voltage, change
dynamically, as opposed to the vast majority of datasets utilized in fuel cell modeling
where the data come from static polarization curve experiments. Dynamical profiles
of the operating conditions allow the showing of complex and hard-to-model behavior
within the PEMFC.

2. The data-driven component of the hybrid structure is an ESN. As per the authors
knowledge, this work represents the first implementation of an ESN for fuel cell
modeling and voltage forecasting in a hybrid architecture.

3. A recursive GRBF is proposed for merging the contribution of each model. The
GRBF recursively compares the similarity between the output of each model and the
measured output of the fuel cell, assigns weights to each and computes the output of
the hybrid structure.

The present paper is organized as follows. Section 2 describes the experimental
setup and explains the most important features of the dataset. Section 3 presents the
simplified physics-based model. Section 4 presents the data-driven model, and describes its
fundamental parameters and the tuning procedure. Section 5 presents the hybrid structure
and the merging approach. Section 6 shows and compares the results obtained from each
model. Finally, conclusions and proposals for future research direction are presented in
Section 7.

2. Experimental Setup and Data

The dataset used to build, validate and test the hybrid model comes from experimental
tests conducted on an automotive PEM fuel cell stack as part of the INN-BALANCE
European research project [25]. The objective of the experimental tests was to analyze the
effect of dynamic changes in the operating conditions on the voltage profile of the stack.
The PEMFC stack was fed with pure hydrogen and air. A total of 12 operating conditions
could be controlled: inlet pressure in the anode and cathode, outlet pressure in the anode
and cathode, relative humidity, stoichiometry and flow of the inlet gases in the anode and
cathode, temperature of the stack and load current. In each experiment, one operating
condition was changed dynamically and the rest were kept constant. The dataset used for
the present work corresponds to experiments in which the cathode stoichiometry is swept
downward in regular steps while all the other operating conditions are set approximately
constant. The cell voltage has been normalized to the value of the theoretical voltage at
standard conditions, that is, 1.229 V; Figure 1.

A total of eight different conditions have been tested and are described in Table 1.
The resulting output voltage is shown in Figure 2. The experiment shows highly

nonlinear, hard-to-model behaviors of PEM fuel cells. As it has been shown by several
studies, changing the cathode stoichiometry cause changes in the output voltage; in general,
decreasing values of air stoichiometry result in decreasing values of voltage, and vice
versa. This response has been studied mostly on static conditions through the analysis of
polarization curves. However, as it can be seen in Figure 2, during dynamic operation and
within certain regions of current, the output voltage does not follow exactly the decreasing
profile of the stoichiometry. Instead, the voltage presents a recovery in some portions of the
downward step.
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Figure 1. Operating conditions.

Table 1. Table summarizing the several operating conditions tested.

Anode Stoichiometry Set
[-]

Cathode Stoichiometry Set
[-]

Current Density Set
[A]

Condition Number
[-]

3 2.2 200 0

3 2.1 200 1

3 2.0 200 2

3 1.9 200 3

3 1.8 200 4

3 1.7 200 5

3 1.65 200 6

3 1.5 200 7
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Figure 2. Fuel cell output voltage.

The hypothetical explanation for this phenomenon is that, depending on the value
of other fundamental operating conditions such as the temperature of the fuel cell, the
relative humidity of the inlet gasses and load current, internal hidden states, which define
cell voltage, change in a hard-to-model, nonlinear manner.
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3. Physics-Based Model
3.1. Electrochemical Dynamics

The fuel cell voltage, vc, can be approximated by the subtraction a series of voltage
losses from the theoretical Nernst potential [26],

vc = EN − RTc

αnF
ln

(
ic
i0

)
− icRohm +

RTc

nF
ln

(
1 − ic

ilim

)
. (1)

The current density, ic, through the PEMFC depends on the external electrical load,
and the fuel cell temperature, Tc, is a state and an operating condition of the fuel cell, which
can be set by the cell cooling system.

