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Abstract: In the quest for sustainable energy solutions, predicting electricity prices for renewable
energy sources plays a pivotal role in efficient resource allocation and decision making. This article
presents a novel approach to forecasting electricity prices for renewable energy sources using deep
learning models, leveraging historical data from the power system operator (PSE). The proposed
methodology encompasses data collection, preprocessing, feature engineering, model selection,
training, and evaluation. By harnessing the power of recurrent neural networks (RNNs) and other
advanced deep learning architectures, the model captures intricate temporal relationships, weather
patterns, and demand fluctuations that impact renewable energy prices. The study demonstrates the
applicability of this approach through empirical analysis, showcasing its potential to enhance energy
market predictions and aid in the transition to more sustainable energy systems. The outcomes
underscore the importance of accurate renewable energy price predictions in fostering informed
decision making and facilitating the integration of renewable sources into the energy landscape.
As governments worldwide prioritize renewable energy adoption, this research contributes to the
arsenal of tools driving the evolution towards a cleaner and more resilient energy future.

Keywords: AI; energy price forecasting; LSTM; DNN

1. Introduction

The realm of renewable energy in Poland, particularly within the domain of photo-
voltaics (PV), is experiencing a notable surge. Various elements are driving the progress
of PV technology in the country, mirroring trends across various European Union (EU)
member nations [1,2]. Poland, like its counterparts, has set ambitious targets for integrating
renewables into its energy matrix [3], igniting substantial interest and investments in solar
energy and PV advancements [4]. To galvanize the growth of these initiatives, the gov-
ernment has strategically implemented an array of support mechanisms including feed-in
tariffs, auctions, and subsidies, specifically tailored to nurture renewable energy ventures,
especially in the PV sector. As a participant in EU programs dedicated to renewable energy
adoption, Poland is harnessing financial aids that expedite the transition to sustainable
energy sources, further catalyzing PV projects nationwide.

Remarkably, the cost of PV technology has been progressively diminishing, enhancing
the economic viability of solar energy. This reduction in costs has amplified the allure of
solar investments for both financial backers and consumers, aligning with the broader goal
of diminishing reliance on imported fossil fuels. Noteworthy emphasis has been placed
on bolstering domestic renewable energy capacities, exemplified by the focus on solar
power. The resilience and security of Poland’s energy landscape have been augmented as
PV technology diversifies the energy portfolio. An impressive milestone achieved between
2019 and 2022 involved the establishment of over one million PV micro-installations,
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predominantly targeting individual households. These micro-installations are thoughtfully
customized to harmonize with distinct energy consumption patterns over varying periods,
meticulously complying with Poland’s regulatory guidelines for prosumers.

Approaches in the field of predicting electricity prices for renewable energy sources
exhibit variations across several dimensions. The choice of data sources can range from
studies concentrating on national power grid data to those utilizing regional or local
datasets. The granularity and availability of the data play a pivotal role in influencing the
accuracy of the predictive model. Diverse deep learning architectures, such as recurrent
neural networks (RNNs), long short-term memory (LSTM) networks, or hybrid models,
are applied based on the intricacies of the data and the necessity to capture temporal de-
pendencies. Feature engineering strategies differ between approaches, with considerations
encompassing historical electricity prices, patterns of renewable energy generation, weather
data, and grid demand. Methodologies for training and validation exhibit variability, rang-
ing from traditional train–test splits to more sophisticated techniques like cross-validation.
The approaches to hyperparameter tuning can also diverge. Evaluation metrics utilized in
assessing model performance may include mean absolute error (MAE), root mean square
error (RMSE), and correlation coefficients, with the specific metric chosen to align with the
unique goals of each study. Integration with control systems diverges across approaches,
with some emphasizing real-time decision making and the control of renewable energy
installations based on predicted prices, while others prioritize long-term planning. The
real-world applications of these models showcase varying degrees of success, with some
approaches demonstrating tangible benefits such as cost savings, efficient energy man-
agement, or improved grid stability in practical scenarios. Finally, the innovations and
contributions of each approach are distinct, with some studies introducing novel method-
ologies and others focusing on the refinement of existing techniques within the realm of
predicting electricity prices for renewable energy sources.

