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Abstract: The increasing impact of climate change and rising occurrences of natural disasters pose
substantial threats to power systems. Strengthening resilience against these low-probability, high-
impact events is crucial. The proposition of reconfiguring traditional power systems into advanced
networked microgrids (NMGs) emerges as a promising solution. Consequently, a growing body
of research has focused on NMG-based techniques to achieve a more resilient power system. This
paper provides an updated, comprehensive review of the literature, particularly emphasizing two
main categories: networked microgrids’ configuration and networked microgrids’ control. The study
explores key facets of NMG configurations, covering formation, power distribution, and operational
considerations. Additionally, it delves into NMG control features, examining their architecture,
modes, and schemes. Each aspect is reviewed based on problem modeling/formulation, constraints,
and objectives. The review examines findings and highlights the research gaps, focusing on key
elements such as frequency and voltage stability, reliability, costs associated with remote switches
and communication technologies, and the overall resilience of the network. On that basis, a unified
problem-solving approach addressing both the configuration and control aspects of stable and reliable
NMGs is proposed. The article concludes by outlining potential future trends, offering valuable
insights for researchers in the field.
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1. Introduction

The intensification of climate change poses a threat to power systems, leading to
potential challenges like increased electricity demand and adverse impacts on power equip-
ment. This convergence may result in critical issues, such as overloading and overheating,
reminiscent of the 2003 blackout incident in the United States. The increasing annual
intensity of climate change elevates the likelihood of severe weather events, contributing to
a notable uptick in major power outages, as depicted in Figure 1 [1]. Major power outages,
exemplified by events in Texas and Quebec, can inflict substantial economic losses, as seen
with the USD 130 billion impact in Texas [2], and USD 50 million impact in Quebec [3].
Additionally, such outages pose significant challenges for affected households, enduring
prolonged periods without electricity.

The extensive scholarly literature has been dedicated to enhancement of power net-
works’ capability to withstand adverse weather conditions—a practice commonly referred
to as enhancement of power system resilience. Researchers suggested diverse strategies
for resilience enhancement, such as strategic planning techniques and system hardening
methods [4]. A notably promising solution among the various proposed methods involves
integrating controllable and smart technologies into the power system and strategically
establishing networked microgrids (NMGs). NMGs encompass interconnected microgrids
(MGs) capable of exchanging both power and information. This configuration is formed by
partitioning distribution systems, linking multiple MGs to create a larger and more resilient
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power system, as defined in IEEE standard 1547.4 [5]. This interconnected structure en-
hances resilience in managing energy resources and meeting electricity demand. Findings
from [6] underscore the benefits of NMGs in reducing operating costs and improving power
supply resilience compared to independent MGs. An illustrative example of the practical
significance of this interconnected setup is observed in Adjuntas, Puerto Rico, where the re-
silience of two microgrids is notably elevated when integrated into a networked microgrid,
as detailed in [7]. The versatility of NMGs positions them as a promising means to enhance
overall system resilience.
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In this context, the present study aims at contributing to this growing research do-
main by delivering a systematic and contemporary review of the literature on networked
microgrids. The main contribution of this article lies in its comprehensive review and
categorization of studies within the domain of NMGs. Through meticulous examination,
the article classifies the literature into two primary groups: networked microgrids’ con-
figuration and networked microgrids’ control. In addressing the critical aspects of NMG
configurations, the article delves into formation, power distribution, and operational con-
siderations. Furthermore, it explores the control considerations of NMGs, encompassing
their communication technologies and protocols, control architecture, modes, and schemes.
Each of these components is systematically dissected into multiple subsections, elucidating
specific features related to various technologies, methods, and concepts. The distinctive
nature of this contribution lies in its detailed exploration of problem modeling, constraints,
and objective functions within each subsection. This comparative analysis aids readers
in discerning strengths and limitations in NMG configurations and control approaches.
In the discussion section, a thorough analysis is conducted on all findings, gaps, and
proposed solutions to formulate an optimal response to the challenges faced by NMGs.
The discussion underscores the insufficient attention awarded to issues such as NMGs’
frequency stability, reliability, recovery and reconfiguration time, expenses linked to remote
switches and communication components, as well as the influence of real and transient
events and the non-smooth characteristics of DGs and converters. To offer a more realistic
and comprehensive viewpoint, a unified problem addressing both the configuration and
control aspects of stable and reliable NMGs is suggested. The article also outlines potential
future trends, providing valuable insights for researchers in the field.
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The paper is structured as follows: Section 2 offers an overview of networked mi-
crogrids’ configuration aspects, covering formation, power distribution, and operation.
Section 3 delves into the literature on networked microgrids’ control aspects, including
communication technologies, communication protocols, control architecture, control modes,
and control schemes. In Section 4, essential findings in both configuration and control are
discussed to identify gaps and propose a holistic solution. Potential directions for future
research, drawn from the review, are explored in Section 5. The paper concludes with final
remarks presented in Section 6.

2. Networked Microgrids’ Configuration

The emerging field of networked microgrids holds the potential to revolutionize
traditional power grids, offering increased flexibility, sustainability, and resilience. Utilizing
advanced configuration techniques, these networked microgrids can transform the way
electricity is generated, distributed, and consumed in the future.

The configuration of networked microgrids encompasses three key aspects: forma-
tion, power distribution, and operation. Formation involves allocating distributed energy
resources (DERs) in each microgrid, establishing boundaries, and determining the phys-
ical and operational connections between microgrids to shape the overall structure of
the networked microgrids. Power distribution involves conducting power flow analysis,
calculating voltage magnitudes, phase angles, and power flows at different points in the
system. The integration of power flow analysis, also known as load flow analysis, is
crucial for understanding and managing the distribution of electrical power within micro-
grids, incorporating various elements such as distributed energy resources, energy storage,
and loads. Operation defines the behavior of networked microgrids over time under
different conditions.

The following sections will explore these concepts in depth, offering a thorough
examination of methodologies applied within each domain. Emphasis will be placed on
exploring their problem, modeling, objectives, constraints, and comparing the advantages
and disadvantages of each method. Although each paper’s central idea and contributions
will be summarized in a dedicated subsection, it is important to note that a paper may
cover more than one aspect.

2.1. Formation

The establishment of NMGs involves restructuring distribution systems into inter-
connected or independent MGs. NMGs’ formation is crucial for ensuring coordinated
functionality, control, and resource sharing among microgrids. This adaptation allows
them to respond effectively to dynamic conditions, accommodating changes in load de-
mand, generation capacity, and overall system conditions. Several proposed methodologies
focus on organizing networked microgrids by determining optimal structures, boundaries,
and partitions. The objective is to efficiently allocate resources, ensuring a continuous
power supply, even in the face of unexpected disruptions. This section categorizes and
examines a range of techniques developed by researchers and practitioners, each offering
distinct advantages and considerations.

In the following subsections, a comprehensive review of each of these approaches is
conducted to identify their characteristics, and the findings, including both features and
limitations, are succinctly summarized in Table 1.
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Table 1. Categorization of approaches for forming NMGs.

Methods Categorizes Features Limits Ref.

Clustering
Partitional,

Hierarchical, and
Density-Based

Create a straightforward
approach with minimal
mathematical complexity to
support large-scale NMG by
focusing on specific MGs.

• Designed for the formation of
uncoupled multi-microgrids.

• No assurance of finding optimal
solutions.

