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Abstract: The energy sector is currently undergoing a significant shift, driven by the growing
integration of renewable energy sources and the decentralization of electricity markets, which are now
extending into local communities. This transformation highlights the pivotal role of prosumers within
these markets, and as a result, the concept of Renewable Energy Communities is gaining traction,
empowering their members to curtail reliance on non-renewable energy sources by facilitating
local energy generation, storage, and exchange. Also in a community, management efficiency
depends on being able to predict future consumption to make decisions regarding the purchase,
sale and storage of electricity, which is why forecasting the consumption of community members
is extremely important. This study presents an innovative approach to manage community energy
balance, relying on Machine Learning (ML) techniques, namely eXtreme Gradient Boosting (XGBoost),
to forecast electricity consumption. Subsequently, a decision algorithm is employed for energy
trading with the public grid, based on solar production and energy consumption forecasts, storage
levels and market electricity prices. The outcomes of the simulated model demonstrate the efficacy
of incorporating these techniques, since the system showcases the potential to reduce both the
community electricity expenses and its dependence on energy from the centralized distribution
grid. ML-based techniques allowed better results specially for bi-hourly tariffs and high storage
capacity scenarios with community bill reductions of 9.8%, 2.8% and 5.4% for high, low, and average
photovoltaic (PV) generation levels, respectively.

Keywords: distributed energy resources; machine learning; renewable energy communities;
electricity consumption forecast; energy management system

1. Introduction

Energy systems are changing at a rapid pace, driven by the imperative to diminish
reliance on non-renewable resources. The increase in the renewable energy penetration
rate brings environmental and economic benefits to the power system; however, it also
poses challenges to load dispatch and energy management mechanisms [1]. Novel control
approaches are thus being proposed to integrate renewable electricity sources, like photo-
voltaic (PV) panels and wind turbines, as well as new power loads, such as electric vehicles
(EVs), in the context of microgrid systems [2].

This energy transformation is paving the way for the emergence of a novel market
paradigm centered around prosumers: individuals or institutions who not only consume
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energy, but also possess the capacity to generate and store electricity. A recent develop-
ment in electricity markets involves the design and implementation of peer-to-peer (P2P)
architectures, enabling prosumers to directly exchange electricity among them [3]. These
P2P markets adopt a grassroots approach in a local context, empowering prosumers to
collectively manage energy operations under the scope of Renewable Energy Communi-
ties (RECs). Within RECs, all participants (prosumers) collaborate using their available
resources to create, trade, or distribute assets and services based on cooperative principles,
streamlining transactions among all economic agents [4]. This way, REC members can
better adjust their energy consumption preferences, including a penchant for renewable
energy sources, a drive to reduce CO, emissions, and a desire for proximity to energy
production sources.

In recent years, machine learning methods have found diverse and impactful applica-
tions in the domain of energy systems, contributing to improved efficiency, optimization,
and sustainability. One key application is smart grid management, in which machine learn-
ing helps optimizing energy distribution, predicting demand, and managing renewable
energy sources efficiently. In community microgrids, ML models can inclusively be used
for optimal load dispatch under the presence of PV generation, EVs and energy storage
systems [5]. Algorithms can analyze real-time data to balance supply and demand, enhance
grid stability, and integrate renewable energy sources seamlessly. Ensemble learning lever-
ages the strength of multiple models to create a more robust and accurate predictive system
when compared to classical machine learning models [6]. Gradient boosting, in particular,
excels in capturing complex relationships within datasets, making it particularly suitable
for tasks like regression and classification. The ability to handle large datasets efficiently
and the resilience to overfitting are additional strengths, making gradient boosting a go-to
choice for predictive modeling in contemporary machine learning applications.

This work explores machine learning (ML)-based methodologies for creating predic-
tive models concerning electricity consumption within a REC and employs a decision-
making algorithm for improving the energy management of the REC. By utilizing these
ML model’s forecasts, together with insights into the fluctuation of energy costs within
the electricity market, both the REC’s governing entity and its individual members can
adeptly oversee the generation, consumption, and storage of energy. The responsibility of
deriving these predictions lies with ML algorithms, which analyze historical patterns within
the time series data of buildings’ electricity consumption. These patterns emerge across
various temporal dimensions, such as summer versus winter, daytime versus nighttime,
and weekdays versus weekends. Through leveraging these predictive models, the REC
can optimize its energy balance, making real-time assessments of prevailing prices and
future projections to determine optimal instances for purchasing or selling electricity to the
public grid. This information then aids in the decision-making related to energy storage,
procurement for future use, and the potential sale of surplus energy.

The main contributions of this paper thus focus on the accurate prediction of electricity
consumption of a renewable energy community and on the design of an efficient energy
management system for the REC as a whole, in order to reduce costs for the community by
optimizing the electricity transactions with the public grid. For this purpose, a publicly
available energy consumption dataset from the United Kingdom was employed in the
analysis and simulation tests, together with environmental information obtained from the
Solcast API [7]. Different ML-based models were tested and evaluated for the target dataset,
with XGBoost being selected for integrating the decision-making energy management sys-
tem. The devised management algorithm was tested under different operational conditions
regarding PV production and battery storage, allowing us to draw important conclusions
about the best configurations and of the results that can be attained.

The remaining sections of the paper are structured as follows. In Section 2, an overview
of previous research and contributions in the realm of AI/ML-driven energy consumption
forecast and management systems is presented. The public dataset and the methods used
in the scope of this work are described in Section 3. Section 4 outlines the defined system
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architecture, including the ML-based electricity consumption forecasting model and the
decision-making algorithm for the REC’s energy management system. Then, Section 5
presents the simulation results for different electricity tariffs and production and storage
scenarios, followed by a detailed discussion of these results in Section 6. Lastly, Section 7
describes the main conclusions of this work.

2. Related Work

Energy consumption and generation forecast has been a topic of research for many
years, especially at a macro level, considering the energy provision needs of the public
grids and their interconnections across different countries. In order to properly plan the
activation of different electricity supply sources, namely dispatchable generation, there
was always a strong requirement for the prediction of energy consumption in electricity
grids [8]. The same concerns are present for the electricity retailers that need to negotiate
future energy supply for their clients, e.g., in day-ahead markets.

More recently, with both the decentralization and local production of renewable en-
ergy sources, and the emergence of new concepts such as demand-side flexibility, which
enable the consumers with more control over their electricity demand profile, the need
for accurately forecast the electricity consumption at a more micro level, either in a house-
hold /building or at a community /regional scale, has increased.

This requirement for more accurate and localized prediction of electricity generation
and consumption arises at the same time that artificial intelligence and machine learning
technologies develop at a very fast speed, providing the necessary framework to enhance
the forecasting capabilities of energy management systems and electricity markets. This sec-
tion provides an overview of recent related work in the area, employing AI/ML methods
to predict electricity consumption not only in energy communities, but also in house-
holds/buildings, since relevant information can be extracted from the work in individual
buildings to the collective analysis of the RECs.

Greve et al. [9] introduced diverse machine learning models aimed at aiding com-
munity members in the optimization of their resource scheduling (both generation and
consumption) in order to minimize electricity expenses. These models were applied
to forecast the local wind power generation for a day-ahead period. Besides the indi-
vidual algorithms, an ensemble model is proposed by integrating two neural network
algorithms—the Bidirectional Long Short-Term Memory Network (BLSTM) and the feed-
forward Multilayer Perceptron (MLP)—along with two tree-based techniques—Gradient
Boosting Decision Tree (GBDT) and Random Forest (RF). The overall score of the ensemble
is determined by averaging the outputs of these four algorithms. The researchers concluded
that the ensemble outperforms the individual algorithms, enhancing forecasting accuracy
by 10% in terms of Root Mean Squared Error (RMSE), achieving an RMSE of 2327 kW for
one-day-ahead predictions.

