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Abstract: To operate the grid-connected renewable energy system economically, this study presents a
dual-stage optimization scheduling model for grid-connected systems with hybrid energy storage,
including day-ahead and intra-days stages. In the day-ahead stage, an economically optimal schedul-
ing model is developed, considering the price peak-to-valley difference. This model aims to enhance
the economic efficiency of the system by utilizing hybrid energy storage. In the intra-day stage, more
accurate renewable energy forecasts with a shorter time scale are considered. The objectives are
to minimize the curtailment rate of renewable energy and to track the day-ahead scheduling out-
comes. The NSGA-II algorithm is employed for multi-objective optimization, achieving equilibrium
solutions considering multiple optimization objectives. Compared to other published works, the
proposed model achieves a balance between different optimization objectives, enabling the system to
operate economically and stably. It provides a comprehensive approach to optimize the scheduling
of grid-connected systems with hybrid energy storage by considering both economic and operational
aspects. Overall, this proposed dual-stage optimization model presents a viable approach to improve
economic efficiency and mitigate renewable energy curtailment in grid-connected systems. By effec-
tively integrating renewable energy sources and optimizing their utilization, this model contributes
to enhancing the sustainability and optimal operation of the power grid.

Keywords: renewable energy system; hybrid energy storage; multi-objective optimization; dual-stage
optimization; electrolyzer

1. Introduction

With the gradual depletion of fossil fuels and increasing calls for environmental
protection, the substitution of renewable energy for fossil fuels as the source of the power
grid has emerged as a solution to address energy and environmental issues [1]. However,
due to the volatility and low inertia of renewable energy sources, their integration into the
grid can lead to the source–load mismatch, necessitating the involvement of energy storage
to achieve source–load balance and maintain the stability of the power grid [2].

Energy storage can be classified into power-based storage and energy-based storage,
based on their characteristics [3]. Generally speaking, batteries are considered as power-
type energy storage due to their high power density and short storage duration. On the
other hand, energy-type storage methods, like hydrogen storage, have longer storage
durations but cannot accommodate rapid power fluctuations. Hydrogen storage, as a form
of energy-based storage, has gained increasing attention due to the rise of the hydrogen
industry and hydrogen-powered vehicles as a means to balance the volatility of renewable
energy [4].

The utilization of electrolyzers for electrochemical hydrogen generation represents
an environmentally sustainable approach [5]. Electrolyzers encompass various types, in-
cluding alkaline electrolyzers, proton exchange membrane electrolyzers, and solid oxide
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electrolyzers. Among these, alkaline electrolyzers have gained widespread application due
to their well-established technology and cost-effectiveness [6]. In recent years, the integra-
tion of alkaline electrolyzers with lithium batteries for co-generation and energy storage
has garnered considerable research interest. This stems from the complementary nature
of hydrogen storage, offering high energy density, and lithium batteries, providing high
power density [7]. Furthermore, the rapid reaction rates exhibited by lithium batteries can
compensate for the slower response times of electrolyzers, enhancing overall system per-
formance. Researchers have explored power allocation for hybrid energy storage systems
(HESSs) from the perspectives of frequency decomposition, cost-effectiveness, and equip-
ment characteristics to achieve optimal objectives. An optimal day-ahead optimization
schedule for a gas-electric integrated energy system considering the bidirectional energy
flow is proposed in [8]. Furthermore, Hong et al. [9] presented an optimization day-ahead
scheduling model of wind-hydrogen systems considering hydrogen production efficiency.

Indeed, the studies mentioned above focus on day-ahead optimization. In day-ahead
optimization, the time scale for source–load forecasting is typically one day, which of-
ten leads to lower prediction accuracy. This limitation can impact the effectiveness of
implementing day-ahead optimization results. Due to the inherent variability and uncer-
tainties associated with renewable energy sources and load patterns, accurately forecasting
the source–load dynamics over a one-day horizon can be challenging. Factors such as
weather conditions, demand fluctuations, and unforeseen events can introduce deviations
between the predicted and actual source–load profiles. The lower prediction accuracy in
day-ahead optimization can affect the realization of the intended outcomes, as the system
may encounter unexpected variations in renewable energy availability or demand pat-
terns [10]. Therefore, the dual-stage optimization model should be applied to the operation
of renewable energy systems.