The core objective of this investigation revolves around assessing the viability and
precision of PV energy production calculations tailored to Poland’s conditions. Researchers
have identified existing energy production estimation methods as potentially flawed due
to inadequacies in accounting for geographical features, local conditions, wind dynamics,
and the inherent characteristics of PV panels. In this pursuit, deep neural network (DNN)
methodologies are at the forefront, particularly focusing on hybrid architectures that
incorporate long short-term memory (LSTM) elements [5–8]. These advanced models are
poised to revolutionize energy pricing predictions, providing a more accurate and effective
framework for this evaluation.

The study published in [8] delves into the critical task of forecasting electricity demand,
with a primary emphasis on ensuring stability within the energy sector. It explores the
efficacy of deep learning models, specifically recursive neural networks (RNNs) based
on LSTM and combined architectures. The dataset, obtained from a SolarEdge designer,
comprises daily records from a solar farm in Central Europe (Poland’s Swietokrzyskie
Voivodeship) over the past year. This work concludes that the LSTM models demon-
strate superior forecasting accuracy compared to other models, with specific measurable
results provided.

The current approach focuses on predicting electricity prices for renewable energy
sources, aligning with the quest for sustainable energy solutions. It introduces a novel
approach that leverages deep learning models, including recurrent neural networks (RNNs)
and other advanced architectures [9–11]. The data used comes from the power system
operator (PSE), emphasizing historical data for renewable energy sources. This work
covers various aspects of the methodology, including data collection, preprocessing, fea-
ture engineering, model selection, training, and evaluation. The outcomes of empirical
analysis showcase the potential of the approach to enhance energy market predictions
and contribute to a cleaner and more resilient energy future. Additionally, the study
underlines the importance of accurate renewable energy price predictions in supporting
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informed decision making and facilitating the integration of renewable sources into the
global energy landscape.

The research introduces a novel perspective on addressing the challenges associated
with renewable energy purchases, particularly in the context of off-grid systems. The
existing literature often focuses on traditional aspects of the energy trilemma and may not
adequately explore the potential of deep neural network (DNN) models for controlling
off-grid energy systems based on energy prices.

The discussion on clean energy systems [12], resilience, and the need for predictable
demand for energy technologies resonates with the essence of forecasting renewable energy
purchases. The mention of reliable affordability, system security, and the emerging objective
of reliable speed also connects with the challenges and objectives often associated with
forecasting in the renewable energy sector.

A similar approach was introduced in [13], which describes real-time energy man-
agement in off-grid smart homes, particularly nanogrids, employing various renewable
energy sources (RESs) and energy storage systems. This work introduces the concept of
home energy management systems (HEMSs) for optimal performance, aiming to balance
energy production and consumption. The manuscript highlights the integration of fuel
cell (FC) systems as environmentally friendly energy sources and discusses challenges
associated with FCs under rapid load demand variations. The importance of combining
FCs with other energy sources, such as batteries and RESs, and implementing demand-
side management (DSM) for improved efficiency and system lifetime is emphasized. The
literature review provides an overview on existing home energy management systems
for both grid-connected and off-grid microgrid systems, showcasing various approaches
to improve reliability, resilience, and cost-effectiveness while ensuring user comfort. In
comparison to our approach, both of the above contribute valuable insights to the field of
renewable energy and energy management, albeit in different contexts and with different
methodological approaches. Whereas authors of [13] primarily focus on real-time energy
management in off-grid smart homes, emphasizing the role of home energy management
systems and the integration of fuel cell systems, our idea is to primarily focus on predicting
electricity prices for small hybrid PV micro-installations using deep learning and then try
to optimize cost of energy. In our approach, we try to emphasize predictive modeling,
encompassing data processing, feature engineering, and the use of deep learning models in
combination with statistical data and forecasting in energy management, especially in the
context of demand-side control and the challenges associated with fuel cell systems.

In the ensuing sections, we shall elucidate upon several key facets, commencing with
a detailed exposition of the employed deep neural network (DNN) model, succeeded by
an exhaustive delineation of the utilized dataset, and ending with an explication of its
connection to the domain of energy management.