[8–17]

Graph theory MST, and BFS
Facilitate visualization of
distributed-grid problems to
find optimal solution rapidly.

• Designed for the formation of
uncoupled multi-microgrids.

• Efficiency degrades for medium
to large systems.

• Lacks consideration for transient
response.

• Fails to address protection
concerns.

[18–26]

MIP MINLP, MILP, and
MISOCP

Capable of finding the optimal
solution for problems in which
decision variables can take on
both continuous and discrete
values.

• Computationally expensive.
• Practically infeasible when the

size of the system is large or for
real-time decision making.

• Less consideration for transient
response.

• Need for a thorough and
accurate mathematical model of
the environment

• Non-convex characteristics of
power flow constraints.

[27–41]

Heuristic BFS, BSO, Tabu, ABS,
and PSO

Discover close-to-optimal
solutions within a reasonable
timeframe.

• Less consideration for transient
response of NMGs

• No assurance of an optimal
NMGs’ formation.

• Lacks consideration for transient
protection and frequency
deviation.

[42–46]

Game theory Cooperative, and Dart
Game

Modeling interactions and
strategic interdependence
among microgrids.

• Computationally expensive.
• Lacks consideration for transient

protection and frequency
deviation.

• Practically infeasible when the
size of the NMG is large or for
real-time decision making.

[47–52]

DRL DQN and multi agent
DQN

Advanced machine learning
techniques with a model-free
nature enable dynamic
configuration, allowing for
their application in an online
mode.

• Lack of maturity and reliability
in power system applications.

• Lacks consideration for transient
protection and frequency
deviation.

• Complex implementation poses
challenges in deployment.

• Dependence on online and
historical data of the network for
effective functioning.

[53–61]
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2.1.1. Clustering Approaches

The discourse on clustering algorithms concerning the segmentation of distribution
networks into multi-microgrids underscores the significance of employing data-driven
methodologies to identify nodes or regions with similar attributes such as load demand,
geographical proximity, or DER capacity. These methodologies can generally be categorized
into partitional clustering, hierarchical clustering, and density-based methods, each serving
distinct purposes.

Partitional clustering algorithms play a key role in forming NMGs by pinpointing
cluster centers and grouping data points into distinct clusters. The objective is to minimize
the squared difference between data points and centroids. These data points represent DERs
characterized by features such as power output, energy storage capacity, and geographical
location. Typically, K-means and K-medoids algorithms are utilized to cluster DERs based
on these features. In K-means, the centroid is the mean of all data points in a cluster, while
K-medoids uses actual data points as centroids or medoids. These algorithms initialize
random centroids, assign each DER to the closest center, and calculate new centroids
iteratively. The iterative refinement process aims to minimize the sum of dissimilarities
between data points and cluster representatives. In the context of forming NMGs, the goal
of these algorithms is to minimize power loss and maximize load pickup while balancing
demand and supply constraints [8–11]. Their advantages include simplicity and scalability,
making them well suited for large-scale microgrid systems. However, notable limitations
encompass reliance on predefined cluster numbers, sensitivity to initial configurations,
challenges with non-convex cluster shapes, and limited consideration of the spatial or
geographical factors crucial for microgrid planning [12].

Hierarchical clustering offers an alternative algorithm for organizing data points into
clusters, and it involves two primary methods: divisive and agglomerative. In divisive
clustering, all DERs are initially grouped into a single cluster, and recursive splitting occurs
until each DER forms its own cluster. On the other hand, agglomerative clustering takes a
bottom-up approach, starting with each DER in a separate cluster and iteratively merging
the most similar pairs until all DERs belong to a unified cluster. This hierarchical structure
is employed to form multi-microgrids by allocating DERs and identifying boundaries,
taking into account distribution system features such as topology, line impedance, and
load distribution. The objective is to maximize the restoration-path availability of critical
loads after power outages [13], and minimize maintenance costs [14]. The hierarchical
structure enhances microgrid formation by being adaptable to different datasets, allowing
the creation of isolated yet dense and large clusters. This adaptability is crucial, especially in
sparsely populated and remote locations. However, a significant drawback of hierarchical
clustering algorithms is that once objects are linked, they cannot be reconsidered for linkage
in another branch of the hierarchical tree. This limitation leads to a lack of robustness and
sensitivity to noise and outliers [15].

Density-based clustering algorithms are designed to identify clusters with arbitrary
shapes, allowing for the detection of high-load-density clusters and the establishment
of microgrid boundaries [16]. These algorithms excel in handling noise in data, offering
advantages over hierarchical or partitional methods [17]. However, they may face efficiency
challenges when dealing with higher-dimensional data due to their dependence on non-
trivial user-defined parameters in the dataset.

2.1.2. Graph Theory Approaches

Graphs, as a specialized data structure, serve as an abstraction for real-world power
grids, allowing the visualization and solution of distributed grid problems using graph
theory and algorithms. The mapping of electrical networks to graph concepts establishes a
connection between network components and vertices, and between connections and edges
in the graph. This translation allows for the exploration of intelligent algorithms in solving
electrical network problems, proving valuable in the segmentation of distribution networks
into multi-microgrids [21]. In power distribution networks, graph-based concepts such as
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graph partitioning, spanning tree, and spanning forest are utilized to create microgrids, in-
corporating both loop-based microgrid topology (as in [22,23]), and radial-based microgrid
topology (as in [18–20]).

Two key graph-theory-based methods for forming NMGs are minimum spanning
tree (MST) algorithms and breadth-first search (BFS) trees. MST algorithms aim to create a
tree encompassing all nodes in a network while minimizing total edge weight. In power
systems, each DER is represented as a node in a graph, where edges denote potential
connections between DERs. The primary goal of MST is to identify the minimum set of
edges required to connect all nodes (DERs) efficiently, without forming cycles. In [20,24],
this application is used to maximize critical load while adhering to radial topology and
operational constraints such as power balance, voltage, and current limits.

Breadth-first search (BFS) is a traversal and search algorithm applied to tree or graph
data structures. In the context of forming NMGs’ topology, BFS uses a generator bus as the
root node, initiating the exploration of adjacent nodes at the present depth before moving
on to nodes at the next depth level. This process results in a BFS tree, where each MG
extends like a tree by selecting adjacent buses based on their ascending electrical distance
from the root. In [19,25,26], this topology is formulated with the aim of maximizing load
restoration, taking into account considerations of criticality and operational constraints.

2.1.3. Mixed-Integer Programming Methods

Mixed-integer programming (MIP) serves as a mathematical optimization approach
essential for addressing problems wherein decision variables can assume both continuous
and discrete values, analogous to the challenges encountered in the formation of NMGs.
In the context of NMG formation, the initial step involves creating a mathematical model
that comprehensively represents all aspects of the microgrid-formation problems. Typically,
graph theory methods, as discussed in references [22,28,30–37], are employed to model the
intricate relationships within the microgrid. Subsequently, the optimization objective is
established, aiming to determine optimal values for decision variables that either minimize
or maximize an objective function, while adhering to a set of constraints. This process
enables the formulation of an efficient and effective optimization framework for configuring
networked microgrids.