Dimitropoulos et al. [10] introduced another approach for predicting short-term energy
production from a community’s solar plant through the implementation of an infrastructure
and monitoring system. The authors trained four machine learning algorithms to forecast
energy production up to 6 h in advance. The algorithms they employed included the
Extreme Gradient Boost (XGBoost), Support Vector Regression (SVR), Long Short-Term
Memory Network (LSTM), and Multiple Linear Regression (MLR). They utilized historical
consumption data and weather conditions to train production forecast algorithms. To
perform the evaluation, the dataset was split into 80% for training and 20% for testing.
XGBoost exhibited the highest accuracy performance, achieving a RMSE of 1.834 kWh for
1-hour intervals predictions, 6 h ahead. The authors suggested that these findings could
be applied to schedule energy supply for communities and serve as the foundation for
more complex applications requiring precise short-term predictions, such as predictive
maintenance or energy trading.

Baba et al. [11] sought to predict the daily power consumption for an entire upcoming
year in a local industrial region. The constructed Artificial Neural Network (ANN) fea-
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tured a (5-15-5-1) architecture, employing the Hebbian learning rule for updating weights
between the input layer and the first hidden layer. All other links were trained using the
classical backpropagation algorithm. The researchers compared the performance of the de-
veloped ANN (5-15-5-1) with two other ANNs with architectures of (5-5-1) and (5-5-5-1), as
well as a variant of the Multiple Model Particle Filter (MMPF) probabilistic method. While
noting that the developed ANN (5-15-5-1) exhibited slightly superior results compared
to the other methods, achieving an average RMSE of 4.921 kWh for daily predictions of a
full year ahead. The authors concluded that an increase in the number of hidden layers
could enhance performance metrics. However, they cautioned that such an adjustment
might introduce a significant risk of increasing generalization errors due to overfitting or
high variance.

Musbah et al. [12] presented a forecasting model for energy management employing
either Light Gradient Boosted Machine (LightGBM) or Random Forest (RF) to predict
the best combination of energy sources in a Hybrid Energy System (HES). The HES case
study involved wind, gasoline, and a diesel generator utilized to provide electricity to a
specific remote area. Initially, a historical demand-side dataset was utilized to calculate
five criteria using the TOPSIS method. These criteria included energy efficiency, CO,
emissions, gasoline and diesel fuel prices, labor, and fuel consumption. To ascertain
the weight values for these criteria, the Analytic Hierarchy Process (AHP) and Fuzzy
Analytic Hierarchy Process (FAHP) were utilized. In the subsequent phase, the best
combination of energy sources was forecast using the RF and LightGBM algorithms to
validate the proposed approach. The outcomes highlighted the superiority of the RF
algorithm, achieving an accuracy of 81.81%, in contrast to LightGBM, which achieved an
accuracy of 68.6%. Furthermore, the study suggested that the disparities between AHP
and FAHP were negligible, indicating that either method could be employed to obtain
similar results.

Jozi et al. [13] conducted an investigation aiming to predict a more accurate profile of
energy usage in a office building during the upcoming hours. They employed a methodol-
ogy to obtain genetic fuzzy rule-based systems under the iterative rule learning approach
(GFS.FR.MOGUL). The findings were contrasted with earlier methodologies, including
two fuzzy-based systems and various approaches grounded in artificial neural networks.
The study revealed that the suggested method is capable of computing a more realistic
estimation of electricity consumption in the forthcoming hours, exhibiting a MAPE forecast
error of 9.54% on average to forecast the 12 h ahead, and reduced standard deviation when
compared to outcomes obtained through previous methodologies.

Jozi et al. [14] introduced a contextual learning approach for energy forecasting, with
the aim of supporting decisions made by Building Energy Management Systems (BEMS).
BEMS are systems designed to ensure continuous energy availability, reliability, and access
for consumers. Their proposed approach incorporates a contextual dimension that identifies
various observed contexts, and groups them based on their similarities. Several machine
learning techniques were employed in their study, including SVM, HyFIS [14], WM [15],
and GFS.FR.MOGUL [16]. To validate the effectiveness of their approach, the researchers
conducted experiments using real data on energy generation, consumption, and contextual
information gathered from sensors installed in a building. In the tests, SVM achieved a
MAPE of 6.89% for one hour ahead consumption predictions. According to the authors, the
results can provide recommendations related to consumption with smaller error metrics
compared to other machine learning methods.

Al-Shanableh [17] explored the feasibility of employing a Fuzzy Inference System (FIS)
for predicting the energy consumption of residential buildings in northern Cyprus. Factors
such as climate zone, floor area, year of construction, number of occupants, and house type
were taken into account to estimate the energy consumption per unit floor area. The FIS
model was developed using data collected from 70 questionnaires, resulting in 67 rules,
and subsequently tested with an additional 15 questionnaires. The energy consumption
values predicted by the proposed FIS model were closely aligned with the actual values, as
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evidenced by an R? value of 0.9884 and a RMSE of 6.6115 kWh/m? year for the training.
When the testing set was considered, the proposed model produced less accurate results
with an R? value of 0.8851 and a RMSE of 20.3347 kWh/m? year.

Prasad et al. [18] conducted research on energy sharing in Zero Energy Communities
(ZEC) with the goal of achieving zero net energy usage annually. Unlike previous studies
focused on economic gains at the individual building level, this work prioritized the overall
energy status improvement of the community. Using the Deep Reinforcement Learning
(DRL) algorithm DQN, the authors approximated the expected value of actions in specific
states, considering long-term rewards. The study explored Winter and Summer conditions,
evaluating three scenarios with different community configurations and scales. The results
demonstrated significant improvements when compared to a strategy with no energy
sharing, with a 40 kWh enhancement over 3 days of Winter for three houses and a 60 kWh
for four houses over the same duration but during Summer. These findings highlighted
the ability of buildings to learn how to collaborate, developing a policy comparable to the
optimal one and thereby enhancing community energy independence from the supply grid.

Abbeasi et al. [19] employed XGBoost to forecast single-time lag electricity load in 12 re-
gions managed by the Australian Energy Market Operator. Initially, they conducted feature
selection using one week of data collected at 30 min intervals, comprising 336 variables.
Features falling below a predetermined threshold were removed through several rounds
of experimentation, culminating in the identification of the top 40 features based on their
significance. For evaluation purposes, the dataset was partitioned into 75% for training
and 25% for testing. The trained XGBoost model exhibited a Mean Absolute Percentage
Error (MAPE) of 10.08% and an accuracy of 97.21% when forecasting the load in kWh for
the next 30 min interval.

Rozas et al. [20] conducted a thorough analysis of the Cornwall Local Energy Mar-
ket, focusing on production, consumption load profiles, and storage headroom%. They
employed advanced statistical time series methods, including Seasonal Autoregressive
Integrated Moving Average with eXogenous factors (SARIMAX), Exponential Smoothing
Average (ESA), and Temporal Causal models, to optimize market opportunities presented
by storage units. The study demonstrated the enhanced fitness of time series data for
consumption, production, and headroom%, effectively decomposing them into trend,
seasonality, and stochastic dynamic components. Comparisons with existing forecasting
models used by the Energy Community revealed superior performance, with mean squared
error reductions ranging from 88.89% to 99.93% and mean absolute error reductions rang-
ing from 65.73% to 97.08%. This benchmark highlighted the effectiveness of advanced
statistical models in significantly improving the accuracy of energy market predictions.

