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Abstract: Increasing building energy consumption has led to environmental and economic issues.
Energy demand prediction (DP) aims to reduce energy use. Machine learning (ML) methods have
been used to improve building energy consumption, but not all have performed well in terms of
accuracy and efficiency. In this paper, these methods are examined and evaluated for modern building
(MB) DP.
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1. Introduction

The design and construction of residential and commercial buildings are among the
most energy-intensive activities worldwide. Buildings contribute 20% to 40% of total energy
usage [1]. According to the European Union (EU) [2], urban buildings are responsible
for 40% of global energy consumption and 33% of greenhouse gas (GHG) emissions.
Consequently, governments are motivated to address increasing energy consumption by
reducing emissions and improving energy efficiency while ensuring the comfort of building
residents [3]. To reduce energy consumption, the European Commission (EC) has proposed
nearly zero-energy buildings (NZEBs) for 2030 [3].

Figure 1 illustrates the significance of energy reduction in terms of CO2 emissions and
cost based on data from home energy calculators (HECs) [4]. The figure gives the results of
comprehensive questionnaires administered by a United Kingdom (UK) university. Study
participants were randomly assigned one of three versions of the HEC which presented
energy consumption in kilowatt hours. Responses were thematically coded by two inde-
pendent reviewers, leading to five distinct classes: energy-related, cost, environmental,
a combination of cost and environmental, and ‘not worth it’, indicating a lack of incentive
to reduce energy use, among others.

Strategies for demand prediction (DP) [5] are among the solutions recommended by
the EC to reduce energy consumption [6,7]. These strategies include price-based demand
response (DR), incentive-based DR, time-based DR, automated DR, and capacity-based
DR. However, DP has implementation challenges such as operational and technological
limitations, as well as data availability and accuracy issues [8]. Machine learning (ML)
methods to address these challenges have been proposed [8,9]. In modern energy manage-
ment, optimization techniques are often employed to reduce energy consumption and/or
cost. This paper examines ML methods considering their deployment, accuracy, cost,
and efficiency for modern buildings (MBs), e.g. smart and green buildings (SGBs).

The remainder of this paper is structured as follows. Section 2 presents current
ML methods and their applications. Section 3 provides a review of ML techniques for
predicting building energy and the related datasets. Finally, Section 4 provides some
concluding remarks.
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Figure 1. Reasons why reducing energy consumption is important [4].

2. ML Methods

Figure 2 illustrates the ML process, which includes data collection, feature extraction,
training, evaluation, and prediction [10–12]. ML methods have been designed for diverse
tasks such as data analysis and pattern recognition.

Figure 2. The machine learning (ML) process.

ML methods can be categorized into three primary groups: supervised learning (SL),
unsupervised learning (UL), and reinforcement learning (RL) [10,11]. Semi-supervised
learning combines aspects of both SL and UL. ML methods can also be classified as cat-
egorical or continuous. Continuous methods include algorithms such as singular value
decomposition (SVD), principal component analysis (PCA), K-means, random forest (RF),
regression (linear and polynomial), and decision trees (DTs). Categorical methods are used
in RL algorithms for tasks such as robot navigation and gaming. UL methods commonly
employ hidden Markov models, clustering, and association analysis. Clustering methods
often involve SVD, PCA, and K-means. Neural networks (NN) are employed in SL and
UL for tasks such as regression, classification, sequence-to-sequence tasks, clustering, and
dimensionality reduction. The selection of an NN architecture depends on the specific
problem and the available data [10,11]. Figure 3 illustrates the variety of ML algorithms.
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2.1. Supervised Learning (SL)

SL employs feedback for prediction by learning the map from input to output [10,11].
SL algorithms can be categorized as follows.

2.1.1. Regression Algorithms

Regression algorithms are used to predict advertising popularity, estimate life ex-
pectancy, forecast markets, predict population growth, and forecast weather. Issues with
these algorithms include overfitting, underfitting, multicollinearity, heteroscedasticity, out-
liers, missing data, non-linearity, autocorrelation, data scaling, and data transformation.
These issues can be addressed through data preprocessing, feature engineering, model
selection, and regularization [13–15].

2.1.2. Classification Algorithms

Classification algorithms are used to determine a mapping based on the input to
classify or categorize the output. Classification algorithms include linear regression (LR),
ridge regression (RR), NN regression (NNR), least absolute shrinkage and selection opera-
tor (LASSO), DT regression (DTR), RF, K-nearest neighbors (KNNs), and support vector
machines (SVMs) [13–15].