Various types of MIP formulations are applied to address different aspects of forming
NMGs. The specific MIP formulation used depends on the characteristics of the micro-
grid, the objectives, and the constraints of the problem. These methods are generally
classified into three classes which include mixed-integer nonlinear programming (MINLP),
mixed-integer linear programming (MILP), and mixed-integer second-order cone program-
ming (MISOCP). MINLP extends MIP to handle scenarios where the objective function
or constraints include nonlinear relationships, allowing decision variables to take both
continuous and integer values. This approach is utilized in [27] to identify a set of viable
microgrid clusters, aiming to maximize the restoration of loads within a radial distribution
system. While MINLP methods ensure precision without resorting to linearization or
convex relaxation that could impact solution accuracy, they suffer from computational
inefficiency. Additionally, relaxing integer constraints during the solution process gives
rise to nonconvex sub-problems due to the nonconvex nature of power flow equations.
To overcome these challenges, MISOCP and MILP methods are introduced. MISOCP, a
convex-based mixed-integer formulation, is proposed in [28,39,40] for the dynamic forma-
tion of NMGs, aiming to maximize served loads while considering radial and power flow
constraints. This formulation strives to offer efficient and accurate solutions, steering clear
of the computational inefficiencies and nonconvexity associated with MINLP.

MILP proves to be faster than alternative methods, although it compromises some level
of accuracy as its approach involves linearizing the objective function and constraints, along
with restricting certain decision variables to integer values. MILP methods find common
application in the swift restoration of critical loads in resilience-oriented NMGs’ formation
problems, as evidenced in various studies [22,29–38]. The linearized consideration of
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power flow and radial topology constraints is employed in [29,31–38] to reduce problem
complexity. While many studies integrate operation constraints related to power balance
and limitations on power, voltage, and current, the inclusion of additional constraints,
such as frequency limits [22], the count of switching events [32], hardening constraints [37],
and the integration of demand-response measures [62], contributes to enhancing problem
realism, bringing it closer to real-world conditions.

In summary, according to research findings in [63], concerning NMG formation using
MIP methods, MILP stands out for its rapid computational solutions and scalability. In
contrast, MISOCP excels in providing superior accuracy, and MINLP ensures exactness
despite the longer computational times.

2.1.4. Heuristic Approaches

Heuristic techniques are problem-solving methods that rely on intuitive or rule-based
approaches to find approximate solutions in a reasonable amount of time. These techniques,
while not guaranteeing optimality, aim to quickly find good solutions meeting specific
criteria or objectives. In the context of partitioning distribution networks into multiple
microgrids, heuristic-based techniques are commonly used due to the complexity and
computational challenges of the problem. Various heuristic methods are mentioned in ref-
erences [42–46], each addressing optimization problems associated with NMGs’ formation.
These methods employ algorithms such as Brute Force Search (BFS) [42], Backtracking
Search Optimization (BSO) [43], Tabu search [44], Artificial Bee Colony (ABC) [45], and
the particle swarm optimization (PSO) method [46]. These investigations have diverse
objectives, encompassing the reduction of power losses [42,45], enhancement of relia-
bility [42], mitigation of interactions between microgrids [43], reduction of operational
costs [46], and fortification of resilience against uncertain cascading failures [44]. Collabora-
tion among MGs is addressed in [44,46], with a focus beyond radial topologies. AC power
flow analysis techniques, such as Backward Forward Sweep [42,43] and modified Newton–
Raphson [45,46], are commonly employed in these studies during the configuration of
NMGs to enhance solution accuracy.

2.1.5. Game Theory Approaches

In the domain of NMGs, cooperative game theory finds widespread application [47–50],
as each microgrid operates autonomously, resembling an independent player. This char-
acteristic renders game theory a valuable tool for modeling interactions and strategic
interdependence among microgrids. Within this conceptual framework, each microgrid
strives to optimize various objectives, such as minimizing restoration costs [47], reducing
power loss [48,49], and minimizing operational costs [50]. However, the actions of one
microgrid can have repercussions on others, leading to the emergence of a complex network
of interdependencies.

Despite the advantage of game theory in considering all potential combinations among
variables, this complexity is heightened. In response to the intricacies associated with game
theory methods, the concept of the Darts game is introduced in [51,52]. This strategy is
designed to discover the optimal configuration of NMGs with a central focus on minimizing
the costs linked to restoration. The approach involves nonlinear AC power flow analysis
to assess power distribution among MGs, and it accounts for radial topology constraints,
emergency-demand-response-program constraints, and electrical constraints.

2.1.6. Deep Reinforcement Learning-Based Approaches

Deep reinforcement learning (DRL) has emerged as a potent method across various do-
mains, demonstrating its efficacy in reconfiguring distribution networks into NMGs [53–60].
DRL utilizes advanced machine learning techniques to dynamically configure and optimize
microgrid compositions within larger networks. This involves modeling the system as a
Markov Decision Process (MDP), where the formation of microgrids is determined through
a sequence of decision-making steps. An agent, representing the microgrid’s controller or
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distribution system operator, interacts with the environment and learns an optimal policy
through trial and error, taking actions like selecting energy sources, adjusting network
connections, and optimizing parameters to maximize cumulative rewards. These rewards
align with objectives such as load pickup [55,58,59] and topology feasibility [53,54]. DRL
empowers microgrids to autonomously adapt, integrate renewable energy, and optimize
configurations in real time, making them more adaptive, resilient, and efficient contributors
to the broader power infrastructure [64]. The crucial aspect of DRL methods lies in their
model-free nature, allowing for their application in an online mode. This capability facili-
tates swift decision making through straightforward numerical calculations, eliminating
the necessity for actual power system modeling or the formulation of complex power
flow equations.

DRL-based methods commonly employed in the formation of NMGs encompass Deep
Q-Networks (DQN) and multi-agent DQN. DQN employs an artificial neural network to
functionally approximate state–action pairs, with Q values trained to derive optimal deci-
sions. In works such as [53–57], DQN is applied to dynamically configure NMGs, aiming
to enhance system resilience by accommodating all loads while considering operational
constraints, power flow constraints, and radial topology assumptions. Achieving Dynamic
NMGs through DQN hinges on enabling the Q-network to learn appropriate responses
within the MDP. Numerous techniques have been explored to enhance the efficiency of
DQN learning. Notably, experience replay is employed to avoid overwriting experiences,
Epsilon-greedy-based exploration facilitates early-stage convergence, and the utilization of
a Double Q-Network proves to be highly effective in mitigating overestimation [53,54].

DQNs are executed in a centralized fashion, involving a single centralized agent
interacting with the environment at each time step. Consequently, training the centralized
DRL on extensive power systems with thousands of nodes would demand an impractically
lengthy duration to train a vast number of neural network parameters. To tackle this issue
in the context of NMGs, a multi-agent DQN method is introduced in [58–60], where agents
collaborate to expedite prey capture compared to a single agent through the sharing of
acquired knowledge.

During extreme events such as natural disasters or cyber-attacks, the data from the
power system encounters challenges related to scarcity and accuracy. These issues can have
detrimental effects on DRL training processes, potentially leading to incorrect decisions
during the configuration of NMGs. To overcome this challenge, ref. [54] employs Gen-
erative Adversarial Networks, GANs, an unsupervised and model-free method capable
of automatically extracting data features without the need for labeling. This approach
enhances the robustness of the training process by addressing data scarcity and accuracy
concerns in challenging scenarios.