The initial segment entails a meticulous portrayal of the hybrid DNN-long short-term
memory (LSTM) model, encompassing a thorough explication of its constituent layers,
units, and activation functions. Particular emphasis is placed upon the model’s intrinsic
capacity to adeptly manage sequential data, substantiated by a comprehensive visual
representation of its architectural framework.

Subsequently, the elucidation delves into the intricacies of the dataset, derived from
the Polish Power Company (PSE) data repository. A comprehensive exposition unfolds,
elucidating the pivotal parameters integral to the nuanced task of electricity price forecast-
ing. This includes a meticulous discussion of the organizational structure of the time-series
data, accentuating the imperative nature of various preprocessing steps such as the adept
handling of missing values and the normalization process.

The discourse then seamlessly transitions to the domain of autonomous energy man-
agement via DNN-projected pricing, wherein the components of an innovative energy
management system are introduced. An in-depth examination ensues, elucidating the piv-
otal role of the DNN LSTM model in forecasting energy prices, coupled with optimization
strategies tailored for both grid-linked and autonomous off-grid subsystems. The latter,
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notably reliant on renewable energy sources, is expounded upon in detail, underscoring the
intricate fusion of DNN model projections within both control paradigms. Implementation
intricacies about intelligent residence infrastructure are subsequently unveiled.

The subsequent focal point of our discourse revolves around the meticulous emphasis
on model development and training. This phase encapsulates a systematic optimization of
key parameters, including but not limited to LSTM units, fully connected layer size, and
activation functions. A comprehensive exposition follows, detailing the intricate facets of
the training and validation processes, ensuring the model’s adaptability and generalization
to hitherto unseen data. Various loss functions are scrutinized to gauge the divergence
between the model’s prognostications and actual values. Quantitative assessments are
underpinned by metrics such as mean squared error, accuracy, and R-squared.

The Results section serves as the conduit for presenting the outcomes of model training
and validation, meticulously elucidating upon the predictive capabilities of the model.
A nuanced discussion unfolds, delving into the ramifications of hyperparameter tuning
on overall performance. The subsequent Discussion section undertakes the scholarly
interpretation of the results within the intricate domain of electricity price prediction.
Comparative analyses are conducted vis-à-vis existing models and methodologies, fostering
insights into the overarching significance of the hybrid DNN-LSTM model. The Conclusion
section serves as a comprehensive recapitulation of key findings, affording a platform to
deliberate upon the broader implications for renewable energy applications. Furthermore,
it proffers nuanced suggestions for potential avenues that merit exploration in future
research endeavors. The References segment encapsulates meticulous citations of pertinent
literature and sources that have significantly contributed to the underpinning of this
scholarly endeavor.

2. Materials and Methods
2.1. DNN Model Architecture

A hybrid DNN-LSTM model combines the strengths of deep neural networks (DNNs)
and long short-term memory (LSTM) networks to tackle complex problems involving
sequential data. In the described model, we integrate the capabilities of DNNs for capturing
high-level patterns from data with the sequence modeling capabilities of LSTMs. This
amalgamation proves particularly advantageous when confronted with the necessity to
manage both the inherent sequential nature and intricate relationships present within the
dataset. The architectural representation is delineated below Figure 1.

Figure 1. Multi-LSTM DNN model architecture.
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The first layer is an LSTM (long short-term memory) layer. In this model, the LSTM
layer has 200 units (also called cells or neurons). The activation function used within
each LSTM unit is the Rectified Linear Unit (ReLU), which introduces non-linearity to the
network. Following the LSTM layer is a dense fully connected layer. This layer contains
100 units and employs the ReLU activation function. The purpose of this layer is to learn
higher-level features and patterns from the output of the LSTM layer. It adds a level of
non-linearity and abstraction to the model’s representation. The final layer is the output
layer and produces the final predictions of the model.

The hybrid DNN-LSTM model described in this study represents a sophisticated
fusion of deep neural networks (DNNs) and long short-term memory (LSTM) networks.
This integration aims to leverage the unique strengths of each, enabling the model to
effectively handle complex challenges associated with sequential data. By combining the
pattern recognition capabilities of DNNs with the sequence modeling capabilities of LSTMs,
the proposed architecture emerges as a robust solution capable of addressing the inherent
sequential nature and intricate relationships within the data.