Intravaia et al. [21] proposed a novel strategy for generating sensible hourly consump-
tion profiles using information commonly found in energy bills. They adopted a machine
learning approach based on autoencoders, with an input/output dimension of N = 168,
allowing the network to generate hourly load profiles for an entire week. Both the encoder
and the decoder implement log-sigmoid activation functions. The results demonstrate that
the proposed solution enables the generation of realistic hypothetical hourly load profiles,
achieving a RMSE of 0.1 kWh per hour on the daily consumption profiles between the real
and simulated users, averaged during the whole year period.

Table 1 provides an overview of the reviewed works. As can be seen, these studies
explore a variety of machine learning approaches, particularly those related to Artificial
Neural Networks (ANN), Support Vector Machines (SVM), Decision Trees, Reinforcement
Learning, and Time Series, for predicting both production and consumption forecasts. Since
almost none of them were tested with the same datasets, it is challenging to assert that
any single approach is universally superior. However, across many of the works, both
ANN and tree-based approaches have been consistently applied. This observation supports
the hypothesis that both approaches can yield favorable results for energy consumption
prediction, being selected for the REC management system proposed in this work.
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Table 1. Overview of the ML methods employed for predicting electricity generation and /or consumption.

Source Scenario Techniques Best Performance Metric
[9] Wind power generation RF, GBDT, MLP, E bl RMSE (kW in 1 day):
forecast in REC BLSTM, Ensemble nsemble 2327 (a day ahead)
Solar plant production LSTM, SVR, RMSE (kWh in 1 h):
[10] forecast in REC MLR, XGBoost XGBoost 1.834 (6 h ahead)
Local industrial region MMPF, ANN (5-5-1, g RMSE (kW in 1 day):
[11] consumption forecast 5-5-5-1, 5-15-5-1) ANN (5-15-5-1) 4.921 (a full year ahead)
Energy sources classification . Accuracy:
[12] forecast for management system RFand LightGBM RE 81.81%
Consumption forecast GFS.FR.MOGUL, MAPE: 9.54%
[13] of an office building ANNSs, HyFIS, WM GFSFRMOGUL (12 h ahead)
[14] Consumption and generation SVM, HyFIS, SVM MAPE: 6.89%
forecast with contextual data WM, GFS.FR.MOGUL (1 h ahead)
[17] Consumption forecast Fuzzy Interference Fuzzy Interference RMSE (kWh/ m? year):
of residential buildings System (FIS) System (FIS) 20.3347
[18] Zero energy communities Deep Reinforcement =~ Deep Reinforcement Improvement of 60 kWh
management Learning (DRL) Learning (DRL) for 4 houses (over 3 days)
Region-wide electricity MAPE: 10.08%
[19] consumption forecast XGBoost XGBoost (30 min ahead)
[20] Consumption and production SARIMAX, ESA, SARIMAX RMSE (kWh in 1 day):
forecast in energy community and Temporal Causal 0.562 (a day ahead)
[21] Consumption Autoencoders Autoencoders RMSE (kWhiin 1 h):

forecast in communities

0.1 (average of all users/year)

By observing the related works in the literature, it can be concluded that there is a
research gap in the existing studies, regarding both the electricity consumption forecast
and the energy management in RECs. Most of the works focus on the consumption forecast
of individual buildings (e.g., [13,14]) or an entire region of the electric grid (e.g., [11,19]),
not handling the heterogeneity of buildings that may arise in an energy community, such
as houses, apartments, condos, offices, retail spaces, public services, etc. Some studies
consider several different dwellings in a certain area, e.g., [17], but the predicted interval is
too large (an entire year in this case) for allowing a high-granular energy management of
the REC system. Furthermore, the majority of the research is conducted using distinct and
non-publicly available datasets, making it very difficult to properly compare the proposed
solutions. The few identified works (e.g., [20,21]) that effectively take into consideration
the concept of energy community and also employ publicly available datasets, lack an
energy management system that makes use of the resulting predictions. Additionally, in
the case of [20], no deep learning or non-linear shallow learning models were employed,
only advanced statistical time series methods, limiting the analysis of the different available
options for the forecast algorithms. On the other hand, the work in [21] does not actually
provide real-time forecasts of the REC buildings consumption, being instead more focused
on the reconstruction of the typical user consumption profiles. As a result, a new approach
based on the utilization of ML models for the short-term consumption forecast of different
buildings inside an energy community is required, as well as an energy management
system that takes advantage of these predictions for the optimization of the REC electricity
usage. This approach should be evaluated using a publicly available dataset to allow future
comparisons of alternative methods for both electricity consumption forecast and REC
energy management.
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3. Materials and Methods

This section presents the materials used in the scope of this work, namely the elec-
tricity consumption and weather datasets employed in the development and validation
of the energy prediction models, as well as the methodology followed for the data pro-
cessing, model training, feature classification and evaluation processes of the ML-based
forecasting system.

3.1. Electricity Consumption and Weather Datasets

The consumption data were acquired through the Bath: Hacked project, encompass-
ing various datasets that provide insights into life in Bath and North East Somerset
(BANES).This includes a dataset specifically focused on the electricity energy usage in
council buildings [22]. Furthermore, weather-related data, encompassing air temperature
and relative humidity, was obtained via the Solcast API [7]. The dataset contains the energy
consumption data of seventy-two council buildings, such as libraries and schools, gathered
by smart meters with a granularity of 30 min, between 1 October 2006 and 8 February
2020. Preprocessing on the data was performed due to the presence of negative values.
Considering that it would not make sense to have a negative consumption of energy, these
readings were replaced by the interpolation of the previous and following measurements.
At the end, duplicate values were deleted. The columns id, totalunits, units, mpan, and msid
were deemed unnecessary and were excluded. The date column holds information about the
reading day, the location column contains the building name, and the subsequent columns
indicate the hour and minute of energy consumption values, with a 30 min granularity. The
date column no longer represented just the day, but also the hour of the measurements,
and was renamed to time in the process. Figure 1 shows the number of readings of each
building contained in the dataset.

Number of Energy Readings per Location

200000

150000

100000
50000 ‘ ‘ ‘

)

Number of energy readings

s
£
a

=
Location

Figure 1. Number of electricity consumption records in the dataset, per council building.

Figure 2 presents the mean energy consumption of each building with a 30 min interval.
The dataset proved to be highly unbalanced, with some buildings being higher than 20 kWh
while others are close to 0 kWh. This introduces real-world scenarios to the project, as
the model to be trained must be implemented in communities with diverse consumption
patterns among their members.
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Mean Energy C per Location

Mean Energy Consumption (kWh)

Saltford C of E Pri
Westfield Children:

Figure 2. Average energy consumption for each building in half-hour intervals.

As the Solcast API offers weather data from various global locations and our available
energy readings are specific to Bath, UK, we submitted a request solely for a dataset
corresponding to the coordinates 51.378102, —2.359683, representing the city of Bath. The
dataset covered the period from 1 January 2007 to 8 February 2020, with a granularity of
30 min, aligning with the BANES dataset.

The dataset included essential variables such as Air Temperature, Relative Humidity,
and DNI (solar irradiation). It is worth noting that although DNI is not utilized in the
consumption forecast model, it was included because estimating the REC potential solar
panels energy production relies on it.

Subsequently, we merged the BANES dataset with the Solcast dataset. To ensure
consistency, the relative humidity column was divided by one hundred, transforming the
scale from 0 to 100 to a range of 0 to 1. The final aggregated dataset includes the following
features: time, location, RelativeHumidity, AirTemp, energy and DNI.