2.2. Unsupervised Learning (UL)

UL leverages the inherent structure within a dataset for categorization. The goal is to
partition the data based on similar traits [16]. NNs are frequently used in UL as they can
uncover patterns or structures within unlabeled data. UL applications include clustering,
dimensionality reduction, feature learning and extraction, anomaly detection, generative
modeling, and density estimation [15,16].

Figure 3. Machine learning (ML) algorithms [16,17].
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2.3. Reinforcement Learning (RL)

RL is used to solve problems by maximizing anticipated rewards. It often employs a
Markov decision process (MDP) which has states, strategies, actions, and functions. RL
reinforces important rules while diminishing the effecst of others [17].

In summary, clustering concentrates on data point grouping, classification assigns
data to classes, regression predicts continuous values, UL uncovers patterns without labels,
and SL trains models based on labeled data for prediction. The use of ML methods in ap-
plications such as MBs [18] can be categorized as single, hybrid, or ensemble methods [19].
For performance evaluation, metrics such as mean squared error (MSE), mean absolute
error (MAE), accuracy, and precision are often employed.

2.4. Single ML Methods

In this case, a single method such as SVD is employed. Recurrent NN (RNN) and back
propagation (BP) artificial NN (ANN) methods were employed in [20]. These single ML
methods were used to compare DP results with official data on electricity consumption
in Turkey. An adaptive neuro-fuzzy inference system (ANFIS) was used in [21] for a case
study in Ontario, Canada. The thirty years of data available in [20] were used with the
proposed model for electricity and energy DP.

2.5. Hybrid ML Methods

Hybrid ML methods combine two or more approaches to enhance performance [22].
This can improve accuracy and provide flexibility in handling complex tasks. Particle
swarm optimization (PSO) and a genetic algorithm (GA) were employed in [23] for electric-
ity DP within India. A hybrid model that incorporates wavelet decomposition (WD) and
support vector regression (SVR) was used for hourly electricity prediction in [24] using
data collected from hotels and malls.

Hybrid ML methods can also adapt to different data types and problem domains by
leveraging the strengths of the methods. However, the scalability and feasibility of hybrid
methods in real-world applications can be a concern due to factors such as computational
complexity, data volume, and data quality. Thus, the decision to employ single or hybrid
ML methods should consider the problem, data, resources, and objectives.

2.6. Ensemble ML Methods

Ensemble ML methods involve multiple classifiers and can be sequential or parallel.
Given the constraints of hybrid and single methods such as data collection and model
design, ensemble prediction methods have been developed such as the approach in [25].
An ensemble method which employs regression for electricity DP in the USA was proposed
in [26]. Results were obtained using a small number of building datasets. The ensemble
bagging trees (EBTs) method was introduced in [27] to provide improved building energy
prediction performance compared to the classification and regression tree (CART) method.

A comparison between ML and regression-based methods is now given.

2.7. Comparison of ML and Regression-Based Methods

Regression is extensively employed in ML models. It is frequently used to estimate
the relationship between load and other variables by predicting the correlation between a
variable or predictor and an object [28]. When considering model selection and regular-
ization techniques for an application, it is important to consider methods that align with
the data characteristics and analysis. The choices for several application areas are given
below [13,14,29].

2.7.1. Economics and Finance

Model: Depending on the complexity of the relationships between economic indicators,
LR or more advanced techniques such as polynomial regression (PR), RR, or LASSO regres-
sion can be employed.
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Regularization: LASSO can be advantageous for better generalization and han-
dling multicollinearity.

2.7.2. Natural Language Processing (NLP)

Model: Techniques such as logistic regression are often used for sentiment analysis
and text classification. Language modeling typically employs methods such as RNNs or
transformer-based models.

Regularization: Techniques such as dropout are beneficial to prevent overfitting
in NNs.

2.7.3. Image and Signal Processing

Model: Convolutional NNs (CNNs) are often used for image denoising, deblurring,
and super-resolution tasks.

Regularization: Techniques such as weight decay and batch normalization are com-
monly used to regularize CNNs in image processing.

2.7.4. Energy and Power Systems

Model: Depending on the complexity, LR or more sophisticated methods such
as autoregressive integrated moving average (ARIMA) can be used for power grid
load forecasting.

Regularization: LASSO or RR can be used to overcome multicollinearity and overfit-
ting in energy consumption prediction models.

2.7.5. Transportation and Traffic Engineering

Model: LR, time series analysis, or autoregressive models are suitable for traffic flow
prediction and transportation demand modeling.

Regularization: RR has been used to improve robustness and prediction accuracy in
traffic-related models.

