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Abstract: Smart buildings are rapidly becoming more prevalent, aiming to create energy-efficient and
comfortable living spaces. Nevertheless, the design of a smart building is a multifaceted approach
that faces numerous challenges, with the primary one being the algorithm needed for energy man-
agement. In this paper, the design of a smart building, with a particular emphasis on the algorithm
for controlling the indoor environment, is addressed. The implementation and evaluation of the
Advantage-Weighted Actor-Critic algorithm is examined in a four-unit residential simulated building.
Moreover, a novel self-adapted Advantage-Weighted Actor-Critic algorithm is proposed, tested, and
evaluated in both the simulated and real building. The results underscore the effectiveness of the
proposed control strategy compared to Rule-Based Controllers, Deep Deterministic Policy Gradient,
and Advantage-Weighted Actor-Critic. Experimental results demonstrate a 34.91% improvement
compared to the Deep Deterministic Policy Gradient and a 2.50% increase compared to the best
Advantage-Weighted Actor-Critic method in the first epoch during a real-life scenario. These findings
solidify the Self-Adapted Advantage-Weighted Actor-Critic algorithm’s efficacy, positioning it as a
promising and advanced solution in the realm of smart building optimization.

Keywords: reinforcement learning; building controls; smart buildings; occupants well-being; AWAC

1. Introduction

Green energy and renewable power are gaining increasing significance in the efforts
to reduce dependence on fossil fuels and combat climate change. According to a recent
report, global energy consumption grew by 2.3% in 2018, at nearly twice the average
growth rate since 2010 [1]. As the world transitions towards a more sustainable future
with a focus on renewable energy sources, the need for secure and reliable energy systems
has become more important than ever [2]. The incorporation of artificial intelligence
(AI) and security applications in green energy and renewable power has the potential to
revolutionize the way energy is generated, distributed, and consumed. To address these
challenges, researchers have turned to AI to improve the security of green energy and
renewable power systems [3]. AI can provide advanced threat detection and response
capabilities, analyze large amounts of data to identify abnormalities and patterns, and
automate security tasks [4].

Complementary achievements in smart building technology are applying these tech-
nical advancements to enhance building performance and improve the overall occupant
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experience, while AI’s capabilities continue to change digital information [5]. The emer-
gence of smart buildings has led to the development of numerous tools and technologies
that can be used to optimize building performance while enhancing energy efficiency [6–8].
Among these tools are many methods, like reinforcement learning (RL) algorithms that
accelerate offline learning [9] and optimization techniques like evolutionary algorithms [10].

Numerous challenges emerge when integrating AI-driven techniques for real-time and
realistic energy management in smart homes [11]. The requirement for immediate decision-
making is one of the major problems since standard algorithms frequently find it difficult
to swiftly adapt to patterns of dynamic energy usage. Algorithms for smart homes must
be able to react rapidly in real-world events, such as when energy consumption suddenly
changes or renewable energy sources become intermittent. In addition, a major difficulty is
the traditional algorithms’ dependence on historical data for training. Extensive datasets
are frequently required by traditional methods to accurately estimate and predict energy
consumption trends [12]. This presents a significant gap in their application, particularly in
newly developed smart home situations where it may be difficult to obtain a large volume
of real-time data for training. There is an urgent need for more sophisticated AI techniques
in smart home energy management systems because of the constraints associated with
historical data requirements and the desire for real-time adaptation. These difficulties drive
academics to investigate novel approaches that make use of AI capabilities, such as learning
algorithms that train offline, to improve the responsiveness and efficiency of smart home
energy management in practical contexts.

1.1. Related Work

In recent years, there has been a surge of diverse and extensive research endeavors ex-
ploring green energy, renewable power, and their integration into smart home applications.
In the pursuit of sustainable land space utilization, solar farms, rooftop solar installa-
tions, and floating photovoltaic (PV) power systems are identified as optimal solutions [13].
Notably, an example is found in the investigation of a 47.5 MW floating PV plant con-
nected to the national utility grid (110 kV) at the Da Mi hydroelectric reservoir in Binh
Thuan, Vietnam. The viability of this hydropower park is analyzed through comprehensive
economic, financial, and environmental studies, revealing payback periods of 9.3 and
14.4 years, respectively.

A new architecture for energy-efficient homes is proposed in the paper [14]. In this
paper, energy and communication units are used in outlets and lights and a home server
to collect both the energy consumption data through ZigBee and energy generation data
through a Programmable Logic Controller (PLC)-based renewable energy gateway. The
home server optimizes household energy utilization by considering both consumption
and generation. Based on a weather forecast, the home server can determine the energy
production. To reduce energy costs, the home server can regulate the home’s energy use
schedule. Finally, users can use smart devices to access information about household energy.
Likewise, in the work of [15], the information is transmitted to the home server using the
generated power. It also makes use of EMCU and ZigBee, which are used to transmit data
for relay function on/off and power line communication devices. The information about
how much power is being utilized and how much is being generated is updated on the
home server using the PLC. Then, the home server uploads the most recent information to
the internet. Moreover, the internet server, which also manages their operations, updates
the home consumption.

In [16], a look into the most recent advancements in building technology that can be
applied to the construction of smart homes and buildings is addressed. An Internet of
Things (IoT) architecture for smart homes to support older people’s independent living in
their living environments is presented in [17], highlighting various sectors in which IoT
applications are beneficial. Tao et al. [18] also developed a home automation anthology
powered by the IoT and a multilayered architecture built on the cloud. Elkhorchani and
Grayaa [19] proposed an architecture for a smart home energy management system and
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a shedding algorithm for household energy use. Domestic renewable energy sources,
wireless domotic device communication, a control system, a home management system,
and a grid management system were the foundations for this effort.