The cell voltage, Equation (1), has four specific expressions: Nernst voltage, EN ,
voltage loss due to activation overpotential, vact, voltage loss due to ohmic resistance,
vohm, and voltage loss due to the changes in concentration of the reactants in the catalyst
layer, vcon:

vact =
RTc

αnF
ln

(
ic

i0

)
(2)

vohm = icRohm (3)

vcon =
RTc

nF
ln

(
1 − ic

ilim

)
, (4)

where i0 is the exchange current density, Rohm is the ohmic cell resistance and ilim is the
limiting current, all of them time-varying parameters. In the case of the limiting current, it
will be considered as a constant in the present work due to the region of operation where
the fuel cell under study is being tested. The number of electrons obtained in the oxygen
reduction reaction, n, and the charge transfer coefficient, α, are fixed parameters. R is the
ideal gas constant and F is the Faraday constant.

The Nernst voltage depends on the temperature of the fuel cell and the partial pressure
of hydrogen and oxygen [27],

EN = 1.229 − (8.5 × 10−4)(Tc − Tref) + (4.3085 × 10−5)Tc(ln PH2 + 0.5 ln PO2) , (5)

where Tref corresponds to a reference temperature of 298.15 K. PO2 is the cathode partial
pressure (oxygen) and PH2 is the anode partial pressure (hydrogen).

The exchange current density is a function of the operating temperature and the partial
pressure of oxygen:

i0 = i0ref AcLPt

(
PO2

Pref

)0.5

e
[
−∆G
RTc

(
1− Tc

Tref

)]
. (6)

LPt, with units of mgPt/cm2, and Ac, with units of cm2/mgPt, are two parameters
that represent the amount of platinum in the catalyst layer and its active area, respectively.
The combination of these two parameters is called the electrochemical active surface area
(ECSA) of the fuel cell. There is a fixed reference exchange current density, i0ref, specific
for each catalyst material. ∆G is the Gibbs activation energy [28]. The exchange current
density in the anode of a PEMFC is three-to-four orders of magnitude larger than that of its
cathode. This means that the voltage losses due to activation energy (the process where the
exchange current density intervenes) are negligible in the anode [26]. Based on this widely
accepted result, only the activation losses in the cathode are considered in the simplified
model presented in this work.

The ohmic cell resistance is approximated to the membrane resistance in this work,
and the ohmic losses of other regions of the fuel cell (i.e., bipolar plates) are neglected.



Energies 2024, 17, 508 6 of 20

Thus, the ohmic cell resistance (or ohmic membrane resistance) can be computed by
Equations (7) and (8) per, [29]:

Rohm =
tm

σm
, (7)

where tm is the constant membrane thickness, and σm, the membrane conductivity, is
computed by:

σm = b1e
(

b2
(

1
303−

1
Tc

))
.

The coefficient b2 is constant and b1 is related to the water content of the membrane,
λm, through:

b1 = 0.005139λm − 0.00326. (8)

3.2. Gas Channel Dynamics

A mass balance analysis is performed to estimate the partial pressure of oxygen in the
CCL PO2 :

PO2

Pout
=

ṅO2

ṅO2 + ṅN2 + ṅv
. (9)

Equation (9) represents the relation between the ratio of partial pressure of oxygen to
total outlet air pressure (whose value is provided in the dataset) and the ratio of oxygen
molar flow to the sum of molar flows of the components of air in the cathode, that is, molar
flow of oxygen, ṅO2 , molar flow of nitrogen, ṅN2 , and molar flow of water vapor, ṅv. These
flows are defined in Equations (10), (11) and (12), respectively:

ṅO2 = ṅO2,in − ṅO2,ORR (10)

ṅv = ṅv,in + ṅv,ORR (11)

ṅN2 = ṅN2,in. (12)

The added subscripts “in” and “ORR” signal whether the source of corresponding
flow is the cathode inlet or the oxygen reduction reaction. In order to compute the inlet
molar flow of vapor, the temperature and relative humidity of the inlet air, provided in the
dataset, are used.

Psat,air,in = p0e
(

−Ev
RTair,in

)
(13)

Pv,in = RHair,inPsat,air,in. (14)

The inlet vapor saturation pressure, Psat,air,in, is computed through Equation (13). Tair,in is
the inlet air temperature, RHair,in is the inlet air relative humidity and p0 is a fitting coefficient
(Table 2). Once the inlet vapor pressure, Pv,in, is computed, Equation (14), the partial pressure
corresponding to the dry inlet air, Pdry,in, and the molar mass of the dry inlet air, Mdry, Mx
being the molar mass of x, are computed through Equations (15) and (16), respectively:

Pdry,in = Pair,in − Pv,in (15)

Mdry = 0.21MO2 + 0.79MN2 . (16)