2.2. Power Distribution

The configuration of NMGs is significantly reliant on power flow (PF) calculations.
Analyzing the power flow or voltage profile is crucial for understanding the distribution of
power within the network. This information plays a key role in dispatching microgrids
optimally, ensuring their stable and reliable operation. Additionally, it aids in identifying
areas with high load concentration and interconnected DERs, which are deemed as promis-
ing candidates for microgrid formation. According to Table 2, researchers used different PF
techniques in configuring NMGs.

PF calculations frequently employ various numerical techniques to linearize non-
linear equations and solve them within electrical power systems. The PF calculation
typically consumes a significant amount of execution time and involves complexities,
mainly because it necessitates updating the voltage magnitude and angle in each iterative
process [65]. These challenges become particularly pronounced in NMGs due to their
dependency on various factors, including the operational mode, types of microgrids, and
network topologies. The detailed discussions on these factors will be presented in the
subsequent subsections.
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Table 2. PF techniques employed for configuration of NMGs.

PF Techniques Ref.

AC PF [33,34,51,53,55,58–60,64]
Linear DistFlow [31,39–41,44,61,63,66]

NR [8–10,16,20,57]
BFS [27,32,42,43]

Kirchhoff’s law [19,25,30,56]
Gauss-Seidel [26]

2.2.1. Operational Modes

The operational modes of networked microgrids, including both grid-connected and
islanded modes, require distinct methodologies for power flow analysis. In the grid-
connected mode, the voltage and frequency of microgrids are determined by the main grid.
On the other hand, in the islanded mode, control units of DGs take charge, managing both
active and reactive power to regulate frequency and voltage.

In grid-connected mode, power flow in NMGs follows traditional distribution network
analysis, assuming constant voltage at the slack bus and microgrid frequency. Therefore,
conventional AC power flow techniques, such as Gauss-Seidel, Newton–Raphson (NR), and
backward/forward sweep (BFS), can be applied for PF analysis in grid-connected NMGs.
These established computer-aided algorithms have a long history of successful applications
in AC power systems dating back to the 1950s. While AC power flow techniques provide
accuracy and are well-suited for capturing the complexities of real-world power systems
characterized by diverse loads, generation sources, and network configurations, they
also come with drawbacks. These techniques introduce complexities and computational
burdens, which can impact the efficiency of power flow analysis. To overcome these
challenges, alternative methods such as the DC power flow model (as used in [66]) and
linearized DistFlow (employed in [39–41,61,67]) are employed for analyzing the power
flow in grid-connected NMGs.

In isolated NMGs lacking a slack bus, assuming a constant steady-state frequency
is not viable, leading to the need for its calculation as a variable in power flow analysis.
To tackle this challenge, there is a requirement for the development of a method to cor-
rect the frequency and reference bus voltage magnitude. Several studies, documented
in references [68–74], have devised power flow models for islanded networked micro-
grids, incorporating considerations of power sharing, voltage regulation, and interface
power exchange.

2.2.2. Microgrid Types

The diverse array of microgrid configurations, encompassing DC, AC, and hybrid
systems within NMGs, significantly influences power flow analysis. In DC microgrids, the
study involves the calculation of electrical power distribution primarily operating on direct
current, allowing bidirectional power flow and integration of distributed energy resources,
and energy storage systems. Voltage regulation is crucial for stability and efficiency in
these systems. The absence of reactive power and the focus on controlling voltage levels
distinguishes power flow analysis in DC microgrids from traditional AC power systems,
presenting unique challenges and opportunities for innovative PFA strategies such as those
proposed in [74–76].

Power flow analysis in AC microgrids involves the assessment and calculation of
the steady-state distribution of electrical power within the network. This analysis focuses
on maintaining voltage and frequency parameters within acceptable limits, ensuring the
stability and reliability of the microgrid. Traditional power flow methods, such as the
NR algorithms, are commonly employed to solve the system’s nonlinear equations and
determine the flow of active and reactive power. Challenges in AC microgrid power
flow arise from factors such as varying loads, intermittent renewable energy sources, and
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the presence of synchronous generators. The researchers proposed various power flow
calculation methods, as seen in [77–82], to enhance accuracy and efficiency, especially in
AC microgrids

Future power systems are envisioned as NMGs in which many hybrid microgrids,
including AC and DC microgrids, are interconnected to exchange power in a controlled
manner. Power flow analysis in hybrid microgrids involves the examination of electrical
power distribution within a network that integrates both AC and DC components. Hybrid
microgrids combine diverse energy sources and storage systems, presenting unique chal-
lenges in interoperability and coordinated control. Efficient power flow analysis in these
systems requires sophisticated modeling techniques to address the complexities arising
from the integration of different grid types. Researchers proposed various PFA methods,
discussed in [83–86], to analyze power flow within hybrid microgrids.

2.2.3. Network Topologies

The choice of network topology, such as radial grids, meshed types, and ring grids,
plays a crucial role in power flow analysis for networked microgrids. Radial grids, charac-
terized by a simple tree-like structure, make power flow analysis straightforward. Meshed
grids, featuring multiple interconnected paths for enhanced fault tolerance, necessitate
advanced algorithms for power flow analysis due to the presence of multiple routes. Ring
grids, allowing bidirectional power flow for increased redundancy and reliability, introduce
complexity in power flow analysis as injected power may cause voltage variations. In [87],
existing methods addressing power flow problems considering different topologies are
comprehensively reviewed.

2.3. Operation

There are two primary types of networked microgrids based on their operational
characteristics: predetermined networked microgrids (PNMGs) and dynamic networked
microgrids (DNMGs). A predefined networked microgrid maintains a consistent switching
status and network configuration regardless of the system’s operating conditions and
customer priorities. The boundaries of the microgrid are determined based on factors such
as supply adequacy, reliability indices, and maximum coverage. These predetermined
networked microgrids operate according to established rules and agreements. For example,
grid-tied microgrids are connected to the main grid and coordinate their operation with the
utility grid, following predetermined agreements and regulations for power sharing and
exchange. Virtual power plants integrate various distributed energy resources and function
as a single controllable entity, with power generation and sharing predetermined based
on the capabilities and capacities of the distributed energy resources [88]. Community
microgrids, designed to serve specific communities or areas, also fall into the category
of predetermined networked microgrids [89]. They have predefined connections, power
sharing arrangements, and operational strategies tailored to meet the specific needs of
the community.

On the other hand, DNMGs, an evolved form of networked microgrids, have gained
popularity due to their advanced structure. As per [90–92], dynamic microgrids can be
described as microgrids with adaptable boundaries that dynamically adjust to maintain a
balance between generation and load. This flexibility enables dynamic microgrids to opti-
mize their operations in real time, ensuring efficient utilization of resources and meeting
the evolving demands of the system. DNMGs exhibit real-time adaptability and flexibil-
ity, utilizing advanced control algorithms, communication technologies, and intelligent
decision-making capabilities to optimize resource utilization and ensure reliable operation.
DNMGs are capable of self-healing, automatically detecting and responding to faults or
disruptions, and reconfiguring their operations to restore power supply [91,93,94]. Ad-
ditionally, demand-responsive microgrids dynamically adjust power consumption and
load profiles based on grid conditions and user preferences, enabling efficient utilization of
energy resources. Multi-agent systems are also a type of dynamic networked microgrid
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that facilitate real-time coordination and cooperation among interconnected components,
optimizing power sharing and load balancing [95,96].