Control of Heating, Ventilation, and Air Conditioning (HVAC) systems, according to
Xi Fang [20], depends on finding the right balance between energy consumption and indoor
thermal comfort. It used a Deep Q-Learning (DQN) based multi-objective optimum control
technique for temperature setpoint real-time reset. The simulation results show that the
DQN control strategy effectively balances energy consumption and indoor air temperature.
The study concludes that the DQN control strategy is a powerful deep reinforcement
learning algorithm for controlling temperature setpoint in real-time in multi-zone building
HVAC systems.

One commonly employed technique in smart home automation systems is Rule-Based
Control (RBC) [21]. RBC uses upper and lower set points to control operations within
predetermined bounds, based on an established set of rules. HVAC subsystems commonly
use this technique, especially for temperature management. RBC can only modulate
in simple actions such as setting the temperature to a specific value. Thus, actions are
limited to simple tasks like turning on or off a switch or thermostat. Modern smart home
automation systems, on the other hand, tend to use more sophisticated strategies, such as
the Deep Deterministic Policy Gradient (DDPG) algorithm [22]. When compared to RBC,
DDPG is superior because it can create efficient daily schedules without relying on the
predictions of stochastic factors. It is essential to take into account that the DDPG algorithm
is usually trained online when utilizing it for smart home control systems [23]. But in this
particular study, the AWAC method, which has the unique benefit of being offline trainable,
is adapted [24]. This feature distinguishes AWAC since it allows for the algorithm to grow
and change without requiring constant online interactions. As shown in the cited study,
this offline training feature gives the smart home automation system an extra degree of
adaptability and effectiveness.

1.2. Main Contributions

New approaches are necessary to address the numerous challenges related to real-
time energy management in smart homes. RBC and DDPG algorithms provide distinct
approaches to smart home automation, building on previous research. RBC is limited to
basic actions within preset limitations because it depends on predefined rules and fixed
points. Conversely, DDPG presents a more advanced approach that generates effective
daily schedules independent of stochastic forecasts. However, in some situations, the online
training component of DDPG presents issues. It appears that offline algorithm training is the
most effective way to tackle this issue and improve adaptability. Without the limitations of
ongoing online interactions, offline training enables continual growth, offering a promising
avenue to improve the effectiveness of smart home energy management systems.

Within this context, this paper provides a thorough and broadly applicable smart
building design methodology. Everything from the bottom up, which includes the IoT
infrastructure, to the highest levels of management, which include advanced energy man-
agement algorithms, is addressed. The IoT layer is the fundamental component that
supports the smart building design. The complicated system of linked sensors, actuators,
and devices that comprise the IoT is explored. The foundational elements of the intelligent
building system enable instantaneous data gathering and exchange, serving as its central
nervous system. The emphasis then shifts to the algorithms responsible for the smart
building’s energy management at the upper management layer. These algorithms optimize
energy usage, improve operational efficiency, and support sustainability goals by utilizing
the insights obtained from IoT data.

As a result, the main goal of this work is summarized in the following key points:

• Address the main gap by exploiting offline training through reinforcement learning.
• Apply offline training utilizing the AWAC as the main algorithm in simulated use case

scenarios as close as possible to a real building replica.
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• Propose an adaptive AWAC (SA-AWAC) to enhance the accuracy and possibilities
of AWAC.

• Apply SA-AWAC in a real life use case scenario to test both its accuracy with the
AWAC and other methods (RBC, DDPG).

The remainder of this paper structure is organized as follows: In Section 2, multiple
layers are covered presenting the design of a smart building, beginning with the IoT layer
and going on to the protocol, middleware, data, and management layers, where the AWAC
framework is essential. Section 3 discusses the experimental findings in two primary
contexts: a real-world use case with its setup configurations and outcomes, and a simulated
building use case with predetermined configurations and outcomes. Lastly, in Section 4, the
article highlights the importance of the suggested SA-AWAC configuration in improving
the efficiency and adaptability of HVAC systems in smart buildings and summarizes the
main conclusions and insights from the experiments carried out.

2. Methodology

A comprehensive approach to designing an intelligent solution for smart buildings
is covered in this section. The design is based on a hierarchical manner comprised of
distinct layers. The protocol layer, which standardizes communication, comes after the
IoT layer, which enables smooth device connectivity. The data layer manages information
processing and storage, whereas the middleware layer enables effective data interchange.
The management layer is in charge of managing the smart building as a whole. A new
development in the area, the incorporation of self-adaptation into the AWAC algorithm,
offers a sophisticated and effective method for optimizing smart building systems. It is
tailored to prioritize benefits, improving decision-making in the setting of smart buildings.
This research analyzes the complicated architectural elements of this smart solution and
provides a thorough framework for the real-world use of smarter building technology.

2.1. Design Approach for a Smart Building
2.1.1. IoT (Things) Layer

Within a smart building IoT network, a “thing” can refer to a sensor, actuator, or
energy analyzer. However, the scope of IoT domestication has expanded to include a
broader range of smart devices and appliances such as smart mirrors, smart windows,
and robot vacuum cleaners [25]. In a broader context, a smart home can be defined as an
environment that is sensed and monitored, with the option for automation. Monitoring
involves the use of diverse sensors and energy analyzers, while automation involves the
utilization of actuators. Commonly utilized sensors in smart homes encompass a wide
range of functionalities, including temperature, humidity, motion, illuminance, CO2, smoke,
occupancy, weather, water leak, freeze, and window/door sensors [26]. The specific sensors
incorporated within a smart home depend on the intended application, cost considerations,
and desired usage scenario.

Energy/power analyzers, or smart meters, are crucial in monitoring electrical qual-
ities such as power, energy, current, voltage, harmonics, and more. Smart meters are
essential components in Building Energy Management Systems (BEMSs) as they enable
the monitoring of energy consumption within a building. Actuators play a vital role in
processing sensor information and executing controls based on recommendations from the
home automation system or BEMS [27]. These actuators are capable of performing specific
actions on various home elements. Examples of such actuators include motorized blinds,
automated pergolas, smart thermostats, intelligent valves, and other similar devices.