The molar flow of vapor entering the cathode, ṅv,in, can then be computed using the
humidity ratio, Equation (17). This is performed in Equations (18)–(20):

wca =
Mv

Mdry

Pv,in

Pdry,in
(17)
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ṁdry,in =
1

1 + wca
ṁair,in (18)

ṁv,in = ṁair,in − ṁdry,in (19)

ṅv,in =
ṁv,in

Mv
. (20)

The vapor molar flow due to the ORR is computed by Equation (21):

ṅv,ORR =
Nc Ic

2F
. (21)

Equations (22)–(24) are used to compute the total molar flow of oxygen:

ṁO2,in = xO2,inṁdry,in. (22)

In Equation (22), the mass portion of oxygen contained in dry air is represented by
xO2,in. The inlet and consumed molar flows of oxygen are:

ṅO2,in =
ṁO2,in

MO2

(23)

ṅO2,ORR =
Nc Ic

4F
. (24)

The proposed development for computation of PO2 has an estimation error of around
10% for the operating range of the tested fuel cell [30]. This means that the computation of
the Nernst voltage, based on Equation (5), would present an estimation error of less than
1%. Table 2 shows the values of the parameters and constants utilized in Equations (9)–(24).

Table 2. Values of parameters and constants used in Equations (9)–(24).

Symbol Description Value Units

p0 Fitting pressure coefficient 30.05 GPa

Ev Vapor energy 36.98 kJ mol−1

R Gas constant 8.314 J molK−1

MO2 Oxygen molar mass 32 × 10−3 kg mol−1

MN2 Nitrogen molar mass 28 × 10−3 kg mol−1

Mv Water vapor molar mass 18 × 10−3 kg mol−1

i0ref Reference exchange current density 2.9 × 10−5 mA

ilim Limiting current 1760 mA

α Charge transfer coefficient 0.397 kJ mol−1

n Number of electrons in the reaction 2 -

3.3. Membrane Dynamics

The membrane model aims to describe the water content in the membrane. This value
is used to compute the membrane ohmic resistance, Rohm. The membrane average water
content, λm, is calculated averaging the water activities in the anode, aan, and cathode, aca,
which can be calculated from the approximated vapor partial pressure, Equations (25)–(27),
per [29]:

ai =
Pvi

Psati

(25)
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for i = {an, ca} and where Psat or Psat,air,in are calculated through Equation (13).

am =
aan + aca

2
(26)

λm = 0.043 + 17.81am − 39.85a2
m + 36.0a3

m. (27)

The computed λm is then introduced in Equation (8) to approximate the membrane
ohmic resistance.

4. Data-Driven Model

In order to complete the information provided by the physics-based model, a data-
driven model was used in parallel. The interest of this structure is to adjust the predictions
made by the physical model by using the data-driven model to use historical data and
capture more complex dynamics that are difficult to represent. The data-driven model is
based exclusively on historical data. The computation is made by an IA algorithm. The
challenges are finding the best tool to catch the dynamics of the variable evolution with
a low computational effort, the setting of the algorithm parameters and the quality of
the data available for the training step. One of the best-known data-driven algorithms
dedicated to the forecasting task is the recurrent neural network (RNN). Indeed, they allow
the capturing of temporal information at different scales, which make them suitable for
this forecasting task. However, classical optimization methods such as back-propagation
do not provide good performances and can lead to vanishing gradient problems, where the
derivative calculated for some network weights becomes so small that no change is made
between epochs [31,32]. Another possibility is to use long short-term memory (LSTM) [33]
or gated recurrent unit (GRU) [34] networks. The architecture of these networks helps
to preserve the error that can be back-propagated through time and layers. LSTM cells
are composed of three gates, which are input, output and forget gates. They allow the
keeping or erasing of the information stored in the memory. The input gate represents new
information added to the cell state, the forget gate decides what information is to be stored
or deleted, while the output gate corresponds to the output of the LSTM. The principle
of GRU cells is very similar to that of LSTM. The input and forget gates are simplified
to an update gate, and a reset gate is used to control how much past information is to
be forgotten. Since the architecture of GRU cells is simpler than that of LSTM, they are
more computationally efficient. According to the empirical study in [35], GRU cells are
more attractive when the sequence is long and the datasets are small. In other scenarios,
the performance losses compared with LSTM are more serious. Figures 3–5 present the
principle of the three cells.