The architectural details of the hybrid model unfold in a layered structure. The
initial layer comprises an LSTM layer featuring 200 units, each incorporating the Rectified
Linear Unit (ReLU) as the activation function. This choice introduces non-linearity to the
network, enhancing its capacity to capture complex patterns. After the LSTM layer, a dense
fully connected layer follows suit, housing 100 units and applying the ReLU activation
function. This layer serves the purpose of extracting higher-level features and patterns
from the LSTM layer’s output, thereby contributing an additional layer of non-linearity
and abstraction. The concluding layer in the model is the output layer, responsible for
generating the final predictions.

Technical investigations underpin the model’s development and assessment. These
investigations involved meticulous hyperparameter tuning, where parameters such as the
number of LSTM units, the size of the fully connected layer, and the choice of activation
functions were systematically optimized. The training and validation processes were ex-
ecuted rigorously, ensuring the model’s adaptability and generalization to unseen data.
Different loss functions were explored to gauge the disparity between the model’s predic-
tions and actual values, and various evaluation metrics, including mean squared error,
accuracy, and R-squared, were employed to quantitatively assess predictive capabilities.
The study also delved into considerations of computational efficiency, emphasizing the
optimization of training and prediction speed without compromising accuracy.

This comprehensive exploration not only unveils the intricacies of the hybrid DNN-
LSTM architecture but also establishes the model’s robustness and reliability across diverse
applications. From electricity demand forecasting to renewable energy price predictions,
the technical investigations presented herein contribute valuable insights to the broader
field of deep learning and sequential data modeling, enhancing our understanding of
complex data patterns and their applications in real-world scenarios.

2.2. Prepared Dataset

The dataset created based on published data from the PSE (Polish Power Company) for
predicting the market price of electricity contains various parameters related to electricity
pricing and deviations. These parameters are crucial for building a predictive model for
electricity price forecasting. Each parameter contributes to the model’s ability to capture
the intricate dynamics of the electricity market.

Below is a description of the dataset and its parameters:

1. CRO + (Deviation Settlement Price − Higher Demand): The deviation settlement
price determined on day n − 1 for information purposes when the national power
system (NPS) demand is higher by 5% than assumed in the NPS work plan.

2. CRO − (Deviation Settlement Price − Lower Demand): The deviation settlement
price is determined on day n − 1 for information purposes when the NPS demand is
lower by 5% than assumed in the key schedule (KS) work plan.
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3. CRO (Deviation Settlement Price): The general deviation settlement price determined
on day n − 1 for deviations from the expected demand levels.

4. CROs (Settlement Price of Sales Deviation): The settlement price associated with the
sales deviation, reflecting the financial impact of deviations from planned sales levels.

5. CROz (Purchase Variance Settlement Price): The settlement price is related to the
purchase variance, indicating the financial consequences of deviations from planned
purchase levels.

6. CEBPRw (Weighted Average Price of Planned Forced Balancing Energy Received):
The weighted average price of the planned forced balancing energy received, which is
part of the balancing mechanism to ensure stability in the power system.

7. CEBPPw (Weighted Average Price of Planned Forced Balancing Energy Delivered):
The weighted average price of the planned forced balancing energy delivered, also
contributes to maintaining the power system’s stability.

8. CEBPR (Weighted Average Price of Planned Balancing Energy Received): The weighted
average price of the planned balancing energy received, reflecting the cost of main-
taining a balanced power supply–demand relationship.

9. CEBPP (Weighted Average Price of Planned Balancing Energy Delivered): The weighted
average price of the planned balancing energy delivered, representing the compensa-
tion for supplying balancing energy to the grid.

The dataset is likely organized with time series data from the beginning of 2020 to
July 2023, where each parameter’s values are recorded hourly. The historical values of
these parameters, along with the corresponding electricity market prices, form the basis
for training and evaluating predictive models, such as the hybrid DNN LSTM model
described earlier. To ensure that the dataset is ready for model training, there were a few
steps before usage such as handling missing values, normalization, and possibly feature
engineering. The richness and complexity of the parameters in this dataset provide a
solid foundation for developing accurate electricity price prediction models tailored to the
micro-installation context.