2.1.2. Protocol Layer

In smart homes, communication between sensors, energy analyzers, and actuators
relies on a variety of communication protocols, which can be categorized into wired
and wireless options [28]. Wired protocols include Modbus, which facilitates reliable
transmission of information over serial lines. Wireless protocols offer greater flexibility
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and convenience. Infrared devices enable one-way communication and are commonly
used for remote controls, while WiFi, based on the IEEE 802.11 standard [29], provides
wireless internet connectivity within a range of approximately 25 m. Bluetooth, with
its range of around 10 m, is popular in mobile phones and portable devices. Thread
enables devices to communicate even when the WiFi network is unavailable. Zigbee and
Z-Wave both operate in mesh networks, allowing devices to form self-organizing networks
for communication. KNX, with its decentralized topology, is commonly used for home
automation and building control systems. NFC employs radio waves for short-range data
transmission and is commonly used for contactless transactions and identification. These
protocols are instrumental in facilitating seamless and efficient communication between
smart home devices, enhancing the overall functionality and automation capabilities of the
IoT ecosystem.

2.1.3. Middleware

Middleware is a software layer that extends the capabilities and common services
provided by the operating system to applications. It primarily handles application services,
authentication, API management, and data management. Additionally, it serves as a
framework that connects users, data, and applications, enabling the creation of applications
by developers. Among the messaging protocols used as middleware for bidirectional
communication between IoT components, MQTT is widely popular [30].

In the context of IoT development, MQTT is often preferred over other protocols like
HTTP due to its ease of use, quick response time, high throughput, and lower battery
and bandwidth usage. MQTT employs a publish/subscribe messaging transport protocol,
allowing a client to publish data to a specific topic on a server, and all interested parties can
subscribe to receive that data. The MQTT protocol specification can be found on the MQTT
webpage [31].

To implement MQTT, a server hosts the MQTT broker, and clients connect to the
broker for publish/subscribe functionality. In the scope of this work, MQTT is used to
establish local and offline communication between the system’s components, leveraging its
ability to facilitate communication across different programming languages. The broker
is installed as a Linux system service on the edge controller, binding to the local host IP.
All system components, including the Z-Wave network manager, energy analyzers, sensor
APIs, weather stations (if applicable), and other occasional entities, are programmed to
communicate their data to the broker. This approach ensures robustness and allows for
easier integration of additional components in the future.

2.1.4. Data Layer

The data layer encompasses all the processes and applications used for managing,
processing, and collecting data and information from sensors, devices, and actuators. Every
device that generates data, such as sensors, energy meters, and edge devices, is considered
an integral part of the system. To process this data efficiently, a data handler service utilizes
a configuration file that contains various variables, including a map of the entities present in
the specific instance of the system. This map is utilized by the data handler to automatically
generate the appropriate data format. To facilitate the seamless integration of new system
entities into the firmware, each entity is accompanied by a data format template. This
template, along with the map, is utilized by the data handler. Initially, when a new entity is
encountered, the template must be manually created. It contains predefined information
about the entity, which enables the data handler to process the data accurately.

The primary component employed for data management is a local MQTT broker,
which is installed as a Linux service. MQTT offers a significant advantage in data man-
agement as it serves as an abstraction layer, allowing various services implemented in
different programming languages to publish their data to the broker. This ensures language
independence for all data-related services as long as they interact with the broker to publish
and retrieve data. To facilitate the concurrent development of applications that communi-
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cate bidirectionally, a predefined topic structure is employed. Each piece of information
is published under a specific topic. By adhering to this topic structure, applications can
easily subscribe to the relevant topics and retrieve the required data for their intended
functionality. Once the data is collected, the data handling service proceeds to format it
into a predefined JSON structure. This formatting ensures consistency and standardization
of the data for further processing [32]. The structured data is then posted to a dedicated
database, specifically designed to store and organize the system’s data. By following this
approach, the data handling service effectively gathers data from various system entities,
transforms it into a consistent format, and stores it in a dedicated database for easy retrieval
and utilization by other components or applications within the system.

2.2. Management Layer

In the context of a smart home system, the management layer acts as a crucial com-
ponent responsible for making optimal decisions inspired by the AWAC algorithm. This
sub-section describes the main features of the AWAC algorithm and the modifications
introduced in the proposed paper introducing the Self-Adapted Advantage Weighted
Actor-Critic (SA-AWAC) to enhance its efficiency in real-life scenarios.

2.2.1. Advantage Weighted Actor-Critic

AWAC utilizes off-policy temporal-difference learning for Q-function estimation,
showcasing adaptability by leveraging prior datasets. To revisit and learn from previous
interactions, the algorithm makes use of a replay buffer, which is a data storage mechanism
containing past experiences. During policy improvement, it maximizes the critic’s value
through temporal difference bootstrapping. To navigate potential challenges, AWAC
harmonizes its policy distribution with observed data during actor updates. AWAC is
characterized as a reinforcement learning method due to its dual optimization approach,
which involves maximizing the Q-function while adhering to observed actions [33]. In
essence, AWAC adeptly harmonizes policy optimization with data adherence, offering a
nuanced solution suitable for diverse environments.

In the context of reinforcement learning, the AWAC algorithm is applied to address
problems modeled as Markov Decision Processes (MDPs). The MDP is a model of predicting
outcomes and attempts to predict an outcome given only information provided by the
current state. According to [34], the framework of MDPs represents the environment as
a tuple < S, A, P : S × A × S → [0, 1], R : S × A → IR, γ > where S denotes the set
of states (S = (s1, s2, s3, . . . , st, . . .)), A is the action space (A = (a1, a2, a3, . . . , at, . . .)), P
is the transition model, with P a

ss′ denoting the conditional probability of transition from
a state s and action a to state s’, R denotes the reward function as the reward that the
agent receives (R = (r1, r2, r3, . . . , rt, . . .)), and γ is the discount factor. The variable γ takes
a price between 0 and 1 and using this is rationalized by the idea that future rewards
are uncertain.