To date, several studies have addressed the dual-stage scheduling of day-ahead and
intra-day operations. For example, Wang et al. [11] proposed a two-stage energy manage-
ment model for the sustainable wind–PV–hydrogen–storage microgrid based on receding
horizon optimization. Similarly, Yuan et al. [12] presented a two-time-scale microgrid
energy management model for scheduling with low operational costs and high reliability
against uncertainties. In [13], the authors proposed a novel multi-energy systems opti-
mization model to maximize investment and operating synergy in the electricity, heating,
and transport sectors.

However, these studies predominantly employed single-objective optimization ap-
proaches. In single-objective optimization, pursuing a specific target may lead to adverse
effects on other objectives. In practice, the intra-day operational process involves numerous
factors that require optimization, including wind and solar curtailment rates, grid power
tracking, operational costs, and other relevant variables. In optimizing renewable energy
power systems, reducing the curtailment rate of wind and solar energy may increase the
demand for energy storage, thus raising operational costs [6]. Treating these factors as
components of a multi-objective optimization problem is a more appropriate approach.
By incorporating multiple objectives, the optimization framework can better capture the
complex trade-offs and interdependencies among different operational aspects, leading to
more comprehensive and effective decision-making strategies [14].

Multiple multi-objective optimization algorithms, such as the non-dominated sorting
genetic algorithm (NSGA-II), moth–flame optimization (MFO), and multi-objective particle
swarm optimization (MOPSO), have been proposed in recent years, providing effective
tools for solving complex multi-objective problems and offering a range of optimal solutions
based on different preferences [15,16]. The MOPSO is employed to optimize the operation of
microgrids in [17]. The MFO algorithm is utilized for wind farm layout optimization in [18].
Anosri et al. [19] compared different classes of multi-objective optimization algorithms
in the context of reliability design optimization. Among the multi-objective optimization
algorithms, one representative is the non-dominated sorting genetic algorithm II (NSGA-II).
NSGA-II, an advanced algorithm capable of handling multi-objective optimization, has
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been utilized by researchers for economic optimization in power systems-related studies.
Rejeb et al. [20] applied NSGA-II to estimate the optimal results of the proposed multi-
generation system. In [21], a suggested system producing electricity and hydrogen was
planned in a daily triple-periodic framework and solved by NSGA-II. With NSGA-II,
Maheri et al. [22] designed reproduction operators for robust exploration and exploitation
at both size and configuration levels. Since NSGA-2 has a wide range of applications, it is
used in this paper to solve the multi-objective problem in the intra-day stage.

This paper aims to apply HESS for the power balance and economic efficiency of
renewable energy systems. The main contributions of this work include the following:

1. We propose a dual-stage optimization scheduling model for grid-connected systems
with HESS to balance renewable energy, with day-ahead and intra-day stages.

2. In the day-ahead stage, we propose a scheduling model that utilizes the price peak-to-
valley difference and HESS to enhance the system’s efficiency. In the intra-day stage,
we introduce a multi-objective model, and NSGA-II is applied as a solution algorithm
to achieve the optimization of multiple objectives simultaneously.

3. Case studies show that for a real renewable energy system with HESS, the proposed
scheduling model reduces its daily costs by around 6% compared with the rule-based
operation. Model comparisons are conducted to compare the proposed model and
other existing models.

The remainder of this paper is organized as follows. In Section 2, the system modeling
and equipment characteristics are described. Section 3 presents the source–load forecasting
method. The dual-stage optimization scheduling model is proposed in Section 4. Case
studies are presented in Section 5. Finally, Section 6 concludes the paper.

2. System Modeling
2.1. System Description

Figure 1 depicts the structure of a renewable energy system augmented with HESS.
In this system, renewable energy sources include wind and solar energy. The majority of
the load is supplied by the output of renewable energy sources, which consists of both
electrical load and hydrogen load. The energy balance of the system is maintained by a
HESS composed of batteries and electrolyzers. The HESS plays a crucial role in two aspects:

1. Participating in the day-ahead optimal system scheduling, utilizing the price differ-
ence in the electricity grid to achieve economic optimization.

2. Balancing the source–load imbalance that may occur during the day-ahead scheduling.

Unlike the transient power characteristics of the source load, the state and actions of
energy storage devices, such as battery charging and discharging, and power adjustment of
electrolyzers, are time-dependent. Therefore, a comprehensive understanding and optimal
utilization of the HESS is essential [23].