Even though there have been large improvements in RNN architectures, training
these neural networks using back-propagation through time consumes high computational
resources. To compensate for this limitation, reservoir computing (RC) uses an approach
that is significantly different. The RC principle is to map one or more input signals into
a high-dimensional computational space containing abundant dynamic transient states
(called a reservoir). For this, the reservoir weights are fixed and only a readout is trained.

It has been developed independently by Jaeger and Maas in the form of echo state
networks (ESNs) [32] and liquid state machines (LSMs) [36], respectively, in the early 2000s.
In [37], a review of main reservoirs and readout training methods is proposed. Although
the principle of the RC approaches is the same, differences can be found in the ways of
initializing the reservoir and training the weights in the readout.

The data-driven model developed in this paper is based on the use of echo state networks.
They have been widely used in several areas such as gesture recognition [38], motor control [39]
and fuel cell remaining useful life rediction [40]. In addition, ESNs are easier to implement
and tune than LSMs [37], which makes them interesting for embedded applications.
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Figure 3. Structure of an RNN.

Figure 4. Structure of a GRU.

Figure 5. Structure of a LSTM.
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4.1. Echo State Networks

According to the work of Jaeger in [32], ESNs can be represented by three layers. First
of all, the information is received by neurons in the input layer. Then, the information is
propagated in a high-dimensional space named reservoir composed of a high number of
neurons whose weights are fixed during the initialization. The last step is the transmission
of the information from the reservoir to an output layer to read the results. Because the
weights of the input and recurrent connections are fixed during the generation of the
reservoir, only the output weights are trained through linear regression. This feature
reduces the complexity of the network and its computation time compared with the usual
methods (i.e., LSTM and GRU). Therefore, ESNs are able to process complex non-linear
tasks using a simple structure.

4.1.1. Equations

First of all, for a better understanding of the equations below, the terminology is
fixed. In this study, a discrete-time echo state network with K input units (i.e., features),
N reservoir-internal units and L output units is considered. In addition, the discrete
time is represented by n = 1, 2, . . . , T, where T is the number of data points in the
training database.

The input weights, Win, are collected in a matrix of size N × K. The activation of the
input neurons at time “n” is represented by the input vector: u(n) = (u1(n), . . . (uK(n)).

The reservoir weights, Wx, are collected in a matrix of size N × N. The activa-
tion of the reservoir neurons at time “n” is represented by the reservoir state vector:
x(n) = (x1(n), . . . (xN(n)).

The output weights, Wout, are collected in a matrix of size L × (K + N + L). The activa-
tion of the output neurons at time “n” is represented by the output vector:
y(n) = (y1(n), . . . (yL(n)).

For specific applications, an optional feedback weight matrix, Wback, of size N × L
can be added between the output weight matrix and the reservoir.

The reservoir activation states are calculated using Equation (28) described below:

x(n) = f
(
Win · u(n) + Wx · x(n − 1) + Wback · y(n − 1)

)
, (28)

where f and n represent, respectively, the activation function of the neurons and the time
step. In tasks where no output feedback is required (i.e., Wback is null), the activation of
output neurons can be calculated using the result of Equation (29) presented below:

y(n) = fout
(
Wout · [u(n)|x(n)]), (29)

where fout is the activation function for the output neurons (generally identity) and
[u(n)|x(n)] is the concatenation of u(n) with x(n).

The output weights are calculated by solving the linear equation system described below:

Wout × X = Ytarget, (30)

where X represents all [u(n)|x(n)] produced by presenting the reservoir with u(n), and
Ytarget represents all ytarget(n).

When training the network, the objective is to minimize the mean squared error (MSE)
in Equation (30), which is represented by Equation (31) shown below:

MSE =
T

∑
n=1

(y(n)− ytarget(n))2. (31)
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4.1.2. Parameters

Besides their simplicity of use and optimization, ESNs come with a larger number
of parameters to set: spectral radius, connectivity, leaky rate, amount of neurons and
scaling factor.