Dynamic networked microgrids offer distinct advantages when compared to predeter-
mined networked microgrids. Their flexible boundaries, which expand or shrink based
on the real-time generation and load conditions, enable superior adaptability to changing
energy demands and resource availability. This flexibility enhances the overall resilience
of the system, as dynamic networked microgrids can reconfigure themselves in response
to disruptions or faults, isolating affected sections and ensuring uninterrupted operation.
Moreover, dynamic networked microgrids optimize the utilization of distributed energy re-
sources by dynamically adjusting connections and allocations, leading to improved energy
efficiency and cost-effectiveness [97]. The scalability of dynamic networked microgrids
allows for seamless integration of new microgrids and DERs, accommodating the growing
demand for renewable energy sources. Additionally, their ability to balance loads and
manage voltage and frequency fluctuations enhances grid stability. Overall, dynamic
networked microgrids offer increased flexibility, resilience, optimal resource utilization,
scalability, and grid stability, making them a promising solution for efficient and sustainable
power distribution in the evolving energy landscape. While the benefits of DNMGs are
evidently greater than those of PDNMGs, Table 3 indicates that over 40 percent of studies
focus on configuring PNMGs.

Table 3. List of key studies in DNMGs and PNMGs.

Operation Ref.

DNMGs [9,11,24,26–28,31,33,46,53,55–60]
PNMGs [8,10,13,16,19,20,25,30,32,34,42–44,51,63,64]

3. Networked Microgrids’ Control

Effective monitoring and control techniques play a crucial role in optimizing perfor-
mance and bolstering the overall resilience of networked microgrids. These techniques
aid in the efficient distribution of energy, reducing power losses, and enabling adaptive
operation. They ensure that networked microgrids can swiftly adjust to changing condi-
tions and optimize their functioning in response to disruptions. To implement advanced
and real-time control techniques, a robust and reliable communication structure is neces-
sary. Therefore, in the upcoming sections, we will initially review various communication
techniques and then delve into the control approaches and aspects of NMGs in depth.

3.1. Communication

In the context of networked microgrids, effective communication infrastructure plays
a crucial role in ensuring the smooth management of energy and coordination among
various components. These communication tools facilitate the exchange of information not
only between microgrids but also with the central energy management system and end
users [98]. They enable the implementation of advanced functionalities, including load
balancing, demand response, and fault detection, which rely on continuous and reliable
communication [99]. Communication technologies, protocols, and their impacts on the
control and management of NMGs are reviewed.

3.1.1. Technologies

The technologies involved can be broadly classified into wired, wireless, and hybrid
options. Wired solutions encompass Power Line Communication, Fiber Optic Communica-
tion, and Ethernet, taking advantage of existing infrastructure to deliver high reliability,
speed, security, and ample bandwidth [100].

On the other hand, wireless technologies, such as Wi-Fi, Zigbee, Wireless Sensor
Networks, Bluetooth, Near Field Communication, Cellular, and satellite communication,
offer flexibility for both short- and long-range communication needs. They are utilized for
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real-time data collection, monitoring and control of power generation, load management,
and power supply planning [100].

Hybrid approaches often blend wired and wireless elements or employ mesh networks,
capitalizing on the strengths of both to create resilient and adaptable communication
networks. The selection of a specific technology depends on factors like deployment cost,
reliability, scalability, and the unique requirements of the microgrid in question.

3.1.2. Protocols

In the context of a networked microgrid system, effective and reliable operation re-
lies on adherence to specific rules and conventions collectively known as communication
protocols. These protocols play a crucial role in facilitating the exchange of information
by establishing a common language and structure for communication. Three fundamental
elements characterize communication protocols: syntax, semantics, and timing. Syntax
pertains to the format and structure of exchanged data, including details such as data en-
coding, bit order, and framing. Semantics involves interpreting the meaning of exchanged
data, encompassing control signals, commands, or responses conveying specific actions.
Timing governs synchronization and coordination, addressing factors like communication
rates and data transmission sequencing. These elements collectively define the rules and
conventions necessary for accurate and reliable data exchange in diverse domains. Various
communication protocols, including Modbus, MQTT, DNP3, and the IEC 61850 series stan-
dards [101], are utilized in networked microgrids [100]. However, a standardized protocol
is currently lacking across the communication system of networked microgrids [102].

3.1.3. Challenges

While the progress of the communication network contributes to improving the re-
liability and scalability of NMGs to a certain extent, they are vulnerable to communi-
cation limitations such as bandwidth constraints, time delays, traffic congestion, and
packet losses, which can significantly impact overall system responses [100]. To address
these challenges and ensure the performance of NMGs, various methods, including pre-
dictive controllers [103–105], lead–lag compensation controller [106], and adaptive con-
trollers [107,108], are proposed. However, a thorough assessment is necessary to minimize
their potential adverse effects on NMGs as much as possible.

3.2. Control

The control of NMGs involves overseeing and managing network functions to achieve
goals such as energy trading, optimizing operational costs, maximizing power stability,
ensuring reliability, enhancing user comfort, and achieving a resilience index. The control
capabilities of networked microgrids are analyzed and evaluated through various per-
spectives, including the control architecture, control modes, and control schemes. The
control architecture and control modes illustrate the framework for NMGs’ control, while
the control scheme delineates the approach to managing interconnection and interchange
among MGs. All these capabilities, along with their features and limitations, are suc-
cinctly presented in Table 4 and systematically and thoroughly examined, considering their
formulation models, objectives, and features, in the subsequent subsections.
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Table 4. Categorization of control techniques for NMGs.

Control
Features Categories Features Limits Ref.

Architecture

Centralized
Effective in situations
requiring precise coordination
and centralized controller.

• Single-point communication.
• Reliability issues.
• Struggle with a large number

of agents.
[109–119]

Decentralized

Enhance privacy protection of
MGs, facilitates
communication among MGs in
different points.

• Difficulty in achieving
system-wide objectives

• Increased vulnerability to
communication failures.

• Limited scalability with a
growing number of agents.

[120–126]

Distributed

Ensure regular operation of
NMGs by adjusting voltage
and frequency, even without
communication with master
controllers.

• Privacy concern.
• Increased vulnerability to

communication failures.
[127–148]

Modes

Master–Slave
Enable centralized
coordination among MGs and
DS.

• Single-point communication.
• Reliability issues.

[109–113,149]

P2P

Allow decentralized decision
making and mutual
collaboration among MGs and
DS.

• Increased communication
complexity in large-scale
systems.

• Limited scalability with a
growing number of peers.

[138,140,143,148,
150–160]

Scheme

Hierarchical

Provide a structured approach
with levels of decision making,
facilitating coordination
between MGs and DS.

• Potential delays in decision
making due to multi-level
hierarchy.

• Increased vulnerability to
failures in higher-level
controllers.

• Complexity in ensuring
alignment between local and
global objectives.

[114,161–170]

Droop-Based

Aid in load sharing and
maintain voltage and
frequency stability amidst
variations with less reliance on
communication systems.

• Less able to manage all
dynamic behaviors of NMGs.

• Less applicable in large-scale
networks.

[171–184]

Optimization

Assist in determining optimal
setpoints for various
operational parameters of
NMGs.

• Less applicable in large-scale
networks.

• Model-based and centralized
structure.

[109,110,112,113,
137–142,185–192]

AI
Allow NMGs to dynamically
adapt and respond to changing
conditions in real time.