3.2. Methodology

The methodology of the energy consumption forecast, which is illustrated in Figure 3,
consists of five phases: Data Processing, Model Training, Feature Classification, Training
with 7 buildings, and Final Training. In the first stage, the data are retrieved and processed
as explained in Section 3.1. Then, for each consumption reading, the previous readings
(up to 24 h) were added, in order to be considered as features. The second stage consisted
of splitting the data into train and test subsets, where the train data were used to train
different models, using ANN, GBDT, and XGBoost algorithms, and the test data were used
to evaluate the algorithms and identify the one with the best performance. In this case,
XGBoost performed better than the other algorithms, and was therefore picked to be used
in the next phases. Next, a Feature Classification technique was applied to give a score to
each feature according to its importance. Then, the selected model was re-evaluated with
the top forty features and with features with at least 0.5% importance classification, with the
latter being picked for the next stages. The fourth stage consists of an alternative approach
to model training where, instead of randomly splitting the whole time window between
train and test sets, n random buildings were picked as the test data, and the remaining as
train data. An experiment was carried out, in order to know the minimum number n of
random buildings that is necessary for the results to have a small variation. The final model
is then trained and re-evaluated. The final stage consists of using the model to predict the
entire day at midnight for each individual building, instead of constantly predicting the
short-term forecast, and then summing up the predictions for the entire community and
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calculating the final performance metrics. All these steps will be better described in the
following sections.

Data Preparation and ML-based / Model Training with \/ Model Optimization, Evaluation \
Algorithm Selection Feature Selection and Application

Stage 1: Data Processing Stage 2: Model training Stage 3: Feature Classification Stage 4: Train with n buildings Stage 5: Final training

Pick data from n
buildings as test set,
and the rest as train

set

[ Use the model to
predict the entire day
at midnight

Split into train and ) Perform Feature
Classification

‘ Load data ‘ P

Data pre-processing the model for each n

houses

Evaluate with )
features with 0.5% Sum the predictions
classification and top of the entire

forty features community

‘Rwam and Eva\uale‘

Train with ANN
GBDT, and XGBoost

Pick the smaller
Ty number n of houses

where the resulis
don't deviate too
much

|Add Weather features|

Pick the algorithm
with the best )
performance ' Re-train mode! / RELE'::;:?IE L2 .
(XGBoost) | & /k

Figure 3. Proposed methodology for electricity consumption forecast.

Add previous

readings (up to 24 g
hours) as features

performance metrics

Calculate final ‘

4. System Architecture

This section presents the system architecture for the energy management system of
the REC, as well as the trained ML-based model for electricity consumption forecast and
the decision-making algorithms utilized in the REC’s energy management system.

4.1. REC Energy Management System

Considering the objectives outlined and the related studies, an architecture for the REC
management system is put forward in Figure 4. At the center, a decision-making algorithm
is responsible for taking charging and discharging of REC storage device (e.g., second-life
batteries) decisions. Therefore, it manages what the community should do, regarding the
energy produced, stored, and the energy that must be fetched from or given to the grid.
The decision algorithm is executed twice per hour, and receives the output of the remaining
components as input.

Weather Forecast (DNI)

30 min. Anolytical Model

Production Forecast Market Prices
Market Electricity
Prices
Publicly Available

PV production
forecast

PV area, efficiency

Algorithm
State of Charge

@

o

Consumption Forecast

Charging/Discharging
Decisions

Energy Consumption

forecast
30 min. Al/ML models

Figure 4. REC management system architecture.
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The algorithm is fed with a forecast of the PV panels’ production, as well as the energy
consumption predicted by the AI/ML model. The forecast of PV panels is provided by an
analytical model that estimates the energy production of a REC based on the prediction
of the solar irradiance and the area and efficiency of the PV panels. The utilization of
AI/ML models for energy consumption forecasting aims to enhance the utilization of green
energy and decrease the overall electricity cost. This is achieved by estimating whether
the available energy production and battery charge are sufficient to meet the predicted
consumption by the Renewable Energy Community (REC) in the upcoming 24 h.

The algorithm takes into account market electricity prices, using this information to
guide decisions on when to purchase, sell, or store energy. The inclusion of current and
day-ahead electricity prices influences the timing of specific energy management operations
throughout the day.

It is noteworthy that a member of the Renewable Energy Community (REC) is a
prosumer capable of generating and/or storing energy in a storage device, such as a battery.
Therefore, the algorithm utilizes information from battery modules, specifically the state-of-
charge, which indicates the current charge level of the batteries. The algorithm interfaces
with this component to determine whether the batteries should be charged or discharged at
any given moment. This pivotal decision is made by the algorithm to optimize the REC’s
target objectives, such as attaining a specific percentage of local renewable energy and
minimizing the overall electricity bill.

4.2. ML-Based Electricity Consumption Forecast

There is no consensus in the literature regarding the ML-based model that is considered
the best to predict electricity consumption. Therefore, in this work, several techniques were
considered, namely Gradient Boost, XGBoost and ANN, which were often presented in
the related works, providing satisfactory results. In order to select the most appropriate
model for the consumption forecast, Gradient Boost, XGBoost and ANN were trained and
tested under similar circumstances by providing short-term electricity consumption at
every location.

The algorithms utilized a dataset comprised 50 columns, including air temperature,
relative humidity, and 48 columns of previous energy consumption in steps of 30 min,
e.g., 30 min, 60 min, 90 min, and so on, up to the previous 24 h. The dataset was divided
into train and test sets with 80% for training and 20% for testing. The ML algorithms were
parameterized as follows:

¢ The ANN model included four layers, with the input layer having 50 neurons, one for
each feature. There were also two hidden layers, each one with a size of ten neurons
and using a ReLU activation function. The training of the model employed the Adam
optimizer with Mean Squared Error (MSE) serving as the loss metric. The training
process involved 20 epochs and utilized a batch size of 1000.

* In the case of Gradient Boost, training involved 100 estimators and a learning rate of
0.1, as outlined in [23].

*  XGBoost was trained with a maximum depth of 6, learning rate of 0.3, and 100 es-
timators. The other hyperparameters used the default values. The training was
performed using GPU. Running the algorithm on GPU increased the performance of
the training time.

More information on the performance of these three ML models applied to the dataset
used in this work will be presented in Section 5.

4.3. PV Production Forecast

In order to estimate the solar production of the REC’s PV panels in the next hours, an
analytical model based on the solar irradiance forecast was employed. This model is based
on the work of Filik et al. [24] and the Direct Normal Irradiance (DNI) values were obtained
from Solcast AP, as mentioned in Section 3. Three different production scenarios were
considered for the whole REC: high, low (equivalent to one-tenth of the high production),
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and average (the mean between high and low production). The high production scenario
featured a total area of 28.8 m? (comprising eighteen panels, each measuring 1.6 m?) per
REC member, and a yield of the solar panel of 0.16. Under standard conditions, character-
ized by a performance coefficient of 1 and solar irradiance of 1 kWh/m?, the estimated
energy output would be approximately 4.6080 kWh. Consequently, in the low production
scenario, it would generate approximately 0.4608 kWh of energy, while an average scenario
would yield around 2.5344 kWh. Additionally, PV performance was considered the same
for the three scenarios, with a value of 0.95. Also, for simplicity, it was assumed that there
were no errors associated with weather forecasts or the model’s predictions.

Besides electricity generation, the prosumers in a REC may also have the ability to
store energy. The total storage capacity of the community depends not only on the number
of batteries, but also on their individual capacities. Drawing from real-world examples of
solar batteries, three storage scenarios were defined: small (1.6 kWh), medium (6.4 kWh),
and large (12.8 kWh) storage capacity for each of the REC members.

4.4. Decision-Making Algorithm

The decision-making algorithm at the center of Figure 4 was developed from a baseline
scenario to a more complex and efficient management of the energy resources available
at the REC. Thus, three distinct algorithms were considered in this evolution towards
reducing the electricity costs of the REC. All of them make decisions of whether to buy,
sell or store energy every 30 min. The initial algorithm serves as the baseline approach,
operating on a half-hourly basis to manage energy consumption without incorporating any
storage capability or machine learning. When additional energy is required, it is procured
from the grid as necessary. The second algorithm represents an enhanced iteration of the
baseline algorithm, introducing the option to store surplus energy in batteries. As depicted
in Figure 5, this system utilizes the energy it generates, but in cases of excess production,
it channels that surplus into the battery until its capacity is reached. Any surplus energy
beyond this point is then sold to the grid at a fixed rate of EUR 0.03 per kilowatt-hour
(EUR/KkWHh). In instances where there is no excess energy production and additional power
is still required, the system will discharge the battery and draw from it, while also obtaining
the remaining needed energy from the grid.