Spectral radius: the spectral radius is used to set the intensity at which past states
affect current states. The higher the value is, the more the past states will be reflected.
Mathematically, it corresponds to the maximum eigenvalue of the reservoir matrix. It is
determined during the initialization of the reservoir, where the matrix weight is generated
randomly. In order to let the user control this parameter, a general solution is to normalize
the matrix by dividing the matrix by its spectral radius value (range scaling). Another
way is to divide the matrix by its Euclidean norm (norm scaling). In both cases, the
normalized matrices are then multiplied by the desired value. It is recommended to have a
spectral radius value of less than 1 in order to respect the echo state property (ESP), which
implies that the initial conditions should gradually disappear with time, i.e., the state of the
reservoir should depend only on the input signal and not on the initial conditions existing
before this input. According to the study carried out in [41], the ANOVA method has been
applied to ESNs, and results show that the spectral radius and the number of neurons are
the most important parameters to define.

To take this limitation into account, in [42], the authors proposed to use Glorot dis-
tribution (also named Xavier distribution) [43], where the weights are directly initialized
to follow a normal, truncated normal or uniform distribution depending on the number
of inputs and outputs. This method eliminates the need to normalize weights using the
spectral radius, thus reducing the number of parameters to be used. For normal and
truncated normal distributions, W ∼ N (µ = 0, σ2), the standard deviation (σ) is calculated
as shown in Equation (32)

σ =

√
2

(nin + nout)
. (32)

For a uniform distribution, W ∼ U [−bound, bound]), the bounds are determined as
shown in Equation (33):

bound =

√
6

(nin + nout)
. (33)

Leaky rate: the second parameter is the leaky rate, α, which allows the controlling of
the dynamics of neurons (also named leaky integrator neurons). The leaky value is in the
interval [0, 1] and it represents the importance given to previous states of the reservoir to
the calculation of the current state. A high leakage rate signifies that previous states have
a low impact on current outputs. To integrate the leakage, it is necessary to modify the
calculation of neurons presented in Equation (28) by Equation (34) shown below:

x(n + 1) = (1 − α) · x(n − 1) + α · f (Win · u(n) + Wx · x(n − 1) + Wback · y(n − 1)). (34)

Connectivity: the third parameter is the connectivity (c), which represents a percent-
age of non-zero weights in the reservoir matrix. Adding zeros within the matrix allows
the increasing of individual dynamics by decoupling into sub-networks. According to
Lukoševičius in [44], the impact of connectivity on the results is relatively small. However,
a sparsely connected reservoir improves computation times due to the fact that reservoirs
are updated faster.

Neurons: in opposition to classical recurrent neural networks (RNN, LSTM, GRU),
ESN reservoirs have the capacity to process a large number of neurons. This number
can vary from a dozen to several thousand. Indeed the weights being fixed allows the
simplification of computation times because the problem is transformed into a simple
linear regression.
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Scaling factor: the scaling factor represents the interval in which the input and feedback
weights of the network will be fixed during initialization. For a normal distribution, this
value is characterized by its standard deviation, and for a uniform distribution by its
interval [−a, a]. Typically, echo state networks are used with hyperbolic tangent activation
function, and scaling factors are in the interval [−1, 1] or a standard deviation of 0.5. Indeed,
the closer the weights are to 0, the more linear the output will be because the hyperbolic
tangent function is almost linear around 0.

4.1.3. Reservoir Combination

In order to cope with the increase in the number of parameters to be regulated, some
architectures combining several reservoirs have been developed. The first combination is
the use of bidirectional reservoirs. In order to increase the number of detectable dynamics
in a sequence, a solution is to double the number of reservoirs. This allows learning input
sequences in both chronological and reverse directions and thus gives the same importance
to the weights situated at the beginning and end of sequences. In [45], Bianchi used a neural
network composed of a bidirectional ESN (BiESN) and some feed-forward layers to classify
time series. Bidirectionality can be used with all types of RNN approaches; however, due
to the computation times, they are not often applied. The second combination is named
a “multi-reservoir ESN” (MR ESN) and consists in using several small tanks instead of a
large one. The tanks can be combined in series and/or in parallel, which makes it possible
to use several configurations at the same time and thus avoid having a phase dedicated
to the optimization of the reservoir parameters. In [46], Sun presents the main existing
architectures combining several ESNs, and, in [47], a multi-reservoir bidirectional ESN
(MR-BiESN) is used to forecast the voltage of a PEMFC in a static operating condition.