• Complexity in
implementation.

• Less maturity in power
systems.

• Dependent on historical and
real-time data.

[124,131,193–196]

3.2.1. Control Architecture

Control architecture, in a broader sense, refers to the overarching design and arrange-
ment of control systems that govern and manage the behavior of complex systems [197]. In
the context of networked microgrids, control architecture plays a pivotal role in dictating
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how various system components, such as generators, energy storage units, loads, and
controllers, interact and communicate to ensure the smooth and dependable operation
of the networked microgrids. It delineates the process of data acquisition, analysis, and
utilization for making informed control decisions. Three primary control architecture
options exist for networked microgrids: centralized, decentralized, and distributed. Within
centralized control architecture, all decision-making processes and control actions are or-
chestrated and overseen by a central processing unit or controller [119]. The central entity
gathers data and measurements from various microgrid components and coordinates their
operation. It takes a comprehensive view of the entire networked microgrid and imple-
ments actions to optimize overall performance, as highlighted in [109,110]. This control
architecture is applied in the management of energy for both grid-connected [111] and
islanded NMGs [112–114]. Centralized control is effective in situations requiring precise
coordination and centralized optimization, but it often faces criticism for the potential
single-point communication failure problem and reliability issues [115–117]. Additionally,
it struggles to effectively manage a system with a large number of agents [118].

Conversely, decentralized control hinges on local decision-making processes at the
level of individual microgrid components. Every component within the microgrid operates
autonomously, utilizing predefined algorithms grounded in local measurements to optimize
its local operation, whether functioning as a distributed energy resource or a load. This
methodology reduces complexity and improves privacy protection by requiring only a
restricted exchange of information, as highlighted in [120]. Decentralized control assumes a
more distributed character, potentially enhancing the microgrid’s resilience by diminishing
reliance on a central controller [121–124]. Decentralized controls are used for networked
MGs systems and grid-connected MGs with a mix of fast-changing distributed generators
owned by different parties [125,126].

Distributed control represents a hybrid approach amalgamating elements from both
centralized and decentralized control paradigms. In this architecture, each local controller
communicates and cooperates with neighboring controllers within the microgrid. This
intercommunication allows for a degree of centralized decision making while preserv-
ing a measure of autonomy at the local level. Distributed control aims to combine the
benefits of centralized coordination with the resilience and adaptability afforded by local
decision making. This method ensures the regular operation of NMGs by adjusting voltage
and frequency, even without communication with master controllers [127–131]. While
information sharing among neighboring agents is crucial for certain control functions in
distributed control, it raises privacy concerns due to the potential exposure of sensitive
data. To mitigate this issue and uphold privacy in NMGs, various methods are proposed
in [132–142]. The distributed control of networked microgrids involves a sophisticated
information network, where each DG incorporates remote sensing and control actuation
with its microgrid center controller. However, this complexity introduces susceptibility to
cyberattacks on communication links for inter-microgrid data sharing. Addressing this
concern, refs. [143–148] introduce a cyber-resilient distributed control framework.

3.2.2. Control Modes

Control modes in the realm of networked microgrids encompass two fundamental
approaches: master–slave and peer-to-peer control modes. In the master–slave control
mode, a central controller, known as the master controller, takes charge of managing and
making decisions for the entire networked microgrid. The other components or nodes,
referred to as slaves, obediently execute the commands and instructions issued by the
master controller. This mode is frequently utilized in situations involving NMGs that
necessitate centralized control, encompassing both islanding scenarios [109,112,113,149]
and grid-connected setups [110,111].

Conversely, the peer-to-peer (P2P) control mode empowers diverse microgrid com-
ponents or nodes to engage in direct communication and collaboration. In this setup,
each node possesses the autonomy to make independent decisions and can seamlessly
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exchange information with other nodes as the situation demands. This mode is partic-
ularly well suited for dynamic and adaptable microgrid configurations, facilitating en-
hanced flexibility and responsiveness. A P2P control architecture is proposed for NMGs
in studies [138,140,143,148,150–156], integrating multiple layers and facilitating interac-
tions among different agents such as utility, MGs, and smart parking lots. The outcomes
presented in paper [158] indicate that the P2P control architecture can reduce the annual
energy cost of trading energy among microgrids by 0.75% while ensuring the mainte-
nance of system reliability. P2P control relies on bidirectional network communication,
rendering the system vulnerable to various attacks, including private data leakage, data
breaches, collusion, distributed denial of service, and man-in-the-middle attacks [159,160].
To tackle these challenges, several solutions, such as blockchain-based methods [143,157],
are proposed.

3.2.3. Control Schemes

Control schemes within the context of networked microgrids can be categorized into
several main types: hierarchical control schemes, droop-based control, optimization-based
techniques, and artificial intelligence-based methods. Hierarchical control schemes are
organized systems that divide control responsibilities into three layers—primary, secondary,
and tertiary. This structuring aims to standardize the operation of microgrids, enhancing
their overall resilience [169]. While the primary goal of hierarchical control is to effectively
manage network frequency and voltage by fostering collaboration among distributed en-
ergy sources, it has introduced several challenges within power control systems. These
challenges are particularly associated with the integration of power electronics, telecom-
munications, fault monitoring, and security considerations. The primary control level is
responsible for ensuring the reliable operation of networked microgrid components in real
time. It primarily deals with tasks like maintaining voltage and frequency within acceptable
limits [164], load sharing among microgrid components [163], power transactions between
microgrids [114,162], and responding to immediate disturbances [165]. Primary control
operates at a fast timescale, typically in the range of milliseconds to seconds, and focuses
on maintaining the microgrid’s stability. Secondary control operates at a slower timescale,
often in the range of minutes to hours. It aims to synchronize the interconnecting micro-
grids by regulating the voltage and frequency in response to variations in load and energy
supply [114,162,166]. This level of control is responsible for optimizing the operation of
microgrid components and ensuring efficient energy distribution. The tertiary control level
deals with the long-term planning and optimization of networked microgrids. It focuses on
coordinating the flow of power between the microgrid and the main grid [167], optimizing
resource allocation [170], and ensuring cost effectiveness [161]. Tertiary control operates at
timescales ranging from hours to days and even weeks.

Droop-based control, primarily implemented at the secondary control layer, involves
setting droop characteristics for components like generators and inverters. These character-
istics aid in load sharing and maintain voltage and frequency stability amidst variations.
The dynamic model for the droop controller is applied across the entire microgrid, discussed
in both small-scale [171,175] and large-scale [172–174] scenarios. This control strategy sim-
plifies structures and reduces reliance on communication systems, as demonstrated in
references [176–178]. However, in islanded microgrids using droop-based control, a chal-
lenge arises in ensuring voltage and frequency stability without a main grid [179]. This is
due to the absence of slack buses, changing control modes of DERs, dynamic microgrid
structures, and stringent data privacy requirements. Various approaches, like the adaptive
droop-based controllers [180–182], predictive model [104,183], and enhancements to the
droop-based primary controller through a secondary controller [184], are proposed to
address this challenge.