The suitability of methods and techniques can also depend on dataset size, noise,
and other factors unique to the application. Regression methods are also used to model
time series data and explore causal links between variables. Thus, they are employed in
many engineering applications [13,14,29].

Statistical methods, known as regression analysis, have been employed to uncover
relationships between variables. The methods used in regression analysis for ML include
LR, logistic regression, PR, softmax regression (SR), RR, LASSO, and elastic net regression
(ENR). Prediction is essential in establishing relationships between dependent and inde-
pendent variables [13,14,29]. In [29], both ANNs and hedonic pricing were used with real
residential property data to estimate market prices.

As previously mentioned, the primary regression methods are simple LR, multiple
LR, PR, SVM, DTR, and RF. Each method has advantages and disadvantages which should
be considered in selecting the most appropriate method for a given application.

2.8. Classification and Regression Methods in ML

Classification involves identifying or seeking a model or function to divide data into
different categories. Classification and regression methods are commonly employed to
solve prediction problems. Regression is often used with continuous data, as indicated in
Table 1 [29].

Various methods have been considered for DP including multiple regression, expo-
nential smoothing, iterative re-weighted least-squares, autoregressive moving average
(ARMA), ARIMA, adaptive load forecasting, AR stochastic time series, SVM, GA, FL,
and NN. A comparison of regression and ML methods for DP was presented in [30]. Gaps
in existing research and some research challenges were given in [31]. The performance of
supervised ML models including KNN, LR, and RF was considered in [32] for hourly DP
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using an electricity dataset from Sydney, Australia. It was shown that KNN provides the
best performance.

Understanding the merits and drawbacks of regression and classification, and the
associated methods and algorithms, is essential to achieving satisfactory DP performance.
In [13,14,29], it was demonstrated that soft-computing-based DP strategies can yield sub-
stantial performance benefits. Furthermore, hybrid methods have gained popularity due to
their improved precision and efficiency in solving prediction tasks [13,14,29]. These results
indicate that ML methods have had a pivotal role in shaping DP strategies.

Table 1. Comparison of classification and regression methods [13,14,29].

Factor Classification Regression

Mapping Predefined categories No predified categories

Values Discrete Continuous

Predicted data type Unordered Ordered

Metric Accuracy RMSE

Sample algorithms DT, linear programming,
NN, statistics

RT, simple and multiple
regression analysis, LR,
nonlinear regression analysis

3. Literature Review
3.1. ML Methods for DP

In the past three decades, ML methods have received significant research attention
across a diverse range of applications [33]. This section examines the use of these methods
for DP.

Wang et al. [27] used the EBT algorithm for energy DP in buildings on the Univer-
sity of Florida campus with the goal of reducing energy consumption. Chen et al. [24]
employed SVR and multi-resolution wavelet decomposition (MWD) for DP of hourly
electricity consumption considering data from hotels and malls and the non-stationary
operated building (NSOB) problem for a 24-hour cycle. Li et al. [34] used K-means with a
spatiotemporal structure for travel within Shenzhen, China, to investigate transportation
demand. Zhou et al. [35] integrated multi-output SVM (MSVM) and multi-task learning
(MTL) for traffic DP in Taipei, Taiwan. Chouikhi et al. [36] leveraged a PSO algorithm
based on an effective learning process [37] to tune an echo state network (ESN) for time
series prediction. Amasyali et al. [31] employed ML algorithms such as SVM and ANN for
energy consumption DP within several types of buildings.

Buddhahai et al. [38] introduced a multi-purpose classification system with a
new learning structure using K-means clustering for high-power load monitoring.
DP and load behavior were analyzed to optimize power consumption performance.
Ahmadzadeh et al. [39] investigated the application of ML and deep learning (DL) al-
gorithms to distributed smart grids (SGs) considering security and reliability [40]. The
KNN, naïve Bayes, and DT methods were shown to improve offloading decision accuracy
and thus energy efficiency.

ML methods have been employed for energy management in malls and hotels [24],
energy reduction in buildings [27], heating and cooling demand management in build-
ings [28], property market price analysis [29], building energy consumption analysis [31],
power load analysis [33], urban traffic control [34], time series prediction [36], antenna
design prediction [38], adaptive authentication for wireless networks [41], distributed SG
performance enhancement [39], energy efficiency [40], and load maintenance and peak
shaving in buildings [42].
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3.2. ML-Based Prediction Methods

Figure 4 shows that ML algorithms for DP in buildings can be categorized into
engineering-based, AI-based, hybrid, and data-driven methods. Engineering-based meth-
ods employ thermodynamic principles to model and analyze energy demand, while data-
driven methods draw insights from the available data [31]. Moreover, ML-based prediction
methods have been proposed to improve performance and efficiency.