2.3. Innovative Grid-Connected and Autonomous Energy Management via DNN-Projected Pricing

The notion of employing “grid-linked” and “off-grid” management grounded in the
insights of a predictive deep neural network (DNN) model for energy costs revolves around
the astute management and enhancement of energy consumption, taking into account the
ever-fluctuating electricity prices prevalent in the energy market.

The central components of this pioneering system include the following:

1. DNN LSTM-Based Energy Price Prediction Model At the heart of this initiative lies a
deep neural network (DNN) powered by long short-term memory (LSTM) architec-
ture. This advanced machine learning model is capable of being trained to forecast
forthcoming energy prices by dissecting historical data and deciphering the intricate
trends governing energy market pricing. By assimilating diverse input parameters
expounded upon in the preceding section, this model generates predictions of im-
pending energy prices, pivotal for informed decision making.

2. Grid-Linked Subsystem The grid-linked control facet concentrates on judiciously
orchestrating energy consumption within an edifice or establishment interlinked with
the primary electricity grid. Contextualized within the framework of energy price pre-
diction, grid-linked control entails the calibration of energy utilization by the facility’s
systems (ranging from HVAC and lighting to appliances) by the anticipated energy
price fluctuations. The ultimate objective is to amplify energy consumption during
phases of subdued pricing while curtailing consumption during peak-cost periods.

3. Autonomous Off-Grid Subsystem Autonomous off-grid control predominantly ap-
plies to scenarios where an edifice or facility functions autonomously, disengaged
from the principal electricity grid. Frequently, such setups harness renewable energy
resources (such as solar panels) and energy reservoir systems (like batteries). In
this scenario, the energy price projections sourced from the DNN model serve as a
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compass for discerning when to stockpile surplus energy from sustainable sources
and when to deploy accumulated energy in consonance with price projections. This
optimization guarantees that the facility trims energy expenses, all while sustaining a
dependable power supply.

4. Fusion of DNN Model Projections The DNN model’s prognostications wield a pivotal
role within both grid-linked and off-grid control paradigms. For grid-linked control,
these predictions underpin determinations about the optimal transfer of energy-
intensive operations to non-peak hours. For off-grid control, these predictions underlie
the orchestration of energy reservoir system charging and discharging, impeccably
aligned with projected price oscillations.

5. Implementation of Intelligent Residence Infrastructure The practical realization of
grid-linked and off-grid control predicated on energy price predictions often entails a
measure of automation. Intelligent energy management frameworks can be tailored to
obtain real-time price updates from the DNN model and subsequently effectuate auto-
mated adjustments in energy consumption or reservoir operations. This synergy can
be realized through a constellation of Internet of Things (IoT) devices, interconnected
appliances, and energy management software.

It is imperative to acknowledge that the efficacy of such a system hinges on the
precision of the DNN model’s predictions, the nimbleness of the control systems, and the
adaptability of the facility’s energy consumption and storage competencies. Furthermore,
real-world execution might necessitate tackling hurdles such as system latency, hardware
compatibility, and user predilections.

In summation, this concept embodies a progressive strategy for optimizing energy
utilization and expenditure, particularly within the context of an increasingly dynamic and
price-conscious energy domain.

3. Results
Accuracy of Designed DNN Model

Below, we present our comparison between values reported by RCE simulations from
PSE and our DNN model Figure 2 and Table 1.

Figure 2. Multi-LSTM price prediction results.

Table 1. Multi-LSTM metrics.

MAE: 35.863 NMAE: 0.038 MPL: 17.931
MAPE: 0.088 MSE: 2492.210

EVS: 0.887 R2: 0.876 RMSE: 49.922

The results provided by the deep neural network (DNN) model are as follows:
In evaluating the performance of the predictive model, several key scientific metrics

were employed. The mean absolute error (MAE), calculated as the average absolute differ-
ence (35.86) between predicted values and actual values, serves as a quantitative measure
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of the magnitude of errors, irrespective of their direction. The normalized mean absolute
error (NMAE), represented as 0.0382, is a normalized version of the MAE, expressed as a
fraction of the range of the actual values. This normalization facilitates comparisons across
diverse datasets.