Figure 6 presents the final and more complex algorithm, which is based on the machine-
learning model for the electricity consumption forecast. This forecast is then used to
determine the optimal moments for charging and discharging the batteries. This algorithm
is inspired in the work of Pholboon et al. [25], and follows a strategy of acquiring energy
from the grid during periods of lower electricity prices, typically on a bi-hourly tariff
basis. At midnight each day, it initiates a forecasting model for both energy production
and consumption, projecting these values for the upcoming day. Based on these forecasts,
the algorithm executes one of three potential actions. In scenarios where the estimated
production surpasses the predicted consumption between 9:00 and 18:00, and the surplus
falls within the limits of the battery capacity, it proceeds to fetch energy from the grid to
charge the battery. The amount acquired from the grid corresponds to the battery’s capacity
minus the estimated surplus.

In situations where the algorithm foresees an excess of solar energy beyond the
battery’s storage capacity, it will retrieve electricity from the grid to align with the projected
morning consumption while reserving any surplus energy for later storage in the battery.
Conversely, when there is no expected of surplus solar energy throughout the day, the
battery will be charged to its full capacity in advance.
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Figure 5. Battery consumption algorithm flowchart.

Afterwards, and up until 10:00 a.m., each iteration of the algorithm prioritizes the
utilization of the energy that has been generated. If there is surplus, it will be directed into
the battery until reaching its full capacity. Any surplus beyond this point will be sold to the
grid at a price of EUR 0.03 per kilowatt-hour (EUR/kWh). However, if there is no surplus
production, the algorithm will instruct the system to fetch energy from the grid. Once it
is 10:00, the algorithm will also command the system to consume the produced energy.
Nevertheless, if there is a demand for energy, the system initially draws the required energy
from the battery before resorting to grid consumption. In the case of excess production, the
system follows the earlier procedure before 10:00, storing the surplus energy in the battery
and, if applicable, selling the remaining excess to the grid.

In the flowchart of Figure 6 and according to the work of Pholboon et al. [25], é;
represents the ratio between the predicted energy consumption between 9:00 to 18:00 and
the estimated consumption for the whole day, while J; is the energy forecast of the morning
between 6:00 and 9:00 divided by the consumption forecast of the day. These heuristics
enable an optimized and efficient management of the energy in the community, by helping
estimate the amount of electricity that is required to buy from the grid and store in the
batteries when the price of energy is cheaper, i.e., during the night.
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Figure 6. ML-based algorithm flowchart.

Therefore, the main goal of this decision-making algorithm is to reduce the overall
electricity bill of the community on a daily basis, by attempting to optimize the following
cost function:

cost =consumption yianignt * bUy_priceyignighs + battery_lossesignigns
18 ’ ' , (1)
+ Y (consumption; * buy_price; — surplus; * sell_price; + battery_losses;)
i=1

The electricity cost calculation in Equation (1) is obtained by adding the cost of buying
the electricity in advance, to store it in the batteries at midnight, with the sum of the
48 electricity exchanges that take place during the day corresponding to all 30 min intervals.
The consumption variable represents the energy consumed from the public grid, while the
surplus is the electricity sold to the grid. The battery_losses represent the inverter losses,
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when the system charges or discharges the batteries (an efficiency of 97% was considered).
The buy_price value may vary during the day depending on the tariff, while the sell_price
was considered to be a fixed value (0.03 EUR/kWh), as previously mentioned.

For better understanding of this algorithm’s operation, Figure 7 illustrates the evo-
lution of the batteries state of charge over a time interval of 48 h, for a specific example
during the first two days of February 2020. It compares the behavior of the simple batteries
algorithm with the ML-based one for a scenario with high storage capacity (128 kWh) and
high PV generation (4.6080 kWh). In the ML-based algorithm, it is possible to observe that,
in this example, the batteries are totally charged at midnight, and only start to be discharged
after 10:00 until being fully depleted. In the first day, there is surplus PV production that
is stored in the batteries between 12:00 and 18:00. On the other hand, there is no solar
generation surplus in the second day and, therefore, the batteries are not charged during
the daytime.

Batteries state of charge over time

—— Batteries algorithm

ML-based algorithm
120 4

100

80 4

60 4

State of Charge (kWh)

40 +

201

00:00 06:00 12:00 18:00 00;00 06:00 12:00 18:00
01-Feb 02-Feb
2020

Time
Figure 7. Batteries’ state of charge evolution over 48 h interval.

5. Assessment Results

After implementing the above architecture and associated decision-making algorithms,
the devised system was evaluated starting with a performance comparison between dif-
ferent machine-learning models applied to the forecast of electricity consumption in the
energy community. Then, an assessment of the proposed algorithms for energy manage-
ment in the REC was carried out with a strong focus on the cost reduction of the electricity
bill under different scenarios (low to high PV production and low to high battery capacity).

5.1. Electricity Consumption Forecast

After completing the training and testing phases, the algorithms’ performance was
evaluated by comparing six different metrics: the time taken for the training phase, the
time taken for predicting the test dataset, Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Weighted Absolute Percentage Error (WAPE),
and R2. Table 2 presents the results of these metrics. They confirm that all the algorithms
perform well, particularly XGBoost, which performs better than the others in all metrics,
and was therefore chosen as the model for the electricity consumption forecast. In terms of
computational complexity, it can be observed that XGBoost presents significantly lower
training and prediction times when compared to the other algorithms. This is particularly
relevant for the measured training time, which was less than 1 min for the XGBoost model,
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while it took more than 3 h for the GBDT algorithm. This can be explained since XGBoost
trains the models of its ensemble in parallel. In scenarios where the forecast models need
to be constantly retrained or newly generated, this might become an important factor,
although this metric could be further improved if more powerful hardware is employed,
since in this case a regular desktop was utilized for the measurements.

Table 2. Outcomes of predictions on the test dataset.

ANN GBDT XGBoost
training time (s) 268.7992 11,676.7068 54.2282
prediction time (s) 45.1752 8.1269 1.9277
MSE (kWh) 0.8107 0.9097 0.6629
RMSE (kWh) 0.9004 0.9538 0.8142
MAE (kWh) 0.3601 0.3683 0.3290
WAPE 8.9294 9.1313 8.1575
R? 0.9886 0.9872 0.9907

The best result for each metric is presented in bold.

In addition, Figure 8 demonstrates that the majority of the error is centered around zero.
As a result, the focus of the remaining work was to optimize the XGBoost model. Applying
a method known as Feature Classification, a reduced set of features was chosen based on
their significance in training an XGBoost model, following the steps outlined in [19]. To
this end, instead of using the previous 24 h consumption values like in the algorithms’
comparison test, the entire previous week was used, resulting in 336 consumption-related
features, plus the air temperature and relative humidity, totaling 338 input parameters. The
features have a name energy_lag;, where i represents the ith previous half-hour reading.

Error Distribution

- J L

0.00 T T T T T

=30 -20 -10 0 10 20
error

Figure 8. Distribution of errors in the XGBoost model trained using the preceding 24 h and
weather metrics.