4.2. Data-Driven Model Designed

The main objective of the designed approach is to predict the future voltage of a
PEMFC using past voltage and current. In order to reduce the computation time and also
the training time (including the time needed to find the right combination of parameters),
the use of a MR-BiESN seems to be a relevant choice. Indeed, as explained in the previous
section, setting the parameter values to obtain good results needs both time and skills, as
it is carried out by a trial and error approach or by an optimization tool. Furthermore,
in the case of multiple dynamics to catch, the final set is a compromise to obtain the
dominant one. An alternative is the use of multiple tanks, in parallel or in series, instead of
a single large one. The parameters of the several subtanks are sorted in the usual range
of values: the neuron dynamics of the relevant subtank are amplified and the dynamics
of the irrelevant ones are extinguished during the training of the ESN. In the designed
model, three bidirectional reservoirs are used in parallel. The parallel organization allows
detection of the different dynamics contained in the data. Each reservoir is set to detect
a type of dynamics (low, medium or fast). The data-driven architecture is presented in
Figure 6 and selected parameters are described below and summarized in Table 3.

The dynamics of each reservoir are represented by a parametrization of the spectral
radius and the leakage rate more or less largely according to the desired dynamics. In this
study, the retained values for both parameters are 0.1, 0.5 and 0.9 (extreme and average
values). The connectivity remains constant at 10%, which is a default value, and the
number of neurons is fixed at 100. The input and reservoir weights are initialized using
a Glorot uniform distribution. The advantage is that it directly takes into account the
number of inputs and outputs and avoids having to search for a good value to bound the
uniform distribution.

Inputs of the network are sequences representing the past voltage and cathode stoi-
chiometry set by the user. An important parameter to define is the length of the sequence
to be used, indeed, a too-short sequence cannot use the information of the past and a
too-long sequence increases the complexity and the computing time. In this study, it has
been chosen to train the network using the two last minutes with a sampling of 1 Hz. An
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important assumption is that, in order to predict the voltage at time t + 1, it is assumed that
the user-defined cathode stoichiometry at time t + 1 is known. In a system, depending on
the sampling frequency, this value can be estimated close to the last known value. This
ensures that there is a shift in the learning sequences, as shown in Figure 7.

Input layer
BiESN 

Merging layer
Reservoir

concatena�on
Ouput layerReservoirs

BiESN 3

BiESN 2

BiESN 1

Figure 6. Architecture of the designed data-driven model.

MR-BiESN

V0 V1 Vt… Vn

Fsc1 Fsc2 Fsct… Fscn+1

Past Voltage

Cathode
stoichiometry

In
pu

t f
ea

tu
re

s

vn+1

Predicted 
Voltage

Figure 7. Scheme representing the functioning of the data-driven model.

To improve performances and reduce optimization complexity, each feature has been
normalized in the range [0, 1]. The activation function used in all reservoirs is the hyperbolic
tangent (tanh), which is the default function for ESN. The selected optimization algorithm
is the one presented in [48], entitled AdamW. The authors demonstrated that it is more
interesting to decouple the weight decay parameter with the Adam optimizer in order to
facilitate the search for parameters and also to obtain better results. The weight decay is a
regularization hyper-parameter used to improve the generalization of models by avoiding
over-fitting. The selected learning rate and weight decay are, respectively, 0.0012 and 0.001.
During the training, the two parameters are scheduled to follow an exponential decay, with
a decay rate of 0.95 for each 10 epochs. It has been shown empirically that the learning
rate decay improves generalization and helps the optimization to reach a global optimum.
Since the weight decay is decoupled, it is necessary to apply the same scheduling.
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Table 3. Table summarizing the parameters retained to design the data-driven model.

Parameters Values Comments

Spectral radius (ρ) Not defined -

Leaky rate (α) 0.1/0.5/0.9 Low/Medium/High dynamic

Connectivity (c) 0.1 -

Number of neurons
For each reservoir: 100

Total: 600 -

Reservoir initialization Glorot uniform -

Reservoir weight scaling method No scaling -

Readout layer initialization Glorot uniform -

Merging mode of bidirectional
reservoirs Concatenation -

Activation function tanh -

Optimization AdamW -

Learning rate 0.0014 -

Weight decay 0.001 -

Scheduler (learning
rate + weight decay)

Exponential decay
decay rate : 0.95

decay steps: 10 epochs
-

Batch size 32 -

Sequence length 120 Last 2 min (120 s)

5. Hybrid Model

The proposed solution is to overcome the limitations of both the physics-based and
the data-driven models, and to take advantage of the hybrid model’s capabilities to merge
both models in a parallel structure. The hybrid model is formed by three main components:
the physic-based model, the data-driven model and the merging function, Figure 8.

electrochemical 
model

PEMFC

gas dynamics 
model

membrane
 model

PO2, PH2

Ω

VFC 

VPB 

VDD 

Operating 
Conditions 

Gaussian 
Radial Basis Function 

Physics-based 
Model 

VHM 

Data-driven  
Model 

Figure 8. Proposed hybrid model formed by a simplified physics-based model and a neural network.