The mean percentage error (MPL), denoting the mean percentage difference
(17.93 percent) between predicted and actual values, provides insights into the relative
magnitude of errors as a percentage of the actual values. The mean absolute percentage
error (MAPE), computed as the average percentage difference (0.0886 percent) between pre-
dicted and actual values, contributes to understanding the overall accuracy of predictions
in terms of percentage errors.

The mean squared error (MSE), averaging the squared differences (2492.21) between
the predicted and actual values, penalizes larger errors more heavily than smaller ones.
The mean error absolute error (MEAE), measured at 25.13, signifies the average absolute
difference between the predicted mean and the actual mean, serving as an indicator of the
overall bias in the predictions.

The explained variance score (EVS), quantifying the proportion of variance in the
dependent variable explained by the model (0.8877), assesses the goodness of fit, with
higher values indicative of a better fit. The coefficient of determination (R2), measuring
the proportion (0.8770) of the variance in the dependent variable predictable from the
independent variables, elucidates the model’s ability to explain variability.

Lastly, the root mean squared error (RMSE), represented as 49.92, is the square root
of the average of the squared differences between predicted and actual values. This
metric, akin to the MSE but in the same unit as the original data, enhances interpretability.
Collectively, these metrics offer a comprehensive assessment of the model’s predictive
performance across various dimensions.

4. Discussion
Proposed Off-Grid Subsystem

A proposed off-grid energy system is a combination of advanced engineering and
self-reliance. The backbone of this autonomous power grid is a set of three powerful
Victron Quattro inverters, each with an impressive 15 kW of power Figure 3. Their presence
symbolizes the key role they play in orchestrating the conversion of stored DC battery
energy into usable AC power, covering a spectrum of energy needs.

Figure 3. Triple Victron Quattro inverters (source https://enerp.pl/project/victron-ess-kamienica-3
0kva-404kwh), accessed on 2 January 2023.

A precisely arranged set of Pylontech batteries deployed in a safe and well-ventilated
area is used as an energy store Figure 4. Through a careful combination of series and

https://enerp.pl/project/victron-ess-kamienica-30kva-404kwh
https://enerp.pl/project/victron-ess-kamienica-30kva-404kwh
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parallel connections, these batteries combine to form a powerful energy storage system.
Their combined capacity can provide a sustainable power supply, ensuring system resilience
when external energy sources are scarce.

(a) (b)

Figure 4. Example of batteries and inverter installation: (a) one-phase installation including 1 inverter
and 6 batteries; (b) separate batteries mounted on a rack (source https://enerp.pl/project/victron-e
ss-kalisz-45kva-50kwh), accessed on 2 January 2023.

An array of solar panels with a total capacity of 25 kWp is studied Figure 5. Their
calculated orientation maximizes solar exposure by collecting photons with remarkable
efficiency. Directing the DC power output, the grid-connected 25 kW SolarEdge inverter
takes over the power conversion function Figure 6. It balances domestic consumption
demand by seamlessly exporting surplus energy back to the grid, in line with net billing
regulations.

Figure 5. Example installation (source https://enerp.pl), accessed on 2 January 2023.

https://enerp.pl/project/victron-ess-kalisz-45kva-50kwh
https://enerp.pl/project/victron-ess-kalisz-45kva-50kwh
https://enerp.pl
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Figure 6. PV panel installation.

The Cerbo GX control unit stands as a pinnacle of integration, seamlessly merging a
myriad of disparate components into a unified and harmonious whole. This sophisticated
controller, with its comprehensive capabilities, plays a pivotal role in facilitating remote
accessibility and control, providing stakeholders with a transparent window into the
dynamic performance of the entire system. Its multifaceted functionality extends beyond
mere oversight, offering a platform for efficient and responsive management of various
processes within the connected ecosystem.