The actor-critic method is a well-known technique for training agents in reinforcement
learning that aims to combine the benefits of actor-only and critic-only approaches [35].
The actor is the policy and the critic is the value function. The critic’s responsibility is to
process the rewards and the state it receives and feeds into an actor. Given the current state,
the actor generates a control input, and after several policy evaluation steps by a critic, it is
updated using the information from the critic.

The standard reinforcement learning notation was used for the proposed method, with
states s, actions a, policy π(a|s), rewards r(s, a), and dynamics p(s′|s, a). Various algorithms
aim to reduce variance by making use of the value function Vπ(s) = Epπ(τ)[Rt|s], action-
value function Qπ(s, a) = Epπ(τ)[Rt|s, a], or advantage Aπ(s, a) = Qπ(s, a)− Vπ(s). At
iteration k, the AWAC algorithm optimizes the policy to maximize the estimated Q-function
Qπk (s, a) at every state, while constraining it to stay close to the actions observed in the
data. This is similar to prior offline RL methods, although this constraint will be enforced
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differently. Note that optimizing Qπk (s, a) is equivalent to Aπk (s, a). Mathematically, it can
be described as follows:

argmaxπ Ea∼π(∗|s)[A
πκ (s, a)] s.t. DKL(π(∗|s)||πβ(∗|s)) ≤ ϵ, (1)

where DKL(π(∗|s)||πβ(∗|s)) shows the KL divergence of πθ from the optimal non-parametric
solution π∗. The Lagrangian was used to introduce a penalty term into the optimization
objective that penalizes deviations from the observed actions. It can be described as follows:

L(π, λ) = Ea∼π(·|s)[A
πk (s, a)] + λ(ϵ− DKL(π(·|s)||πβ(·|s))) (2)

As with deep neural networks, function approximators require the projection of the
non-parametric solution into our policy space. Minimizing the KL divergence of πθ from
the optimal non-parametric solution π* under the data distribution ρπβ

(s) can achieve this
for a policy πθ with parameters θ:

arg min
θ

Eρπβ
(s)[DKL(π

∗(·|s)||πθ(·|s))] (3)

arg min
θ

Eρπβ
(s)

[
Eπ∗(·|s)[− log πθ(·|s)]

]
(4)

An illustration of the AWAC’s fundamental functioning can be found in Figure 1.

Figure 1. The actor-critic architecture.

The main steps of the AWAC can be described in Algorithm 1, where T is the indoor
set temperature that is optional.
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Algorithm 1 AWAC(T)

1: Initialize actor and critic networks: πθ , Qϕ

2: Initialize replay buffer: D = {(s, a, s′, r, T = None)}
3: Initialize iteration counter: i = 1
4: while convergence not achieved and i < max_iterations do
5: Sample a batch (s, a, s′, r) ∼ D
6: Compute target value y = r + γ ·E[Qϕ(s′, a′)] using critic network
7: Update critic network: ϕ← arg minϕE[(Qϕ(s, a)− y)2]

8: Update actor network using importance sampling: θ ← arg maxθE[log πθ(a|s) ·
exp( 1

λ Aπk (s, a))]
9: Compute target actor policy: πtarget ← ModifiedActorPolicy(πθ , Qϕ)

10: Increment iteration counter: i← i + 1
11: end while
12: Return πθ , Qϕ

2.2.2. Self-Adapted Advantage Weighted Actor-Critic

The Self-Adapted Advantage Weighted Actor-Critic (SA-AWAC) algorithm is pre-
sented in this section. SA-AWAC improves efficiency and effectiveness over the original
AWAC algorithm by introducing a selection mechanism among different strategies within
the AWAC framework. Another difference between SA-AWAC and standard AWAC is the
adaptive initialization of the replay buffer, which is based on the desired thermostat set
temperature value. An in-depth explanation of the proposed SA-AWAC is presented in the
following subsections.

Even under ideal indoor conditions, 80% of people are anticipated to be dissatisfied
with interior environment settings, according to thermal comfort principles, specifically
the Predicted Mean Vote (PMV) scale [36]. This emphasizes the challenge to offer all-
encompassing indoor comfort and how customized approaches must be used in indoor
environmental design. Nevertheless, there is proof supporting the prospect of optimal
indoor conditions [37]. This demonstrates the dynamic nature of indoor comfort, as
different conditions may cause a greater percentage of people to be more satisfied overall. In-
depth research into these optimal conditions and the variables that affect them may be very
helpful in the creation of customized and successful interior environmental design plans.

Within this text, a possible approach to enhance efficiency is to develop use case
scenarios for the SA-AWAC that take into consideration ideal indoor conditions for the
thermostat set temperature value. A basis for adapting AWAC functionality to match
occupant preferences and comfort levels is provided by using particular scenarios derived
from the data shown in Table 1. The different scenarios are produced based on optimal
conditions as suggested in the literature [38]. A satisfying user experience could be achieved
by coordinating AWAC operations with ideal interior conditions. This integration helps to
improve AWAC’s overall effectiveness and efficiency in a variety of contexts, in addition to
addressing issues related to indoor comfort.

Table 1. AWAC’s scenarios based on optimal conditions.

Outdoor Season Optimal Scenario 1 Scenario 2 Scenario 3Temperature Conditions

<15 ◦C Winter 21–23 ◦C 21 ◦C 22 ◦C 23 ◦C

15–28 ◦C Spring,
Autumn 22–24 ◦C 22 ◦C 23 ◦C 24 ◦C

28 ◦C Summer 23–25 ◦C 23 ◦C 24 ◦C 25 ◦C

The proposed SA-AWAC is presented in Algorithm 2. The algorithm dynamically
selects different configurations of AWAC based on the current outdoor temperature. In
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colder conditions (below 15 ◦C, it runs AWAC with parameters 21, 22, and 23, selecting
the model with the highest cumulative reward. For temperatures between 15 and 28 ◦C,
it employs AWAC with parameters 22, 23, and 24. In warmer conditions (above 28◦C),
the algorithm utilizes AWAC with parameters 23, 24, and 25. The model with the highest
cumulative reward is then chosen from each scenario. This adaptability allows SA-AWAC
to optimize its performance across diverse environmental conditions.