Figure 4. Building energy consumption demand prediction (DP) categories [31].

Johannesen et al. [32] considered ML-based prediction methods including KNN, linear,
and RF regression for electricity network load demands. Al Mamun et al. [43] employed DP
within power systems for robust load management, including fault prediction. The results
obtained illustrate the advantages of hybrid methods. Queen et al. [44] developed an
ML model for prediction within IEEE 14 and 30 bus networks. LR and PR models were
employed to forecast costs and stabilize voltage in an investigation of the interplay between
technology and economics in renewable energy systems (RESs).

Zhang et al. [45] introduced a self-adaptive and hierarchical methodology for real-time
voltage stabilization. A hierarchical power system model was developed that incorporates
discrete learning. Luque et al. [46] used historical data and economic factors to anticipate
demand in a Spanish electrical network. The power consumption behavior of 27 million
users was examined using regression, variance analysis, and categorization based on
spatial and cost considerations specific to Spain. The results were used to guide decision
making for electricity retailers in the power market. Ahmad et al. [47] examined ML
and data mining methods for DP, including ANN, SVM, clustering, and statistical-based
methods for energy mapping, profiling, and prediction. The four approaches to energy DP,
namely engineering-based, AI-based, hybrid, and data-driven, as shown in Figure 4, were
considered [31].



Energies 2024, 17, 555 8 of 20

3.3. Validation in DP

Management of energy consumption within micro-grids (MGs) plays a pivotal role in
the evolution of SGs and smart buildings (SBs). Real-time prediction and load scheduling
are critical to leveraging the tradeoff between energy demand and cost. This requires
validation to substantiate results and corroborate assertions. For example, Queen et al. [44]
used cross-validation (CV) to select a suitable model. Godinho et al. [9] used MAE and
root MSE (RMSE) for model evaluation, while Shahriar et al. [48] employed K-fold CV for
electric vehicle (EV) charging prediction. Khan et al. [49] conducted dataset testing and
model validation to evaluate ML models’ accuracy. Sajjad et al. [50] proposed a hybrid
ML-based energy DP model that combines CNNs with gated recurrent units (GRUs).
Testing and validation within a two-tiered structure were conducted to ensure accurate
electricity consumption prediction.

3.4. MB Features

Smart and environmentally conscious MBs are being designed to provide a variety
of features catering to both building owners and inhabitants. The focus is on sustainable
buildings (SUBs) [51,52] that incorporate elements such as intelligent, automated, and
adaptable management systems, indoor climate regulation, and energy-efficient measures.
However, the promise of SBs has yet to be realized [53].

Market adoption in the context of SBs was explored in [54]. It was argued that this
depends on how users perceive the benefits. For example, enhanced energy management
can result in diminished control over building operations. MBs share many features with
SBs including advanced HVAC systems, sophisticated information processing capabilities,
and comprehensive building management systems (BMS) [55].

3.5. MB Components

MBs employ components from advanced HVAC systems to responsive BMSs. They
play a vital role in realizing the vision of a sustainable and intelligent future. These
components are discussed below.

3.5.1. Building Heating and Cooling Systems

The solutions proposed in [56] not only contribute to improvements in building elec-
trical systems and their components, but also facilitate user energy savings, particularly
when coupled with RESs [57]. Furthermore, the adoption of effective policies and solu-
tions [58] plays a crucial role in stabilizing and reducing GHG emissions. The energy
performance assessment of buildings conducted by the EC [59] from 2010 to 2018 illustrates
the steps being taken [60] and the tradeoffs between economic growth, urban building
energy consumption, and economic outcomes.

A significant percentage of building heating and cooling systems have suboptimal
efficiency. It was shown in [61] that over 80% of GHG emissions are from such systems.
This necessitates examining the energy demands associated with HVAC systems, as well
as the heating and lighting requirements [61,62]. Thermostatically controlled loads (TCLs)
including air conditioners, hot water storage tanks [63], and water heaters have emerged
as promising and adaptable resources to meet energy demands. TCLs are flexible loads
(FLs) that can be used to reduce the effects of power consumption fluctuations on thermal
generators [64].