Optimization-based control strategies in NMGs often leverage optimization meth-
ods to enhance the efficiency, reliability, and economic viability of the DERs within the
interconnected microgrid system. These optimization-based control schemes utilize math-
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ematical algorithms such as MILP [112,113,137,141,185,192], MISOCP [186], two-stage
robust MIP [109,142], heuristic algorithm [123,140,187], optimal power flow [110,138,139],
and game theory [188–191] to determine the optimal setpoints for various operational
parameters, including bus voltage [137,138,186], feeder power loss [137,138,185], risk
index [140,192], resilience level [109], thermal rates of distribution lines [112], power
sharing [113,139], active and reactive power [110], and the coordination of demand re-
sponse [141,142]. By considering factors such as operation cost [109,110,112,113,137–142],
energy loss [186], restoring loads [192], load of congested line [112], and energy not sup-
plied [140], environmental sustainability, and grid constraints, optimization methods allow
NMGs to dynamically adapt to changing conditions in real time. These advanced control
strategies enable NMGs to operate with increased efficiency, optimize the utilization of re-
newable resources, and respond dynamically to fluctuations in energy demand and supply.
Additionally, optimization-based control contributes to the resilience and adaptability of
NMGs, making them well-suited for addressing the challenges associated with distributed
energy generation and variable loads in a networked environment.

Artificial intelligence-based techniques are increasingly recognized for their role in
advancing microgrid control and management. These AI-driven methods can dynamically
adjust to changing conditions, predict system behavior, optimize resource allocation, and
enhance fault detection and response capabilities. In pursuit of these advancements,
certain studies concentrate on developing AI-based controllers, such as the artificial neural
network-based controller [124,196], DNQ-based controller [131,193–195] and the data-
driven distributed secondary frequency controller. The objective functions of these methods
vary, encompassing optimizing energy sharing among MGs [124,131,196], optimizing the
pricing policy [193,194], as well as minimizing operation cost [195].

4. Discussion and Analysis

This paper extensively examined two key facets of NMGs: configuration and control.
Based on the reviewed literature, this section provides a discussion on challenges, gaps,
and proposed solutions accordingly. Finally, a comparative analysis is conducted aiming to
unveil a solutions approach considering the identified challenges associated with NMGs.

4.1. NMGs’ Configuration

The challenges associated with the configuration of NMGs are multifaceted, covering
formation, power distribution, and operational aspects. Formation involves defining
boundaries by determining switch statuses, allocating DERs among MGs, specifying the
type of interconnected MGs, and establishing the topology of these networks. In addition,
power distribution within NMGs entails the analysis of power flow within the network.
Furthermore, the operational dimension involves defining the behavior of NMGs over time,
considering various conditions and scenarios.

Formation in NMGs can be achieved through rapid methods like minimum spanning
tree and k-means clustering. While these approaches are quick, they fall short in finding
optimal solutions, especially when dealing with numerous DERs and components. To attain
optimal solutions, researchers often turn to optimization methods such as MIP, heuristic
approaches, game theory, or methods based on deep learning.

Graph theory plays a crucial role in formulating the NMGs formation as a mathe-
matical optimization problem by providing a mathematical abstraction of the distribution
system. Most researchers in the field focus on defining the objective function as maximizing
the restoration of all loads or critical loads to enhance resilience. However, it is noteworthy
that enhancing resilience goes beyond simply maximizing the restored load; factors like
the time of restoration and minimizing damages are integral components of resilience but
are often overlooked in the literature.

Constraints in the optimization problem typically revolve around operational factors,
including power balance, power, current, voltage limits, the number of switch actions, and
topology constraints, encompassing limitations on lines between components, the number
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of DGs in microgrids, radiality, and limits on interconnected MGs. Notably, frequency
limits and transient switching protection are infrequently considered in the optimization
problem, with only rare instances, such as in [22].

The primary objective of the formation process is to adjust the status of switches.
However, this switching can lead to frequency deviations, causing imbalances that have
severe consequences for the system. For example, opening switches on lines connecting
large non-critical loads may trigger significant power imbalances, potentially damaging
critical load equipment due to frequency deviation. Protective relays are designed to
operate during frequency instability, leading to service interruptions or even a collapse of
the microgrid.

While many studies consider the radiality constraint, some overlook its importance.
Maintaining a radial structure simplifies operational issues like synchronization and load
sharing among microgrids. However, it is crucial to recognize that NMGs may not ad-
here strictly to a radial topology; they may include ring- and meshed-type topologies.
Considering distribution systems with energy sources at consumer premises, where the
flow direction is not predetermined, becomes essential. This non-radial network approach
acknowledges the reversible relationship between parent–child nodes, allowing for the
potential existence of multiple root nodes. Moreover, the stochasticity of unintentional
islanding in networked microgrids’ configuration must be considered. Given that a funda-
mental feature of microgrids is to seamlessly separate from the distribution system during
outages and continue supplying its islanded portion, accounting for this stochastic element
becomes critical in the configuration of networked microgrids.

Many studies have focused on utilizing model-based optimization approaches to
tackle uncertainties in the configuration of NMGs. However, the practical applications of
these approaches face challenges due to the lack of operational models in the literature
that consider technical parameters of MGs and are applied to real cases. In addressing
these challenges, model-free methods such as DRL emerge as viable solutions, as indicated
in [53–57]. DRL methods offer alternative approaches which do not rely on explicit models
and technical parameters. However, they are not without their own set of challenges. DRL
methods encounter complexities related to coordination, management, and the accuracy
of data. Single-agent DRL approaches may face limitations in communication, while
multi-agent systems introduce complexity and time-consuming processes. Moreover, DRL
methods rely on learning from trial and error, and under extreme events, the data may
be scarce and less accurate, potentially impacting the training processes negatively. The
trade-off between the benefits of model-free methods like DRL and the challenges they
present underscores the need for careful consideration and evaluation in the context of
NMGs’ formation.

The configuration problem of NMGs, given the inclusion of hybrid AC/DC MGs,
demands more than conventional PFA techniques. The amalgamation of AC and DC
introduces unique challenges, particularly non-smooth characteristics resulting from DGs
and converters. Traditional power flow algorithms prove inadequate in addressing such
challenges, leading to distributed power flow calculation results that significantly deviate
from the actual model constraints.

DNMGs are envisioned as the future of NMGs, behaving akin to smart grids with
capabilities for dynamic forecasting, responsive actions, and adaptive behavior. They not
only react to changes in demand but also possess the capability to alter their configuration
in diverse conditions, showcasing efficiency in response and adaptation. While many
acknowledge the potential of DNMGs, the lack of real-world testing is noticeable in most
works. Furthermore, to attain optimal control and flexibility in DNMGs, it is imperative to
deploy remotely controlled automatic switches and control agents at each node and line.
However, this requirement introduces complexities in the formation of DNMGs and may
present economic challenges, potentially leading to a more delayed restoration process.
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4.2. NMGs’ Control

Before delving into control aspects, it is essential to review communication, since the
communication infrastructure plays a crucial role in monitoring and controlling NMGs.
This infrastructure facilitates the exchange of information not only among microgrids but
also with the central energy management system and end users. However, communication
limitations, including bandwidth constraints, time delays, traffic congestion, and packet
losses, can significantly impact overall system responses, especially in scenarios focusing
on resilience, where response time and cooperation among network components are crucial.
Additionally, NMGs are susceptible to cyberattacks. The cost of implementing advanced
communication in NMGs poses another challenge. Therefore, when designing state-of-the-
art control for NMGs, it is imperative to consider these challenges in the problem.