Algorithm 2 SA-AWAC
Choose scenario based on current outdoor temperature:

1: if outdoor temperature < 15 ◦C then
2: Run AWAC(21), AWAC(22), AWAC(23).
3: Select the model with the highest cumulative reward.
4: end if
5: if 15 °C ≤ outdoor temperature ≤ 28 ◦C then
6: Run AWAC(22), AWAC(23), AWAC(24).
7: Select the model with the highest cumulative reward.
8: end if
9: if outdoor temperature > 28 ◦C then

10: Run AWAC(23), AWAC(24), AWAC(25).
11: Select the model with the highest cumulative reward.
12: end if
13: Return Optimal πθ , Qϕ

Figure 2 describes the process of the SA-AWAC. The scenario is selected based on
the Out_T and three environments are running with the optimal conditions with set
temperatures T1, T2, T3 which are used to select the optimal AWAC configuration. The
system module is in charge of assessing each of the three environments’ performances and
choosing the ones that have the highest cumulative reward. The environment with the
highest cumulative reward is selected as optimal and is executed by the system giving as
output the action.

Figure 2. Flow diagram of the proposed SA-AWAC.

2.3. Overall Architecture of a Smart Building Intelligent Solution

The bottom-up layered conceptual architecture, as depicted in Figure 3, is structured
as a series of interconnected layers, each serving a specific purpose in the IoT system. At
the foundation of the architecture are the devices, sensors, and actuators layer. This layer
comprises the physical “things” that make up the IoT network. Devices, sensors, and actu-
ators are the nodes of the network, responsible for generating data and performing actions.
They form the fundamental building blocks of the system. Moving up the architecture
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stack, the protocol layer is encountered. This layer encompasses the various communica-
tion protocols utilized within the IoT network. It provides the necessary standards and
protocols for devices to exchange data and communicate with each other. The protocol
layer ensures smooth and standardized communication between devices in the network,
enabling interoperability and seamless data transfer.

Figure 3. Overall IoT conceptual architecture.

Ascending further, the data layer is reached. The focus shifts towards processing,
analyzing, and deriving insights from the data generated by the devices. This layer
employs data analysis techniques and algorithms to transform raw data into meaningful
information. Sitting on the site of the architecture is the middleware layer, which serves
as an intermediary for interlinking and communication within the IoT system. This layer
facilitates communication between devices, applications, and external systems or services.
It enables seamless data exchange, coordination, and integration, both at the edge-to-edge
level within the IoT network and in connecting with the “outer” world. The management
layer functions as the command center, overseeing the SA-AWAC algorithm, the replay
buffer, and the decision actions. SA-AWAC independently adapts to optimize smart
building performance to meet changing conditions, thereby enhancing overall efficiency.

The IoT system achieves a solid basis for managing and exploiting device-generated
data, applying standardized communication protocols, performing data analysis, and
facilitating application development by utilizing this layered architecture. Every layer in
this architectural design provides an important contribution to the IoT system’s overall
functionality and capacities. At the highest level of this hierarchical structure, the manage-
ment layer is responsible for managing and supervising the operation of the system as a
whole. By including elements such as the replay buffer, decision actions, and SA-AWAC
algorithm, it offers an extra degree of intelligence and autonomy.

3. Experimental Results

The purpose of this section is to conduct experiments and evaluate the performance
of the SA-AWAC algorithm in comparison to alternative control strategies, such as RBCs
and DDPG. A comparison is made between RBCs, DDPG control strategy, AWAC, and
the proposed SA-AWAC. The RBCs use a straightforward control strategy that entails
keeping each thermal zone’s HVAC set points constant at (19–23 ◦C), respectively, during
occupancy hours.
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3.1. SA-AWAC Configuration for Modeling Heating Ventilation Air Conditioning Systems

This subsection presents the design of the system state, control actions, and reward
function. The AWAC-based control model of building the HVAC system diagram is
shown in Figure 4. Better results were observed when the value of the cumulative reward
was bigger. The AWAC control method is the agent and the building HVAC system is
the environment.

Figure 4. SA-AWAC basic configuration for an HVAC system.

• State: The state represents the information about the current state of the building
energy system that is used as input for the control strategy. The state variables capture
various aspects of the building and its environment, providing a comprehensive
representation of the system’s dynamics. To describe all of the information, state
space needs to be established with the appropriate variables. The variables under
examination in this study, as presented in Table 2, encompass the indoor environment
conditions. This includes the air temperature and humidity levels for each zone.
Additionally, the study considers the state of the external environment, which involves
outdoor temperature and humidity. Furthermore, the analysis considers elements
related to the battery, including the battery’s state of charge and the energy used for
charging the battery.

• Action: The four air-to-water heat pumps (HPs) make up the building’s thermal
system. Every unit has an integrated water tank that supplies hot water for the fan,
heating coils, and domestic hot water (DHW) use. Since the DHW consumption
profiles were investigated using a fixed temperature (50 ◦C), neither the HP supply
temperature nor the temperature of the storage tanks may be controlled due to the
system setup (they change over time). As seen in Table 3, a single set point is assumed
for each thermal zone to regulate its temperature. To minimize the impact on the
building, the suggested strategy controls energy consumption and maintains the
control set points.

• Reward: In the context of this work, the AWAC control strategy is designed to optimize
the energy consumption of the HVAC system, representing the cost and thermal
discomfort factors in our environment. A reward function is formulated, integrating
both energy and comfort to guide the optimization process.