Examining the importance classification of the top forty features reveals that the most
significant influence on the algorithm comes from the direct preceding energy measurement,
with a score exceeding 80%, surpassing every other feature by a considerable margin.
Figure 9 presents the graph with the most important features without the energy_lag;
feature. As can be seen, the most crucial features are those corresponding to the same
hours in the week before and the day before. With the results of the features’ classification,
two models were trained: one with the forty most prominent features, and another with
the six most important features, which have an importance classification of over 0.5%. The
training phase was conducted in a manner similar to previous iterations, involving the
division of the data into training and test datasets with an 80% and 20% ratio, respectively.
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The hyperparameters of the XGBoost algorithm were enhanced for both models, through
the analysis of some different values combinations, although not employing extensive
hyperparameter optimization. As a result, the following hyperparameters values were
selected: 1000 estimators, with a maximum depth of 5, and a 0.05 learning rate. Table 3
presents the performance metrics results.

Feature Importance (top 40 without lag 1)

energy_lag_317
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energy lag 43
energy lag 281
energy_lag_145
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energy_lag_3
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Figure 9. The 40 features, excluding energy lag 1, with the most significant importance classification.

Table 3. Performance metrics on the testing dataset using XGBoost model (>0.5% vs. top 40 features).

Feature Importance > 0.5% Top Forty Features
training time (s) 11.4464 42.7416
prediction time (s) 0.7795 1.2840
MSE (kWh) 0.7200 0.5372
RMSE (kWh) 0.8485 0.7329
MAE (kWh) 0.3320 0.3006
WAPE (%) 8.1936 7.4197
R? 0.9899 0.9925

The best result for each metric is presented in bold.

Besides that, a different approach was also followed in which n different buildings
were left out of the training phase and used to evaluate the model. This approach was
followed since, in a real-life scenario, the model to be used on the consumption forecast
of a REC may not be trained with the specific data of that REC, but with the data from
other communities, at the least during the beginning of the REC operation. This cross-
validation technique also helps to prevent overfitting, by randomly selecting n buildings
for testing, leaving the remaining ones for training, thus effectively splitting the dataset into
training and testing data. To determine the minimum acceptable number of buildings for
testing, various models were trained by excluding 5, 10, and 15 randomly chosen buildings.
This training utilized only the features with an importance classification higher than 0.5%.
Table 4 shows the results of these experiments, in which each value represents the average
of five tests with a distinct and independent set of buildings. It presents the mean (x) and
standard deviation (0) of each assessed metric. As can be seen, the standard deviation of
the error metrics when only 5 buildings are used is significantly larger than those with 10 or
15 buildings. Therefore, it can be concluded that the model can not be evaluated with such
small number of buildings. On the other hand, when 10 or 15 buildings are employed, the
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performance metrics of all five tests recorded similar values. Therefore, for this approach,
at least a minimum of ten buildings must be used as data for testing.

Table 4. Performance metrics with 5, 10 and 15 buildings as test data.

x o x o x o
training time (s) 13.2876 0.5850 11.7588 0.6424 10.8585 0.5653
prediction time (s)  0.5733 0.2018 0.9884 0.1307 1.0647 0.1695
MSE (kWh) 0.9366 1.2303 0.7529 0.0923 0.7087 0.0234
RMSE (kWh) 0.8458 0.5260 0.8664 0.0524 0.8417 0.0138
MAE (kWh) 0.3724 0.2597 0.3354 0.0090 0.3317 0.0019
WAPE (%) 12.7974 5.2622 8.2773 0.2220 8.1865 0.0457
R? 0.9528 0.0336 0.9895 0.0013 0.9901 0.0003

The best results for each metric are presented in bold.

Finally, this approach was repeated with the forty features presenting highest im-
portance, by using ten buildings to assess the model performance. Table 5 compares the
metrics of the models trained with the features presenting an importance higher than 0.5%
against the case of using the top forty most important features, when ten buildings are left
out for the testing data. As can be observed, the difference in terms of forecast accuracy is
not very significant, indicating that the model can be trained using the six features with
more than 0.5% feature importance, without relevant performance degradation.

Table 5. Consumption forecast performance for ten buildings (>0.5% vs. top 40 features).

Feature Importance > 0.5% Top Forty Features
training time (s) 11.0428 40.1057
prediction time (s) 1.2434 1.6760
MSE (kWh) 0.2370 0.1635
RMSE (kWh) 0.4868 0.4044
MAE (kWh) 0.2098 0.1865
WAPE (%) 9.9973 8.8847
R? 0.9798 0.9860

The best result for each metric is presented in bold.

While these results pertain to the short-term consumption of individual buildings, the
primary objective of this project is the management of the entire community. Consequently,
the individual building forecasts hold less significance compared to the aggregate con-
sumption of the community. Following the algorithm’s prediction of individual building
consumption, the actual forecast for REC electricity consumption is derived by summing
these individual predictions. Additionally, the algorithm must anticipate the consumption
for the entire next day at midnight. This entails forecasting short-term consumption at
midnight using real values, and subsequently predicting the next steps with real values
whenever available or relying on the previously predicted values, thereby propagating
any errors. Table 6 outlines the performance metrics for two scenarios: one where the
algorithm predicts the short-term forecast of the community and another where it predicts
the entire day at midnight. In both cases, the values for each building are grouped and
summed. The comparison between short-term and full-day forecasts against the actual
values is depicted in Figures 10 and 11, respectively. While full-day forecasting falls short
compared to short-term forecasting, it still maintains a similar pattern with the real values.
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Table 6. Forecast performance metrics for community (aggregate of 10 buildings as testing data)
electricity consumption (short-term vs. full-day).

Short-Term Forecast

Full-Day Forecast

MAE (kWh) 1.1819 2.6361

MSE (kWh) 3.1929 17.0603

RMSE (kWh) 1.7869 4.1304

WAPE (%) 6.1067 13.3331

R? 0.9700 0.8396
80

Energy (kWh)

— real

—— prediction
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Jul
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Figure 10. Short-term forecasts compared to real values for the aggregate of 10 buildings as testing data.
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Figure 11. Full-day forecasts compared to real values for the aggregate of 10 buildings as testing data.

5.2. PV Production Forecast

The electricity production forecast derived from the analytical model are presented
in Figure 12. These are based on the DNI obtained from the Solcast API and applied to
three different scenarios: high, average and low production for each building of the REC.
Additionally, Table 7 furnishes details regarding the model results, encompassing the mean
(X), standard deviation (¢), and sum (X), along with the minimum and maximum values and
percentiles. Ultimately, the output is scaled by the number of buildings within the community.
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Figure 12. PV panels’ electricity generation per building over time.

Table 7. Analytical model results for PV panels’ output (high, low and average production scenarios).

High Production (kWh) Low Production (kWh) Average Production (kWh)
X 0.4320 0.0432 0.2376
o 0.9680 0.0968 0.5324
Min 0.0000 0.0000 0.0000
25% 0.0000 0.0000 0.0000
50% 0.0000 0.0000 0.0000
75% 0.0744 0.0074 0.0409
Max 4.1368 0.4136 2.2752
z 23,352.8281 2335.2828 12,844.0555

5.3. Market Prices

Regarding the electricity market prices, three distinct tariffs were considered, following
the most common rates existing in the market: simple, bi-hourly (weekly cycle) and bi-
hourly (daily cycle). For all the tariffs, the following prices were assumed constant for the
whole dataset: 0,1583 EUR/kWHh in the simple tariff scenario, 0,1917 EUR/kWh in the
peak hours of bi-hourly tariffs and 0, 1044 EUR/kWh out of the peak periods. By applying
these tariffs, the average price paid by each building over time since the beginning of the
dataset is presented in Table 8. It shows the sum (X), mean (¥), and standard deviation
(0), as well as the minimum and the maximum values, and the percentiles of the average
values paid by a REC member.

Table 8. Average electricity price results for bihourly (daily), bihourly (weekly) and simple tariffs.