The control of NMGs involves overseeing and managing network functions with the
goals of energy trading, optimizing operational costs, maximizing power stability, ensuring
reliability, enhancing user comfort, and achieving a resilience index. The assessment of net-
worked microgrid control capabilities involves a multifaceted examination, encompassing
perspectives such as control architecture, control modes, and control schemes. The control
architecture and control modes provide insights into the structure of NMGs’ control, while
the control scheme outlines the strategy for overseeing interconnection and interchange
among MGs.

Centralized control architectures, while straightforward, suffer from low reliability
due to single-point communication. On the other hand, decentralized controls, although
reliable, become complex in large-scale systems. Distributed architectures, combining the
advantages of both centralized and decentralized approaches, offer a promising solution.
Despite potential privacy concerns in information exchange, optimizing information shar-
ing can mitigate risks. In this control architecture, the P2P control mode is utilized to
accelerate communication and cooperation among MGs.

While hierarchical or droop control schemes are straightforward, they may struggle
with scenarios involving changing control modes of DERs, dynamic microgrid structures,
plug-and-play integration of neighboring microgrids, and stringent data privacy require-
ments, especially in islanded NMGs without slack buses. Addressing these challenges
necessitates the use of optimization methods, with MIP being a commonly utilized ap-
proach. However, challenges persist, including the accuracy of uncertain parameters, time
consumption, reliance on central controllers, and handling vast data in large power sys-
tems. To overcome these challenges, AI methods, particularly DQN [131,193–195], present
a promising solution. These methods are capable of managing extensive data, forecasting,
learning, and reinforcing. However, it is important to note that these emerging methods
are not yet fully mature in the context of power systems.

4.3. NMGs’ Configuration and Control

Recently, the predominant focus of researchers has been on managing NMGs, often
assuming that the NMGs are already configured. Additionally, many of these studies pri-
marily consider operational costs as the key objective function. However, challenges persist
in the reconfiguration of DS into NMGs. Notably, there is a relative scarcity of recent studies
on the configuration of NMGs compared to control aspects. Existing works often overlook
critical challenges related to NMGs’ stability and reliability, relying on assumptions such as
radial topology. Furthermore, the emphasis is frequently on maximizing restored loads.

Integrating these two aspects into a unified problem and addressing real challenges in
both configuration and control can yield a more realistic and comprehensive perspective.
This approach has the potential to provide a promising solution to configure and control
NMGs effectively.

5. Future Research Direction

This section lists all of problems that require further exploration and innovation,
considering the continuously changing landscape of energy systems and operational
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paradigms. The following outlines key areas for prospective research in the domain
of networked microgrids.

• Cyber-Physical Security: As digital technologies and the Internet of Things (IoT) be-
come more integrated into NMGs’ research, particularly in studies such
as [53,55,57,64,131,193–195], it is imperative for future research to prioritize robust cy-
bersecurity measures. Ensuring the security of NMGs against cyber threats, including
concerns such as hacking and data breaches, should be a central focus.

• Energy Market Participation: While dynamic networked microgrids proposed
in [9,53,55–57,60] offer enhanced resilience compared to predetermined ones, the
substantial costs associated with high-tech components, network reconfiguration,
installation, and maintenance present a considerable investment challenge. Hence,
future research could delve into cost analysis for these methods and investigate regu-
latory and market frameworks needed to enable the active participation of dynamic
networked microgrids in energy trading and demand-response programs.

• Environmental Sustainability: In the pursuit of minimizing the carbon footprint,
researchers can investigate inventive strategies to improve the environmental sustain-
ability of networked microgrids, as suggested in certain studies such as [46,64]. This
involves optimizing the use of renewable energy resources and energy storage tech-
nologies, coupled with integrating environmental metrics into proposed frameworks.

• Demand Response: While some studies [30,46,51] incorporate demand response in
their approaches, there is a need for further research to delve deeper into under-
standing load demand variations during large-scale disturbances. It is crucial to
thoughtfully integrate these variations into models, placing emphasis on developing
efficient responses.

• Exploration of Resilience Indices: In resilience metrics, all aspects of resiliency, in-
cluding energy not supplied, load shedding, cost, and recovery time, are considered.
Despite numerous proposed resilience indices for power systems, only a few studies,
such as [51,64], incorporate them into their NMGs’ configuration approaches. Given
that the primary goal of establishing NMGs is to enhance power system resilience, it
might be essential for research to include resilience indices in creating NMGs.

• Accidental Outage Consideration: Given the inherent unpredictability of power sys-
tems and the impossibility of foreseeing all events or guaranteeing their current state,
it is crucial for the research to evaluate proposed models, such as those outlined
in [25,26,28,53,56,57,60,63,64,112,113,137,141,185,192–194], in the context of accidental
events like switching faults, component losses, losing data, and short-circuit faults.
These events have the potential to disrupt power systems during the formation and
control of NMGs.

• Switching Delay: Researchers should include mechanical component delays, telecom-
munication lags, and reliability-oriented delays as constraints in their methods, par-
ticularly in dynamic approaches like those discussed in [11,26,53,55,57,64]. These
approaches involve operating numerous switches, resulting in a more intricate and
delayed restoration process. Additionally, it is essential to note that the assumed rapid
on-and-off switching in proposed methods may not align with the practical constraints
and feasibility in real-world scenarios.

• Real Conditions Analysis: The absence of evaluations under real-world natural
disasters and severe conditions in numerous studies, such as those outlined
in [19,24,25,28,29,42,43,46,53,56,57,60,64,149,190], may render the proposed methods
universally inapplicable. Subsequent research endeavors should prioritize the collec-
tion of real data from natural disasters and conduct analyses to assess the effectiveness
of formation methods across diverse real-world scenarios.

6. Conclusions

In conclusion, this research significantly contributed to shaping the trajectory of net-
worked microgrids as a pivotal strategy for enhancing the resilience of modern power
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systems. The meticulous examination led to the classification of the literature into two
primary categories: networked microgrids’ configuration and networked microgrids con-
trol. The study thoroughly addressed critical aspects of NMG configurations, including
formation, power distribution, and operational considerations. Likewise, it delved into
the control considerations of NMGs, covering communication technologies and protocols,
control architecture, modes, and schemes. This contribution’s distinctiveness lies in its
detailed exploration of problem modeling, constraints, and objective functions within each
subsection. Tables facilitated a concise comparison of merits and demerits, aiding readers
in discerning strengths and limitations in NMGs’ configurations and control approaches. In
the discussion section, all findings, gaps, and solutions were succinctly analyzed to derive
an optimal solution for NMGs’ challenges. Persistent challenges in reconfiguring distribu-
tion systems into NMGs were identified, with a relative scarcity of recent studies on NMG
configuration compared to control aspects. The inadequate consideration of challenges
related to NMGs’ frequency stability, reliability, recovery and reconfiguration time, costs
associated with remote switches and communication components, as well as the impact of
real and transient events and the non-smooth characteristics of DGs and converters, was
highlighted. This lack of attention was often rooted in assumptions such as radial topology,
fast and flawless switches, stable DGs and converters, stable and predefined configuration,
and flawless communication in NMGs’ problems. The existing research also tended to
prioritize maximizing restored loads in configuration works and focusing on operational
costs in control aspects. Integrating these factors into a unified problem that addresses both
the configuration and control of stable and reliable NMGs provides a more realistic and
comprehensive perspective. The article further outlined potential future trends, offering
valuable insights for researchers in the field.
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