An intriguing application of the Cerbo GX control unit lies in its ability to harness
the latest technological advancements, particularly in the realm of energy management.
The integration of deep neural networks (DNNs) for energy price forecasting marks a
significant leap forward in the unit’s capabilities. By employing DNNs, the Cerbo GX can
be intelligently controlled through an external application programming interface (API),
enabling seamless transitions between on-grid and off-grid modes based on the results of
sophisticated energy price forecasting algorithms.

The process of orchestrating the control of a device like Cerberus GX using an external
API for dynamic mode switching involves a series of intricate steps. It necessitates a
nuanced understanding of the interplay between the controller’s capabilities, the DNN-
driven forecasting outcomes, and the external API’s functionality. In this context, we
propose the utilization of the VRM (Victron Remote Management) API as the linchpin for
orchestrating the seamless shift between on-grid and off-grid modes. The VRM API, with
its robust features, provides an effective means of interfacing with the Cerbo GX, allowing
for responsive and intelligent adjustments based on real-time energy forecasting results.

The proposed methodology not only exemplifies the adaptability and sophistication of
the Cerbo GX control unit but also underscores the critical role of innovative technologies
in shaping the future of energy management. By marrying the power of DNNs for accurate
forecasting with the versatility of the VRM API, the Cerbo GX positions itself at the forefront
of intelligent and dynamic energy control systems.

Looking ahead, this integration of advanced technologies within control units like
the Cerbo GX lays the foundation for a more resilient and sustainable energy landscape.
The ongoing synergy between cutting-edge control capabilities and emerging technologies
promises to usher in an era of unprecedented efficiency and responsiveness in energy
management, ultimately contributing to a more sustainable and intelligent future.

5. Conclusions

The holistic architecture of the designed DNN exhibits a commendable capability to
generate remarkably precise predictions. This assertion finds its basis in the discernibly
low error metrics such as mean absolute error (MAE), normalized mean absolute error
(NMAE), and mean absolute percentage error (MAPE). Additionally, the DNN garners
remarkable scores in terms of prediction quality, as evidenced by the elevated values of the
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explained variance score (EVS) and the coefficient of determination (R2). These credentials
collectively underscore the potential usability of the model in practical applications.

However, it is essential to underscore that the effectiveness of such a system hinges
upon several pivotal factors. Foremost among these is the degree of precision embedded
within the predictions furnished by the DNN model. Equally critical is the agility of
the control systems orchestrating the model’s functioning. Moreover, the adaptability of
the facility’s energy consumption and storage proficiency plays a nontrivial role in the
overall efficacy of the system. This intricate interplay of components necessitates a holistic
approach to ensure optimal performance.

Looking beyond the theoretical construct, the real-world implementation of this con-
cept is bound to encounter its own set of challenges. Among these, the issue of system
latency takes prominence, warranting a robust strategy to mitigate any undue delays in
prediction and response. The facet of hardware compatibility also emerges as a potential
hurdle, demanding meticulous attention to ensure seamless integration. Additionally,
accommodating diverse user preferences and predispositions adds a layer of complexity
that must be accounted for during the system’s deployment.

In the grand scheme of things, this innovative concept encapsulates a forward-looking
approach to revolutionizing the landscape of energy utilization and expenditure. Its signifi-
cance is particularly pronounced within the framework of an energy domain characterized
by escalating dynamism and an ever-heightening emphasis on cost-consciousness. By
navigating the intricate web of challenges and intricacies, this concept stands poised to
contribute significantly to the ongoing pursuit of energy optimization, offering a beacon of
promise for a more sustainable and efficient future.

In conclusion, the designed deep neural network (DNN) exhibits impressive predictive
capabilities but faces key limitations. Precision improvement, system agility enhancement,
and seamless integration with existing infrastructure are crucial for practical viability.
Challenges include system latency, hardware compatibility, and accommodating diverse
user preferences.

The future agenda involves proactive strategies for precision enhancement, min-
imizing system latency, ensuring hardware compatibility, and adopting a user-centric
deployment approach. Despite the challenges, the concept holds promise for revolution-
izing energy utilization, contributing to the ongoing pursuit of energy optimization for a
sustainable future.
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