Technologies such as traditional and pulsating heat pipes have been shown to improve
the energy efficiency of HVAC systems [65] via efficient heat exchange [66]. Pulsating
heat pipes provide high thermal conductivity and can rapidly and efficiently cool building
components [65,67]. Heat pipes are an important component of building heating and
cooling systems to improve energy conservation and reduce GHG emissions.
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3.5.2. Component Integration with SGB Technologies

Figure 5 illustrates the SGB concept, which includes sustainable site practices, water-
efficiency measures, energy and atmospheric considerations, material and resource strate-
gies, indoor environment quality enhancements, and innovative design processes. The SB
concept includes the Voice over Internet Protocol (VoIP), data networks, video-distribution
mechanisms, wireless systems, robust cabling infrastructure, HVAC control systems, power
management solutions, programmable elements, lighting controls, and comprehensive
facility management. The shared traits are energy optimization, enhanced performance,
supplementary commissioning, precise measurement and verification, carbon dioxide
monitoring, adaptable system control, and continuous monitoring. They allow SGBs to
attain energy savings, reduce their environmental impact, and provide healthier and more
comfortable living and working environments for occupants.

Figure 5. Smart green building (SGB) characteristics [17].

FLs can be used to mitigate the challenges associated with DR. They allow power
consumption management within designated time intervals [63,64]. Moreover, TCLs can
be used to reduce energy consumption during peak periods. This is important as electricity
consumption within MBs is projected to outpace the growth in energy generation, thereby
increasing the discrepancy between supply and demand [68]. To address this problem, RESs
and MGs have emerged as solutions to improve local reliability, energy management [69],
and network efficiency [70]. Amir et al. [71] examined the integration of SBs and GBs. SBs
were shown to be well suited to improving energy efficiency in [70]. The International
Data Corporation (IDC) has reported an increase in the number of SBs from 6.3 billion in
2014 to 17.4 billion in 2019 [71]. System automation and control in SBs can lower life-cycle
expenses [72,73], and distributed energy resources (DERs) and MGs can be used to satisfy
user needs via energy-management tools. SB lighting solutions have been shown to reduce
energy consumption by 50% [72,73].

GBs and SBs are complementary components of SGBs [55]. SBs improve the perfor-
mance of GBs while GBs improve the intelligence of SBs. GBs represent a holistic approach
to constructing and operating environmentally conscious and resource-efficient structures,
encompassing all stages from siting and design to construction, operation, maintenance,
renovation, and eventual deconstruction. This augments the traditional focus on eco-
nomic viability, utility, durability, and comfort within buildings [70,74]. The BMS is a
key component of SBs and GBs. It was shown to provide up to 30% energy savings by
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monitoring, measuring, and optimizing building performance [70,72]. The BMS controls
diverse functions including HVAC systems, chillers, and lighting management [72,73].

3.6. DP in MBs

Efforts to address the challenges with MBs center around effective management of
power supply and consumption using techniques such as peak shaving, load reduction,
DP, and efficiency models [75–77]. Numerous methods have been proposed for SGBs and
MG systems [1,78]. Mohammed et al. [79] considered mixed-integer linear programming
(MILP) for economic dispatch (ED) with grid-connected MGs to reduce operational costs
and thermal energy usage. Smith et al. [80] used DP to improve the efficiency and perfor-
mance of multi-carrier MG systems. A multi-carrier MG system provides more flexible,
efficient, and intelligent energy management to lower costs and decrease thermal energy
consumption. Kamal et al. [81] used MGs to optimize distribution network energy manage-
ment. These approaches employ mechanisms such as DR, load shifting, energy storage,
grid integration, predictive maintenance, and renewable energy integration.

Multiple MGs have been used to enhance system operation and reliability via im-
proved energy consumption decision making [82,83]. In [8,9,76], SGBs were shown
to improve energy efficiency and performance while reducing energy consumption.
Homaei et al. [84] considered robust high-performance building designs in smart cities
considering climate and occupant uncertainties. An energy-management system using an
aggregator, MILP model predictive control (MPC), and Q-learning for an SB was proposed
in [85] considering uncertainties in real-time data.

Wang et al. [27] employed a homogeneous ensemble prediction model for energy
demand in an institutional building. Ding et al. [86] used a model to analyze the energy
consumption in GBs in China by leveraging payment data. Load prediction for GBs was
investigated in [87]. Historical data were used in an energy management system (EMS) to
improve performance considering energy storage. Masburah et al. [88] estimated real-time
uncertainty in building loads using Gaussian process (GP) learning. GBs with MGs were
examined in an ED context.