Bihourly Tariff (Daily) (EUR)  Bihourly Tariff (Weekly) (EUR) Simple Tariff (EUR)

X 1.2443 1.2344 1.2003
0 0.9680 0.0968 0.5324
Min 1.8411 1.8388 1.5997
25% 0.3369 0.3044 0.3941
50% 0.5800 0.6037 0.6106
75% 1.3634 1.2706 1.0751
Max 4.1368 0.4136 2.2752
2 285,857.4185 283,567.7304 275,740.5707

5.4. Decision-Making Algorithm

The decision-making algorithms were evaluated and compared in terms of total REC
electricity bill and energy self-sufficiency. These algorithms underwent testing with a
community comprising ten buildings, which were excluded from the training phase for
the electricity consumption forecast component. Evaluation was carried out across three
scenarios of storage capacity and three scenarios of PV generation.
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The baseline algorithm underwent assessment using ten buildings in the dataset,
covering the period from 8 January 2017 to 7 February 2020. As indicated by the results in
Table 9, the PV generation facilitates savings exceeding 160,000 kWh in REC grid consump-
tion over the three-year period when production is high, compared to the low production
scenario. This translates to a difference of more than EUR 25,000 when employing the
simple tariff (the lowest in all scenarios).

Table 9. Total bill cost and grid consumption for high, low, and average production scenarios, using
the baseline algorithm.

PV Generation Baseline
High Production Bihourly tariff (weekly option) (EUR) 146,364.0864
Bihourly tariff (daily option) (EUR) 146,434.8987
Simple tariff (EUR) 144,322.7950
Consumed From Grid (kWh) 911,704.3270
Low Production Bihourly tariff (weekly option) (EUR) 176,246.0450
Bihourly tariff (daily option) (EUR) 175,254.3673
Simple tariff (EUR) 169,883.2251
Consumed From Grid (kWh) 1,073,172.6156
Average Production Bihourly tariff (weekly option) (EUR) 158,095.2314
Bihourly tariff (daily option) (EUR) 158,055.0320
Simple tariff (EUR) 154,340.5272
Consumed From Grid (kWh) 974,987.5379

Table 10 shows the results for the low, average and high storage capacity scenarios,
when the batteries algorithm is executed, considering also the scenarios for high, low, and
average PV generation. As before, the total bill cost of the three possible tariffs and the grid
consumption are presented.

The same approach was followed for the ML-based algorithm. This algorithm, how-
ever, does not have the goal of reducing the electricity grid consumption, nor the total
bill cost in the simple tariff scenario. Instead, the aim is to reduce the total bill for the
bihourly tariffs, in order to optimize the REC energy management system, so that the cost
is lower in those specific tariffs, which are the ones that can provide higher savings to the
community. Table 11 shows the evaluation results for the ML-based algorithm and the
overall comparison with the previously mentioned algorithms (baseline and batteries) for
the different production and storage capacity scenarios.

Table 10. Total bill cost and grid consumption for 16, 64 and 128 kWh storage scenarios, using the
batteries algorithm.

Production Tariff 16 kWh 64 kWh 128 kWh
High Bi-hourly (weekly) (EUR)  140,829.1992 138,906.5757 137,912.5288
Bi-hourly (daily) (EUR) 141,125.5911 139,523.4337 138,594.9123
Simple (EUR) 139,058.6055 137,474.3989 136,286.6575
Grid consumption (kWh)  903,360.8796 890,829.1492 881,433.6229
Low Bi-hourly (weekly) (EUR)  176,245.0032 176,245.0083 176,245.0083
Bi-hourly (daily) (EUR) 175,253.4215 175,253.4243 175,253.4243
Simple (EUR) 169,882.2200 169,882.2242 169,882.2242
Grid consumption (kWh)  1,073,171.5146 1,073,171.5413 1,073,171.5413
Average Bi-hourly (weekly) (EUR)  156,903.2119 156,547.5470 156,454.1503
Bi-hourly (daily) (EUR) 156,989.9957 156,757.9280 156,685.2525
Simple (EUR) 153,228.0538 152,930.9751 152,805.2904
Grid consumption (kWh)  972,550.0141 970,189.6801 969,195.4626

The best result for each combination of production scenario and electricity tariff is presented in bold. The best
result for each production scenario and for all electricity tariffs is presented in italic.
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Table 11. Overall comparison between baseline, batteries and ML-based algorithms for all storage
capacity and PV generation scenarios.

Storage Production Tariff Baseline Batteries ML-Based
Bi-hourly (weekly) (EUR) 146,364.0864 140,829.1992 140,100.7655
. Bi-hourly (daily) (EUR) 146,434.8987 141,125.5911 140,538.2377
High Simple (EUR) 144,322.7950 139,058.6055 139,773.1007
Grid consumption (kWh) 911,704.3270 903,360.8796 908,738.0779
Bi-hourly (weekly) (EUR) 176,246.0450 176,245.0032 174,833.5646
16 kWh Low Bi-hourly (daily) (EUR) 175,254.3673 175,253.4215 174,060.1188
Simple (EUR) 169,883.2251 169,882.2200 170,055.3370
Grid consumption (kWh) 1,073,172.6156 1,073,171.5146 1,074,265.1157
Bi-hourly (weekly) (EUR) 158,095.2314 156,903.2119 155,688.4566
Average Bi-hourly (daily) (EUR) 158,055.0320 156,989.9957 155,942.4465
& Simple (EUR) 154,340.5272 153,228.0538 153,557.7401
Grid consumption (kWh) 974,987.5379 972,550.0141 974,871.9488
Bi-hourly (weekly) (EUR) 146,364.0864 138,906.5757 135,421.2991
Hioh Bi-hourly (daily) (EUR) 146,434.8987 139,523.4337 136,634.3897
& Simple (EUR) 144,322.7950 137,474.3989 139,820.2150
Grid consumption (kWh) 911,704.3270 890,829.1492 908,292.8994
Bi-hourly (weekly) (EUR) 176,246.0450 176,245.0083 170,602.3039
64 kWh Low Bi-hourly (daily) (EUR) 175,254.3673 175,253.4243 170,492.4297
Simple (EUR) 169,883.2251 169,882.2242 170,576.6233
Grid consumption (kWh) 1,073,172.6156 1,073,171.5413 1,077,558.1433
Bi-hourly (weekly) (EUR) 158,095.2314 156,547.5470 151,409.0531
Average Bi-hourly (daily) (EUR) 158,055.0320 156,757.9280 152,395.9916
& Simple (EUR) 154,340.5272 152,930.9751 153,970.8334
Grid consumption (kWh) 974,987.5379 970,189.6801 977,321.1353
Bi-hourly (weekly) (EUR) 146,364.0864 137,912.5288 130 170.7481
Hich Bi-hourly (daily) (EUR) 146,434.8987 138,594.9123 132,201.3186
& Simple (EUR) 144,322.7950 136,286.6575 140,009.8316
Grid consumption (kWh) 911,704.3270 881,433.6229 908,788.3554
Bi-hourly (weekly) (EUR) 176,246.0450 176,245.0083 164,985.0157
128 kWh Low Bi-hourly (daily) (EUR) 175,254.3673 175,253.4243 165,992.7034
o Simple (EUR) 169,883.2251 169,882.2242 171,270.0897
Grid consumption (kWh) 1,073,172.6156 1,073,171.5413 1,081,938.8536
Bi-hourly (weekly) (EUR) 158,095.2314 156,454.1503 145,943.0327
Average Bi-hourly (daily) (EUR) 158,055.0320 156,685.2525 147,922.0113
& Simple (EUR) 154,340.5272 152,805.2904 154,515.1524
Grid consumption (kWh) 974,987.5379 969,195.4626 980,555.5266

The best result for each combination of storage/production scenario and electricity tariff is presented in bold. The
best result for each storage/production scenario and for all electricity tariffs is presented in italic.