The chosen hybridization method is through a radial basis function (RBF). RBFs are
specific type of functions that deliver an output depending on the absolute difference be-
tween the input and a central parameter. RBFs have been successfully utilized as activation
functions in neural networks for modeling and control of highly nonlinear systems such
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as biomass boilers [49], unmanned aerial vehicles [50] and new generation nuclear power
plants [51].

Merging Function

The merging of models is based on a similarity function, the Gaussian radial basis
function. This function measures the distance between measured (real) fuel cell voltage
and the voltage approximated by the model, and assigns a weight, wmodel , in the range
[ 0 , 1 ] to the voltage approximation at each sampling time:

wmodel(l) = exp
(−

[
vmodel(l)− vreal(l)

]2

2λ2

)
(35)

for
l =

{
k − NP, k − (NP − 1), k − (NP − 2), . . . , k − (NP − NP)

}
,

where Np is the number of past samples that are taken into account to compute the weight
of the approximation, λ is a tuning parameter related to the confidence of the model, k is
the current sampling time, vmodel is the output voltage of the model (either data-driven or
physics-based) and vreal is the measured fuel cell voltage.

Then, the NP weights of each model are averaged for computing the contribution of
each model to the prediction:

vhybrid(n) = w̄ddvdd(n) + w̄pbvpb(n) (36)

for
n =

{
k + 1, k + 2, k + 3, . . . , k + NF

}
,

where w̄ is the averaged weight of each model, either data-driven (dd) or physics-based
(pb), v is the voltage approximation of each model and NF is the prediction horizon.

6. Results and Discussion
6.1. Physics-Based Model

Figure 9 presents the results of the physics-based model. It can be seen that, even
though the difference between the real and modeled voltage is in the range of fewer than
ten millivolts, the model fails in following the trends and short-term dynamics of the
voltage signal.
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Figure 9. Real voltage and physics-based model predicted voltage.

The difference in the trends at some sampling times can be explained by the simpli-
fications and approximations carried out in the construction of the physics-based model.
These include: overlooking the effect of several water dynamics that take place in the
cathode catalyst layer, the approximations carried out in the equations that calculate the
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partial pressure of oxygen and hydrogen in the gas channels, the assumption that the fitting
parameters are time-invariant and, in general, the fact that the model has been fitted to
quasi-static operating point in the PEMFC (the polarization curve). The mean square error
(MSE) of the model is shown in Table 4.

Table 4. Mean square error of the different models at each phase of the cycle.

Model Training Prediction

Physics-based 2.6247 × 10−6 2.9339 × 10−6

Data-driven - 1.7777 × 10−6

Hybrid 2.6247 × 10−6 9.5692 × 10−7

6.2. Data-Driven Model

Regarding the date-driven model, it was trained using the data presented in Section 2.
The objective of the proposed approach is to predict the next 60 s from the last 120 s. For
that purpose, a new signal is constructed from the training data, in which the order of
the tested conditions has been changed. The interest in reconstructing the signal is that it
allows the measurement of the performance of the network during the transitions between
two conditions. Moreover, to ensure that the model is able to generalize to intermediate
conditions, conditions 2 and 5 presented in Table 3 have been removed from the training
base and are used to test the model. This new reconstructed signal and the prediction
results are presented in Figure 10.

The results show that the data-driven method is able to capture the voltage evolution
trends correctly while suppressing the noise observable during the signal measurement.
The total MSE obtained is analyzed in Table 4. Furthermore, the generalization condition
is met as the model correctly predicts conditions 2 and 5 (600–900 s and 1800–2100 s) that
were not learned.
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Figure 10. Real voltage and physics-based model predicted voltage. Conditions presented in Table 1
have been shuffled in the order: [1, 6, 5, 4, 7, 0, 2, 3].