Analytic Hierarchy Process (AHP)

The analytic hierarchy process (AHP) [89] has emerged as an invaluable tool in un-
derstanding the impact of SGB innovations, particularly in the context of decision making.
Gluszak et al. [72] studied the impact of SGB innovation on real estate markets using the
AHP [90]. This shows the AHP method is relevant for DP in MBs. The prediction accuracy
is based on three factors: the prediction method, the data quality, and the amount of data. A
suitable prediction method combined with sufficient high-quality data can yield precise and
dependable building performance prediction, including energy consumption for heating
and cooling. The AHP is important as it aids in the assessment and prioritization of these
factors, enabling more informed and effective decision making.

3.7. ML Methods Applied in MBs

ML methods such as ANN and RNN, and DL models such as unidirectional long
short-term memory (ULSTM) and bidirectional LSTM, have been used for energy DP to
improve the accuracy, robustness, and efficiency of MB modeling [9,27,67,77,91–94]. In [93],
Olu-Ajayi et al. considered ANN, RL, and decision algorithms for energy storage, cost
reduction, management, and DP. RNNs, ULSTMs, and bidirectional LSTMs were used
in hybrid DL models to forecast energy demand in [68]. It was shown that bidirectional
LSTMs can effectively capture energy consumption patterns in SGBs.
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Amasyali et al. [31] examined ML models such as ANN, gradient boosting (GB), deep
NN (DNN), random forest (RF), KNN, SVM, DT, and LR for energy consumption prediction
in residential buildings using a large residential dataset. DNN was shown to be the best
model, especially in forecasting annual building energy consumption. Godinho et al. [9] ex-
amined ML methods such as LR, PR, ANN, and SVM for SB cost reduction and performance
improvement. They determined that ANNs provide a 10–20% improvement in forecasting
heating demand compared to other methods. Zhao et al. [77] used the commercial solver
MOSLEK 8.1 in MATLAB to obtain good MG accuracy with computational and operational
efficiency while providing a cost reduction.

Peng et al. [95] explored Bayesian regularization (BR), Levenberg–Marquardt (LM),
and ANN methods for commercial and residential building load forecasting. They eval-
uated the accuracy over different time periods and determined that ANNs provide the
best day-ahead and hour-ahead forecasting results. Lu et al. [96] addressed DR in home
energy management systems (HEMS) using RL and ANN methods [97]. Price and user
energy cost prediction, smart home performance, and controllable and non-controllable
loads were examined. Dagdugui et al. [8] employed an NN and learning algorithms for
load forecasting.

Table 2 presents a performance comparison of ML algorithms considering eight met-
rics. Tables 3 and 4 present a comparison of research and review papers selected based
on their relevance and importance. They provide a comprehensive perspective on the
methods employed in the literature and indicate that AI systems play a pivotal role in MBs,
facilitating advanced automation, optimization, and decision making. Figure 6 shows that
these systems within MBs contribute to improved energy efficiency and occupant comfort,
increased safety and security, and more effective facility management [44,75].

Table 2. ML algorithm performance comparison.

Reference Computation Time Accuracy Efficiency Energy Consumption Cost Uncertainty Reliability Training Speed

[8] - ✓ ✓ ✓ - - - -

[17] ✓ ✓ - ✓ - ✓ - -

[19] - ✓ ✓ ✓ - ✓ - -

[27] ✓ ✓ - - - - - ✓

[28] - ✓ - - - - - -

[63] - - - ✓ - - - -

[66] ✓ ✓ - ✓ ✓ ✓ - -

[77] ✓ ✓ ✓ ✓ ✓ - ✓ -

[84] - - ✓ ✓ ✓ ✓ - -

[92] - ✓ - ✓ ✓ ✓ - ✓

[93] - ✓ ✓ ✓ - - - -

[95] - - - ✓ - - - -

[96] - - - ✓ ✓ - - -

[98] - - - ✓ - - - -

[99] ✓ ✓ - ✓ - - - -

[100] - ✓ - ✓ ✓ - - -

[101] - ✓ - ✓ ✓ ✓ - -

This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Table 3. Comparison of ML Methods.

ML Methods Reference Year Model Components Objectives

BR, LM, ANN [8] 2019 SCRB Building energy forecasting using an NN model

RT [17] 2019 SBRS Hybrid ML model based on ARIMA, logistic regression, and
ANN for peak load forecasting during a day

Extreme GB, Bayesian
optimization [19] 2023 RES, PV direct-driven

air-conditioner Real-time energy DP

EBT [27] 2018 BMS Stability and prediction

SVM, MLP, CNN, DT,
RF [28] 2018 Autonomous car Road image recognition

ADWIN, FSA, DDM [99] 2020 RB Automated modeling of residential appliances and agents

ANN [30] 2020 Bicycle sharing station Hybrid ML for bicycle sharing DR

Online algorithms [63] 2017 HVAC system in an SB Real-time occupancy for building automation