6. Discussion

Regarding the consumption forecast, the XGBoost algorithm demonstrated superior
performance compared to the other evaluated algorithms. It achieved a WAPE of 8.1575%
when assessed using data from the preceding 24 h and weather metrics. A notable finding is
that the algorithm showed minimal to no deterioration, even when the number of features
was reduced to emphasize the most impactful ones. Specifically, utilizing the top forty
parameters by classification, which represents a reduction in ten features, led to a decrease in
WAPE to 7.4197%. Similarly, evaluating only the features with an importance classification
higher than 0.5% (a reduction in forty-four features) leads to the model retrieving an error
of 8.1936%. Consequently, the chosen energy consumption forecasting model exclusively
incorporates features with an importance score above 0.5%. This decision is driven by the
enhanced flexibility afforded by a smaller set of features, along with other metrics such as
training time demonstrating improved performance with a reduced number of features.
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The comparison of these results with other studies in the literature becomes difficult,
due to the usage of private datasets, the different metrics employed, and the distinct
forecast objectives, both in terms of time horizon and number of buildings. However, it
can be observed that the results are in line with the more similar related work evaluations,
for instance when analyzing the MAPE values between 7% and 10% for the short-term
forecasts obtained in [13,14,19]. However, these works were focused on a specific building
or region, not handling the diversity of consumption profiles that may arise in a REC, as it
is the case of this study.

With respect to the performance of the decision-making algorithms, the results in
Table 11 show that batteries algorithm improves the baseline in every scenario. However,
for a low production situation, the gains from using batteries are negligible. Thus, it can
be assumed that the installation of storage capacity is not worth the cost if the generated
renewable energy is not in enough quantity. At an average production level, the REC gains
range from EUR 1065.04 (0.7%) EUR to 1641.08 (1%). If each user within the community
possesses the same storage capacity, their individual gains would be approximately EUR
106.50 to EUR 164.10. Assuming constant profits, a user might potentially achieve a return
on investment over a ten-year battery lifespan. However, the investment in batteries might
entail considerable risk, making it less advisable. In the case of high production, the
gains escalate to EUR 5264.19 (3.6%) to EUR 8451.56 (5.8%). Under these circumstances, it
becomes highly probable for the REC members to realize a return on their investments.

Finally, by analyzing the results of the ML-based algorithm, one can see that that it
can successfully reduce the total electricity bill of the REC, but not in all scenarios. This
algorithm always achieves better results than the other two for the bi-hourly tariffs, both
in weekly and daily cycles, but sometimes the batteries and even the baseline algorithm
can reduce the total cost by using the simple tariff. The best performance algorithm in
terms of cost is identified in italics (Table 11) for each combination of storage capacity
and PV generation scenarios. It can be seen, for instance, that in all low storage scenarios
(16 kWh), the batteries algorithm achieves the lowest bill cost for the REC using the simple
tariff. Similarly, in the average storage case (64 kWh), the batteries algorithm can also
obtain the best result, but only for the low production scenario. In all other cases, the
ML-based algorithm performs better by employing the bi-hourly tariffs, particularly the
weekly cycle. This means that the ML-based algorithm is the best candidate to apply in
the energy management system of the REC, if enough storage is available, even if the
production is not that high.

Under conditions of average storage capacity and high production, the ML-based
algorithm exhibits a gain of EUR 2053.10 (1.5%) compared to the battery algorithm and
EUR 8901.50 (6.2%) when contrasted with the baseline. In scenarios of average production,
the algorithm results in improvements of EUR 1521.92 (1%) against the battery algorithm
and EUR 2931.47 (1.9%) against the baseline. These findings have the potential to transform
a financially precarious investment into a profitable venture.

In the high storage capacity scenario, the algorithm significantly reduces electricity
expenses, demonstrating enhancements of EUR 14,152.05 (9.8%), EUR 4898.21 (2.8%), and
EUR 8397.49 (5.4%) for high, low, and average PV generation levels, respectively. These
differences were calculated by subtracting the lowest total value across all tariffs for the
baseline algorithm (simple tariff case) from the lowest value in the ML-based approach
(bi-hourly /weekly tariff).

In summary, the proposed energy management system provides significant advantages
to the REC members, by optimizing energy usage and the associated transactions with
the public grid, as well as saving electricity bill costs. The developed system constitutes
an initial approach to efficiently manage a REC framework with energy storage, being
important that the research community continues to investigate the different aspects of
the system, namely the ML-based predictions of electricity consumption and generation,
the decision-making algorithms for managing the electricity flows, and the introduction of
dynamic tariffs in market electricity prices. In particular, this latter aspect needs to be better
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analyzed in the future, given the increasing importance of demand-flexibility schemes in
energy markets. In this work, only fixed tariffs were considered (either simple or bi-hourly)
and it was assumed, in each simulation scenario, that all REC members have the same
electricity tariff, which will typically not be the case in a real-world environment.

7. Conclusions

This work aimed to develop a REC management system that minimizes the total
electricity bill cost, and also reduces the energy usage from non-renewable sources (grid
consumption), by using ML techniques to forecast the electricity consumption of the com-
munity. The study identified three distinct algorithms suitable for consumption forecasting
(ANN, XGBoost, and GB), along with outlining the comprehensive procedure required to
carry out the research. In this work, after a batch of experiments, it was perceived that
XGBoost was the most suitable ML algorithm for prediction of community energy con-
sumption. Then, a REC management system architecture containing four key components
was proposed.

Consequently, the management system introduced in this study, coupled with the
employed ML-based forecast model, demonstrates a notable reduction in electricity costs,
particularly in the context of bi-hourly tariffs (as opposed to flat rate scenarios). This is
particularly evident when there is a substantial or average storage capacity, provided the
production capacity is at least average. The effectiveness of this outcome is attributed to
the algorithm’s ability to leverage battery storage to store surplus energy and strategically
purchase electricity from the grid during low-price periods inherent to bi-hourly tariffs.

Therefore, the main contributions of this work encompass the utilization of ML tech-
niques to achieve accurate forecast results for the energy community, as well as the develop-
ment of a decision-making system to increase REC’s electricity bill savings. In more details,
the proposed system introduces significant advantages for REC management, by providing
accurate electricity consumption forecast based on XGBoost algorithm (with a WAPE below
10% for short-term predictions and not much higher than that for full-day ahead forecasts).
By relying on these forecasts, meaningful energy savings in the community can be achieved
through the use of an intelligent decision-making algorithm, specially for the bi-hourly
tariffs and high storage capacity scenarios with community bill reductions of 9.8%, 2.8%
and 5.4% for high, low, and average photovoltaic (PV) generation levels, respectively.

For future work, we plan to evaluate the performance of more ML-based techniques
for the electricity consumption forecast, such as other neural networks models (e.g., LSTM
or Convolutional Neural Network) and other gradient boosting ensemble algorithms
(e.g., CatBoost and Natural Gradient Boosting (NGBoost)). With the goal of improving
the robustness of the results comparisons among these different techniques, it would be
beneficial to apply hyperparameter optimization techniques in a more extensive way, in
order to better fine-tune the models. When using other ML-based algorithms, it would be
also important to employ common dimensionality reduction techniques, such as principal
component analysis (PCA), in order to select the most relevant features for those models,
which may differ from the ones used in this work. Furthermore, there is a recommendation
to extend the forecast period of the ML model to augment the precision of the algorithm'’s
decisions. Additionally, it is advised to contemplate a more realistic scenario that acknowl-
edges the potential existence of diverse energy tariffs among community members. In this
study, the entire REC was treated as a unified entity with a singular tariff for purchasing
electricity from the public grid.
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