6.3. Hybrid Model

A new voltage profile is constructed by concatenating the experimentally measured
voltage and the shuffled voltage signal used for testing the data-driven model. This
concatenated signal represents a full cycle for the hybrid model, Figure 11. In the first
phase (from t = 0 s to t = 2555 s), during which the ESN is being trained, the data-driven
model does not provide any valid voltage forecast and the voltage approximation is carried
out exclusively by the physics-based model. Then, in the second phase, once the neural
network has been trained, its forecast can be incorporated into the hybrid model and
combined with the physics-based model. The discrimination and weighting of both models
is carried out by the merging algorithm.
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Figure 11. Cell voltage and model voltage approximation.

It is expected that the two phases shown in Figure 11, which correspond to the training
and prediction period of the ESN, occur periodically during the fuel cell lifetime. This is
due to the fact that, when facing completely new operating conditions or when the internal
parameters of the fuel cell suffer large variations due to degradation (i.e., aging), the ESN
needs to be re-trained.

The modeling error of the three models is shown in Table 4. The MSE during each
phase and the total MSE is calculated. It can be seen that, during the prediction phase,
when both models contribute to approximate the output of the real fuel cell, the proposed
hybridization achieves a lower modeling MSE than each of the models separately. The total
MSE takes into account the whole cycle (training and prediction).

The proposed hybrid model has a number of advantages that can be summarized
as follows:

1. The physics-based part of the hybrid model has been constructed from simplifications
of the main internal dynamics of the fuel cell. This results in a fewer number of
parameters needed to be fitted in comparison with more complex accurate models.
This allows a time-efficient model construction process.

2. The chosen data-driven model, an ESN, is an efficient neural network architecture
with fast training times and simpler training algorithms than other neural networks.
This results in a less time-consuming fitting process.

3. Due to the previous characteristic, the data-driven part of the hybrid model can be
re-trained online, when the deviation between the system and the model is deemed
too large. This would be nearly impossible with more complex architectures such
as LSTM networks. The capacity to be re-trained on line is an enormous advantage
with modeling systems whose parameters vary with time or suffer changes due to
degradation, as is the case with important parameters in the PEM fuel cells (i.e., the
amount of platinum in the catalyst layer).

4. By incorporating totally independent models in parallel, the hybrid structure is able
to maintain a good approximation of the voltage during the full cycle of the fuel cell.
Also, in case of failure of one the models, the hybrid model can still track the voltage
with acceptable accuracy.

This model is meant for use in model-based controllers, such as the model predictive
control (MPC). In an MPC (or any other optimization-based control strategy), a large
amount of computation time is consumed at each sampling instant to solve the optimization
problem. Thus, the time portion of the control algorithm dedicated to approximate values
of the system, that is, the model embedded in the controller, must be fast enough in order
to lessen the computation burden. The model is also suitable for prognosis and forecast.
In this application, the future evolution of fuel cell voltage can be approximated if future
values of the operating conditions are known.
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It is worth mentioning that one disadvantage of the chosen data-driven architectures
is the need to set a series of fundamental parameters, whose setting is a rather iterative and
heuristic process. These parameters define the performance of the ESN and when not set
properly can lead to large deviations between model and system.

7. Conclusions

Fuel cells are promising energy conversion devices in a future hydrogen-based econ-
omy. However, issues such as efficiency and durability must be addressed, and the way of
addressing them is by optimal the control of fuel cell operating conditions. The performance
of such control depends largely on efficient and accurate models. This paper has proposed
and tested a novel hybrid, data-driven/physics-based model for approximating fuel cell
output voltage. The two models are merged through a recursive Gaussian radial basis
function. The hybrid model has been trained, validated and tested with an experimental
dataset, with dynamical profiles in operating conditions.

The main contributions of the present work are the presentation of a simplified physics-
based model with a reduced number of fitting parameters, and the utilization of an ESN,
with its simple training process, as the data-driven function approximator, and the proposed
merging algorithm, which takes into account the error between both models to deliver an
output that improves the approximation made by each model alone.

The future research directions will be to focus on the implementation of the hybrid
architecture as the embedded fuel cell model of a model-based control strategy. Also, it
is interesting to explore the use of the model as a prediction function in a hidden state
estimator (or observer), such as a Kalman or particle filter. This application would allow
for the computation of internal, not easily measurable, PEM fuel cell variables, which is a
major issue in fuel cell research.
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