Hybrid DL [66] 2014 SGB Grid frequency regulation in a commercial building

Two-stage robust
optimization [77] 2018 DER, NMG Improving power system resilience

MPC, Q-learning [85] 2022 ESS, Aggregator, SB Energy management of residential resources including TCLs,
PV systems, and EVs

ANN, RL [92] 2021 SS, HEMS, RES Reducing energy cost, customer dissatisfaction, and
grid overloading

ANN, GB, DNN, RF,
Stacking, KNN, SVM,
DT, LR

[93] 2022 RB Predicting annual building energy consumption

RL [95] 2020 SH Adaptive home automation for energy DP

RL, ANN [96] 2019 HEMS Hour-ahead DR

CNN, ANN [98] 2017 RB Energy load forecasting

Hybrid models [100] 2019 DER, MG Energy system analysis using a taxonomy of models
and applications

Table 4. ML in MBs.

Reference Applications Objectives Year

[1] RBs Net-zero-energy building optimization and design 2021

[19] SBs, SGs DP analysis and optimization with a hybrid ML model 2023

[43] SBs, SGs Load forecasting with a hybrid ML model 2017

[59] SBs, smart cities Energy savings and efficiency 2020

[73] SBs ML method and big data analytics evaluation 2019

[88] SGBs Analysis of SUB features, e.g., automation 2019

[97] Buildings Building energy use forecasting using NNs 2019

[100] Energy systems ML models for energy systems and their applications 2019

[101] SBs Crowdsourcing for fault detection 2017

[102] SBs HEMS for energy reduction 2018

[103] Mobile multimedia Soft/hard frameworks 2017

[104] Non-residential buildings Energy analysis and optimization 2017

[105] Commercial buildings Electricity load forecasting 2017

[106] GBs Construction cost prediction 2022

[107] SBs, smart cities Intelligent environment evaluation 2018

[108] SBs DRL for energy management 2021

[109] SB control RL for energy and security control 2020

This work MBs, energy systems ML method evaluation 2023
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Figure 6. Artificial intelligence (AI) system components in modern buildings (MBs) [44,75].

3.8. Materials and Technologies for Energy Efficient Buildings

The selection of appropriate materials and technologies is important for sustainable
and energy-efficient building design [110]. Innovative solutions are required to reduce
energy consumption and the environmental impact. Hybrid multiple-criteria decision
making (MCDM) [111] has been shown to be an effective methodology for assessing
and selecting materials that align with energy efficiency objectives. It combines decision-
making techniques to evaluate multiple criteria and the tradeoffs in material selection.
MCDM provides a systematic framework to prioritize materials based on factors such
as thermal performance, durability, cost-effectiveness, and environmental sustainability.
In [112], a hybrid MCDM model was proposed to evaluate polymeric materials for flexible
pulsating heat pipes. This contributes to the use of energy-efficient building materials and
technologies by providing valuable insights for architects, engineers, and stakeholders in
the construction industry. Hybrid MCDM has also been employed with ML methods for
building applications [110,111,113].

• Model
ML offers a variety of models for SB tasks such as DP, energy optimization, and
fault detection. Hybrid MCDM can be used to evaluate ML models and select the
most appropriate one for a building-related task based on criteria such as accuracy,
interpretability, computational cost, and available data.

• Feature Selection
Feature engineering and selection are crucial in building ML models. Hybrid MCDM
can help choose the best set of features (variables) for a prediction or optimization
task in a building context. This can lead to more efficient and accurate models.

• Algorithm Tuning
ML algorithms have hyperparameters that need to be tuned for optimal performance.
Hybrid MCDM can aid in selecting the best hyperparameter values considering the
performance metrics and constraints specific to building applications.

• Data Preprocessing
Building datasets can be complex with various types of data, e.g., sensor, weather, and
occupancy data. Hybrid MCDM can guide decisions on data preprocessing such as
handling missing data, data scaling, and outlier detection to ensure high-quality data
for ML models.

• Ensemble Methods
Ensemble ML models are often employed to improve prediction performance. Hybrid
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MCDM can be used to determine the best ensembles considering the strengths and
weaknesses of individual models.

• Model Evaluation
Hybrid MCDM can assist in evaluating the performance of ML models. This includes
the selection of appropriate evaluation metrics, e.g., MAE, RMSE, and F1-score, and
weighting them based on their importance in the context of building applications.

• Risk Assessment
In building management, there may be risks associated with ML approaches. Hybrid
MCDM can help in assessing these risks and making decisions that balance factors
such as accuracy, robustness, and potential negative impacts.