Reward = −α×Consumption− β×Comfort, (5)

where:

– α and β are weighting factors that balance the importance of energy and comfort
in the optimization process.

– Consumption represents the energy component, which takes into account ele-
ments such as energy usage and operating costs, reflecting the economic aspect
of the control approach.

– Comfort represents the comfort component, measuring the variance between
predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) [36].
Minimizing thermal discomfort prioritizes occupant comfort, striving to maintain
temperatures within a comfortable range.
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. . . The values of α and β can be adjusted based on the specific emphasis intended
for minimizing costs and thermal discomfort in the chosen control strategy. The cost
component considers elements such as energy usage and operating costs, reflecting the
economic aspect of the control approach. The primary objective is to minimize costs,
aiming for energy-efficient operation and cost savings. The thermal discomfort component
measures the variance between indoor temperatures and the ideal setpoints. Minimizing
thermal discomfort prioritizes occupant comfort, striving to maintain temperatures within
a comfortable range. The integration of cost and thermal discomfort allows us to strike
a balance between energy economy and occupant comfort, enabling a comprehensive
assessment and comparison of the effectiveness of various control systems.

3.2. Simulated Building Use Case

A widely used open-source tool for building simulation was used (i.e., Energym [39])
in an attempt to replicate a real building as closely as possible.

3.2.1. Set-Up Configurations

The case’s general characteristics are shown in Figure 5. The building used has four
apartments (“Apartments2 Grid”), located in an eight-zone complex in Tarragona, Spain.
Its entire volume is 1042.84 m3 and its total surface area is 417.12 m2. In terms of electricity,
the “Apartments2 Grid” system consists of an electric vehicle, a community battery, and a
photovoltaic array. The PV panels have a 40◦ slant and a 58 m2 active surface area and they
are facing south. The PV generator has a rated electrical power output of 10,750 W and the
community battery has a 10 kWh capacity. The day and night thermal zone visualization of
the simulated building is displayed in Figure 5.

Figure 5. Examined building case.

The four-unit simulation building incorporates a wide variety of sensors, actuators,
and devices designed for commercial research and development purposes. In Table 2,
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the simulation outputs utilized in the building are presented. These outputs include
information about the building’s internal and external conditions, battery charge levels,
and thermostat settings for each floor. Additionally, Table 3 illustrates the simulation inputs
used in this study, highlighting the four setpoints corresponding to the thermostats on
each floor.

Table 2. Simulation outputs of the building with four apartments.

Variable Name Type Lower Upper DescriptionBound Bound

Ext_T scalar −10 40
Outdoor

temperature (◦C)

Ext_RH scalar 0 100
Outdoor relative
humidity (%RH)

Ext_Irr scalar 0 1000
Direct normal

radiation (W/m2)

Ext_P scalar 80,000.0 130,000.0
Outdoor air pressure

(Pa)

P1_T_Thermostat_sp_out scalar 16 26
Floor 1 thermostat
temperature (◦C)

P2_T_Thermostat_sp_out scalar 16 26
Floor 2 thermostat
temperature (◦C)

P3_T_Thermostat_sp_out scalar 16 26
Floor 3 thermostat
temperature (◦C)

P4_T_Thermostat_sp_out scalar 16 26
Floor 4 thermostat
temperature (◦C)

Z01_T scalar 10 40
Zone 1 temperature

(◦C)

Z01_RH scalar 0 100
Zone 1 relative

humidity (%RH)

Z02_T scalar 10 40
Zone 2 temperature

(◦C)

Z02_RH scalar 0 100
Zone 2 relative

humidity (%RH)

Z03_T scalar 10 40
Zone 3 temperature

(◦C)

Z03_RH scalar 0 100
Zone 3 relative

humidity (%RH)

Z04_T scalar 10 40
Zone 4 temperature

(◦C)

Z04_RH scalar 0 100
Zone 4 relative

humidity (%RH)

Z05_T scalar 10 40
Zone 5 temperature

(◦C)

Z05_RH scalar 0 100
Zone 5 relative

humidity (%RH)

Z06_T scalar 10 40
Zone 6 temperature

(◦C)
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Table 2. Cont.

Variable Name Type Lower Upper DescriptionBound Bound

Z06_RH scalar 0 100
Zone 6 relative

humidity (%RH)

Z07_T scalar 10 40
Zone 7 temperature

(◦C)

Z07_RH scalar 0 100
Zone 7 relative

humidity (%RH)

Z08_T scalar 10 40
Zone 8 temperature

(◦C)

Z08_RH scalar 0 100
Zone 8 relative

humidity (%RH)

FA_ECh_Bat scalar 0 4000.0
Battery charging

energy (Wh)

Bd_FracCh_Bat scalar 0 1
Battery state of

charge

Table 3. Simulation inputs of the building with four apartments.

Variabel Name Type Lower Upper DescriptionBound Bound

P1_T_Thermostat_sp scalar 16 26
Floor 1 thermostat

setpoint (°C)

P2_T_Thermostat_sp scalar 16 26
Floor 2 thermostat

setpoint (°C)

P3_T_Thermostat_sp scalar 16 26
Floor 3 thermostat

setpoint (°C)

P4_T_Thermostat_sp scalar 16 26
Floor 4 thermostat

setpoint (°C)

3.2.2. Results

In this section, the results of the simulation data are presented. The experiments were
conducted in October 2023, indicating that the season for these experiments was autumn.
Three different versions of AWAC were implemented to compare with SA-AWAC and
DDPG, each with a different thermostat value set to fill the replay buffers, as described
below. Also three different AWAC versions were implemented for SA-AWAC, each with a
different thermostat value set to fill the replay buffers, as described in (Section 2.2.2). All
of the algorithms underwent 60 epochs of training, with 4000 steps in each epoch. The
thermostat setpoint for the DDPG was 21 °C. For the RBC scenarios, denoted as RBC19,
RBC20, RBC21, RBC22, and RBC23, the thermostat set points are configured to 19 °C, 20 °C,
21 °C, 22 °C, and 23 °C respectively. The three versions of AWAC are presented below:

1. AWAC1, all thermostat setpoints were randomly selected between [21 °C, 22 °C], and
a 2000 experience AWAC replay buffer was created.

2. AWAC2, all thermostat setpoints were randomly selected between [22 °C, 23 °C], and
a 2000 experience AWAC replay buffer was created.

3. AWAC3, all thermostat setpoints were randomly selected between [23 °C, 24 °C], and
a 2000 experience AWAC replay buffer was created.

The cumulative reward for the first epoch of the proposed SA-AWAC is displayed in
Table 4, providing a comparison with DDPG, AWAC1, AWAC2, and AWAC3. As a dual
metric, cumulative reward is estimated utilizing Equation (5), where α = β = 0.5. DDPG
achieved a cumulative reward of −48,882.70 in the first epoch, while AWAC1, AWAC2, and
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AWAC3 obtained corresponding values of −34,205.5, −31,523.4, and −32,424.65. The three
versions of AWAC exhibited an increase of [30–38%] compared to DDPG. Additionally, SA-
AWAC showed an increase of 44.16% compared to DDPG and 20.19%, 13.40%, and 15.81%
compared to the three versions of AWAC. In comparison to DDPG and the three versions of
AWAC, the results consistently demonstrate that SA-AWAC outperforms other approaches,
indicating its efficacy in achieving faster convergence and superior initial performance.

Table 4. Cumulative reward of epoch one for the simulation building (DDPG, AWAC1, AWAC2,
AWAC3, SA-AWAC).

RL Algorithm Cumulative
Reward

Percentage Diff (%)

SA-AWAC

DDPG −48,883 44.16%

AWAC1 −34,205 20.19%

AWAC2 −31,523 13.40%

AWAC3 −32,424 15.81%

SA-AWAC −27,296 -

In Figure 6, a comparison of the DDPG with AWAC2 and DDPG with SA-AWAC
is presented. The figure showcases the evolution of the average episode reward. The
SA-AWAC algorithm converges significantly faster than the centralized approach of DDPG,
achieving similar reward levels by the end of the training process. More specifically, SA-
AWAC achieves a similar or greater level of performance compared to DDPG in less than
five epochs during the training.

Figure 6. Cumulative reward over epochs for the simulation building.

Additionally, a comparison was made between the RBC controller, which is based on
predefined rules, and the model-free algorithms (DDPG, AWAC1, AWAC2, AWAC3, and
SA-AWAC). For each pricing profile, ten days were simulated with various configurations
for the RBC rules to test the effectiveness of the RL algorithms. The evaluation comparison
between the RBC and the model-free algorithms involves distinct configurations between
episodes (days), but the same-day configuration with identical operating conditions for
all algorithms in each episode. The mean of the episodic reward for each algorithm (the
average daily reward) was collected and is presented in Table 5. It can be observed that all
model-free algorithms outperform the RBC controller. Furthermore, SA-AWAC achieves
better performance levels than the regular version of DDPG and the three versions of
AWAC. More specifically, in the case of SA-AWAC, there is a significant improvement of
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approximately 37.34% in the algorithm’s performance compared to RBC22, 5.71% compared
to DDPG, and 16.9% compared to AWAC1.

Table 5. Evaluation reward on 10 days for RBCs, DDPG, AWAC1, AWAC2, AWAC3, SA-AWAC
(simulation building).

RL Algorithm Cumulative
Reward

Percentage Diff (%)

SA-AWAC

RBC19 −114,138 >100%

RBC20 −112,201 >100%

RBC21 −42,165 >100%

RBC22 −1633 37.34%

RBC23 −2417 >100%

DDPG −1257 5.71%

AWAC1 −1390 16.9%

AWAC2 −1239 4.2%

AWAC3 −1241 4.37%

SA-AWAC −1189 -

3.3. Real-Life Use Case

The CERTH/ITI nZEB Smart Home is a realistic residential building that enables
occupants to immerse themselves in authentic living situations while discovering vari-
ous innovative smart technologies based on the IoT. It offers services related to Energy,
Health, Big Data, Robotics, and AI, demonstrating rapid prototyping and showcasing novel
technologies. Being Greece’s inaugural Smart Near-Zero Energy Building, it incorporates
advanced construction materials and intelligent ICT solutions, resulting in a sustainable
and forward-thinking environment for testing, validating, and evaluating various solu-
tions. This infrastructure ensures a future-proof setting that supports the development of
cutting-edge and eco-friendly practices. In early 2017, the Digital Innovation Hub (DIH)
became officially registered in the JRC Catalogue, making it the first DIH in the Central
Macedonia region. Since then, it has been functioning effectively, providing a platform
for digital innovation activities in the field. Figure 7 shows the thermal zone of the smart
home building.

Figure 7. CERTH/ITI nZEB Smart Home thermal zone.
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3.3.1. Set-Up Configuration

The CERTH/ITI house incorporates an extensive array of sensors, actuators, and
devices utilized for research and development purposes and in commercial contracts.
Automated and artificial intelligence algorithms are crucial in supporting automation
processes and implementing multi-factor efficiency scenarios. These scenarios consider
factors such as occupancy and comfort levels, ensuring optimal energy usage and resource
management within the house. Integrating these technologies and intelligent algorithms
enhances energy efficiency, making the CERTH/ITI house a cutting-edge platform for
exploring innovative energy solutions.

To apply the above technologies and framework, the CERTH/ITI house is equipped
with a range of energy-related IoT equipment such as smart meters, dimming and on/off
actuators, environmental sensors, occupancy sensors, smart plugs, smart appliances, pho-
tovoltaics, batteries/storage systems, and more. These devices enable the monitoring of
energy consumption, production, and the overall condition of the building. Indicatively,
some of those devices are presented in Table 6.