• Energy Optimization
ML is commonly used for energy optimization in SBs. Hybrid MCDM can assist in
choosing the right ML methods to optimize energy consumption considering factors
such as building type, occupancy patterns, and available technologies.

In summary, hybrid MCDM can enhance the use of ML methods in building-related
tasks by assisting in model and feature selection, algorithm tuning, and evaluation. This
will help ensure that ML solutions are tailored to the specific requirements and constraints
of SB applications, leading to more effective and efficient building management.

3.9. Datasets

It has been demonstrated that model accuracy depends on the method employed
as well as data quality and quantity [97]. Thus, the availability of real historical datasets is
important for effective building models. In [68], hybrid ML methods were used with two
real energy consumption datasets to forecast energy consumption in SBs considering the
appliances. ML was employed in a real hospital dataset in [49] for prediction and treatment
purposes. In [9], a one-year real historical dataset with hourly measurements of occupancy
profiles, solar gains through glazing, outdoor dry-bulb temperatures, and heating and
cooling fluid temperatures was considered.

4. Conclusions

This paper examined ML methods for energy management prediction in modern
buildings (MBs). It was observed that hybrid and ensemble ML methods such as support
vector machines (SVM) combined with random forest (RF) outperform single prediction
models. In particular, hybrid ML models can achieve up to 15% higher accuracy in energy
consumption prediction than single ML models. The results presented show that ML
methods can be used for accurate and efficient energy management in MBs. Furthermore,
incorporating additional attributes in the dataset can improve energy prediction accuracy
and efficiency.
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Abbreviations

The following abbreviations are used in this manuscript.

ADWIN Adaptive Windowing
AI Artificial Intelligence
AHP Analytic Hierarchy Process
ALPLA Adaptive and Lightweight Physical Layer Authentication
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
ARIMA Auto-Regressive Integrated Moving Average
ARMA Auto-Regressive Moving Average
BMS Building Management System
BP Back Propagation
BR Bayesian Regularization
CART Classification And Regression Tree
CNN Convolutional Neural Network
CV Cross-Validation
DDM Drift Detection Method
DER Distributed Energy Resource
DNN Deep Neural Network
DP Demand Prediction
DRL Deep Reinforcement Learning
DT Decision Tree
DTR Decision Tree Regression
EBTs Ensemble Bagging Trees
EC European Commission
EV Electric Vehicle
EU European Union
ED Economic Dispatch
EMS Energy-Management System
ESN Echo State Network
ESS Energy Storage System
FL Flexible Load
FSA Fish Swarm Algorithm
GA Genetic Algorithm
GB Green Building
GDP Gross Domestic Product
GHG Greenhouse Gas
GP Gaussian Process
GRU Gated Recurrent Unit
HEC Hone Energy Calculator
HEMS Home Energy-Management System
HVAC Heating, Ventilating, and Air-Conditioning
IDC International Data Corporation
IoTs Internet of Things
KNN K Nearest Neighbors
LASSO Least Absolute Shrinkage and Selection Operator
LM Levenberg–Marquardt
LR Linear Regression
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MB Modern Building
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MCDM Multiple Criteria Decision Making
MDP Markov Decision Process
MG Micro-Grid
MILP Mixed-Integer Linear Programming
MLP Multi-Layer Perceptron
ML Machine Learning
MSE Mean Squared Error
MSVM Multi-output SVM
MPC Model Predictive Control
MTL Multi-Task Learning
MWD Multi-resolution Wavelet Decomposition
NLP Natural Language Processing
NMG Networked Micro-Grid
NN Neural Network
NNR Neural Network Regression
NSOB Non-Stationary Operated Building
NZEB Nearly Zero-Energy Building
PCA Principal Component Analysis
PSO Particle Swarm Optimization
PV Photovoltaic
RB Residential Building
RES Renewable Energy Resource
RF Random Forest
RL Reinforcement Learning
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RR Ridge Regression
RT Regression Tree
SB Smart Building
SBEM Smart Building Energy Management
SBRS Smart Building for Residential Sector
SCRB Smart Commercial and Residential Building
SG Smart Grid
SGB Smart Green Building
SH Smart Home
SL Supervised Learning
SS Storage System
SUB Sustainable Building
SVD Singular Value Decomposition
SVM Support Vector Machine
SVR Support Vector Regression
TCL Thermostatically Controlled Load
UL Unsupervised Learning
ULSTM Unidirectional Long Short Term Memory
VoIP Voice over Internet Protocol
WD Wavelet Decomposition
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