The outputs used in the smart home are shown in Table 7. Furthermore, Table 8
presents the inputs utilized in the research, emphasizing the single setpoint that corresponds
to the building’s room thermostat.

Table 6. Overview of smart home equipment.

Type Description Model Protocol

Actuator
Wireless actuator
Light Dimmer switch

EnOcean Wireless
Dimmer 1–10 V
model FSG71/

EnOcean

Sensor Mutisensor
Fibaro
Fgms-001-zw5
Motion Detector

Zwave

Sensor
Temperature- humidity
sensor Plugwise Zigbee

Sensor luminance sensor
FIH65B EnOcean
Wireless Indoor
Luminance

EnOcean

Device/Actuator
Heating ventilation air
conditioning system (HVAC)

LG Ceiling
mountain
Cassette and
HVAC controller

WiFi

Energy analyzer Energy meter Carlo Gavazzi
3phase

Modbus

Table 7. Outputs of the real building.

Variable Name Type Lower Upper DescriptionBound Bound

Ext_T scalar −10 40
Outdoor

temperature(°C)

Ext_RH scalar 0 100
Outdoor relative
humidity (%RH)

P1_T_Thermostat_sp_out scalar 16 26
Room 1 thermostat
temperature (°C)

Z01_T scalar 10 40
Zone 1 temperature

(°C)

Z01_RH scalar 0 100
Zone 1 relative

humidity (%RH)
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Table 8. Inputs of the real building.

Variabel Name Type Lower Upper DescriptionBound Bound

P1_T_Thermostat_sp scalar 16 26
Floor 1 thermostat

setpoint (°C)

3.3.2. Results

The cumulative reward for the first epoch of the proposed SA-AWAC is presented in
Table 9, with a comparative analysis against DDPG, AWAC1, AWAC2, and AWAC3. DDPG
achieved a cumulative reward of −65,498.43 during the first epoch, while AWAC1, AWAC2,
and AWAC3 recorded corresponding values of −51,434.5, −49,766.34, and −50,325.4. The
three AWAC variants exhibited an increase ranging from 27% to 31% compared to DDPG.
Moreover, SA-AWAC displayed a rise of 34.91% compared to DDPG and 5.94%, 2.50%, and
3.65% relative to the three versions of AWAC. These results suggest that SA-AWAC outper-
forms other approaches, demonstrating its effectiveness in achieving swifter convergence
and superior initial performance.

Table 9. Cumulative reward of epoch one for the real building (DDPG, AWAC1, AWAC2, AWAC3,
SA-AWAC).

RL Algorithm Cumulative
Reward

Percentage Diff (%)

SA-AWAC

DDPG −65,498 34.91%

AWAC1 −51,434 5.94%

AWAC2 −49,766 2.50%

AWAC3 −50,325 3.65%

SA-AWAC −48,549 -

A comparison of the DDPG with SA-AWAC and AWAC2 and the average episode
reward’s evolution are depicted in Figure 8. By the end of the training process, the SA-
AWAC algorithm achieves similar reward levels and converges much faster than the
centralized approach of DDPG. More precisely, in less than five training epochs, SA-AWAC
outperforms DDPG to an equivalent or higher degree of performance.

Figure 8. Cumulative reward over epochs for the real building.
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Furthermore, a comparative analysis was conducted between model-free algorithms
(DDPG, AWAC1, AWAC2, AWAC3, and SA-AWAC) and the RBC controller, relying on pre-
defined rules. The same setup configuration is used as in the simulated data (Section 3.2.2).
For every algorithm, the mean daily reward was gathered and is presented in Table 10.
Interestingly, the RBC controller was outperformed by all model-free algorithms. Addition-
ally, SA-AWAC outperformed three different versions of AWAC and the standard DDPG.
In particular, SA-AWAC demonstrated a noteworthy enhancement of roughly 31.2% in
comparison to RBC22, 8.9% in comparison to DDPG, and 12.81% in comparison to AWAC1.

Table 10. Evaluation reward for DDPG and AWAC and SA-AWAC (real building).

RL Algorithm Cumulative
Reward

Percentage Diff (%)

SA-AWAC

RBC19 −136,328 >100%

RBC20 −135,267 >100%

RBC21 −67,249 >100%

RBC22 −1997 31.2%

RBC23 −3060 >100%

DDPG −1658 8.9%

AWAC1 −1717 12.81%

AWAC2 −1577 3.61%

AWAC3 −1673 9.92%

SA-AWAC −1522 -

4. Conclusions

This paper introduces a novel adaptive algorithm called the SA-AWAC based on
offline training while applying it to a real building, thus providing the basis of an applied
framework. The design is based on a hierarchical manner comprised of distinct layers.
The design follows a hierarchical structure with distinct layers: the protocol layer, the IoT
layer, the middleware, the data layer, and the management layer, which incorporates the
proposed SA-AWAC. The effectiveness of the proposed SA-AWAC was evaluated using
simulated data from a building replica, as well as real data from a CERTH/ITI smart
home. The results demonstrated consistently high cumulative rewards in both datasets. A
comparison with non-RL and RL methods was conducted, revealing that the SA-AWAC
consistently outperformed other methods in both simulated and real datasets. Specifically,
on simulated data, the SA-AWAC exhibited a 44.16% improvement compared to DDPG
and a 13.40% increase over the best-performing AWAC method in the first epoch. Similarly,
on real data, the proposed SA-AWAC showed a 34.91% improvement compared to DDPG
and a 2.50% increase compared to the best-performing AWAC method in the first epoch.
These results highlight the superior performance of the SA-AWAC model in addressing the
challenges posed by both simulated and real smart home environments.

In terms of future work, an exploration of various intelligent behaviors is planned,
encompassing pre-cooling strategies for discomfort alleviation, HVAC modulation to
reduce energy consumption peaks, and the enhanced integration of renewable sources.
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