This approach assists in resolving the intra-day supply-demand mismatch caused
by the prediction errors in source–load forecasting, as the energy exchange between the
system and the grid needs to align with the results of the day-ahead scheduling.

2.2. Wind Turbine

The output power of a wind turbine can be expressed as (1) [24].

pwind(vw) =


0, 0 ≤ vw < vin

vw−vin
vrated−vin

× prated
wind , vin ≤ vw < vrated

prated
wind , vrated ≤ vw < vout

0, vw ≥ vout

(1)

where vin and vout are the cut-in and cut-out wind velocities, respectively. vrated and prated
wind

represent the rated wind velocity and power.
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Figure 1. Renewable energy plants augmented with hybrid energy storage systems.

2.3. Photovoltaic

The output power of a photovoltaic power generation device is related to the solar
irradiation intensity and the ambient temperature, which can be calculated as (2) [25]:

ppv(Gpv, Te) = prated
pv fpv

Gpv

GSTC
(1 − αp(Te − Tre f )) (2)

where prated
pv represents the rated power output (kW) of the PV under standard test condition

(STC), GSTC and Tre f are the STC irradiation and temperature, Gpv represents the real-
time solar irradiation intensity, fpv is the discount factor of the power output, αp is the
temperature coefficient, and Te denotes the real-time panel temperature.

Te(Gpv) = Ta + Gpv ·
Tc,NOCT − Ta,NOCT

GNOCT
(3)

The panel temperature Te can be determined by (3), where Ta is the actual ambient
temperature, Tc,NOCT and Ta,NOCT are the nominal operating cell temperature (NOCT) of
the PV panels and the NOCT of the ambient temperature, and GNOCT is the NOCT of
irradiation intensity [25].

2.4. Hybrid Energy Storage System

In a hybrid energy storage system, the storage state of the battery is determined by
the previous moment’s storage state and the actions taken at the current moment. This
paper takes into account the energy dissipation in the battery and expresses its storage state
according to (4).

SoC(t) = SoC(t − δt) · (1 − γb) + (ηb−ch · pb−ch(t)−
pb−dis(t)

ηb−dis
) · δt/QRated

b (4)

where SoC(t) is the state of charge at time t, γb is the dissipation rate of the battery, pb−ch(t)
and pb−dis(t) are the charge and discharge power of the battery at time t, and Qb

Rated is the
rated storage capacity of the battery, which is one of the variables to be optimized.

Compared to the direct energy storage process of batteries, hydrogen storage systems
involve the conversion of electrical energy into hydrogen energy through electrolyzers be-
fore storage. This process is slower and less efficient than battery charging and discharging.
However, hydrogen storage systems have lower unit energy storage construction costs
than batteries and offer excellent environmental benefits. Additionally, they can meet users’



Energies 2024, 17, 737 5 of 19

hydrogen energy demands, like fuel cell vehicles or industrial processes [2]. Equations (5)
and (6) illustrate the chemical process of electrolysis, converting electricity to hydrogen.

H2 evolution reaction in the negative pole:

H2 + 2OH− − 2H2O = 2e− (5)

O2 evolution reaction in the positive pole:

2OH− − 1
2

O2 − H2O = 2e− (6)

Equation (7) explains the mathematical model for the electrolyzer [6].

melz−out =
ηelz pelz
LHVH2

(7)

where melz−out represents the hydrogen generated from the electrolyzer, pelz represents
the electricity consumed by the electrolyzer, and LHVH2 denotes the low heating value of
hydrogen gas.

The hydrogen gas produced by the electrolyzer is compressed by a compressor to
the appropriate pressure and then input into the hydrogen storage tank. The storage
state of the hydrogen tank is also dependent on the previous moment’s state and the
production/output at the current moment, as indicated by (8) [24].

LoH(t) = LoH(t − δt) · (1 − γh) + (ηh−inmelz−out(t)−
mh−out(t)

ηh−out
) · δt/QRated

h (8)

where LoH(t) is the state of hydrogen of a storage tank at time t, γh is the hydrogen
dissipation rate of the tank, mh−out(t) is the hydrogen output rate of the tank, δt is the time
step of optimization, and QRated

h is the rated storage capacity of the tank.

3. Source–Load Forecasting Method

The electrical load and renewable energy generation, such as wind and solar power,
often exhibit complex temporal characteristics, and a single network structure may not
achieve satisfactory predictive performance. This paper proposes the use of a convolutional
neural network-long short-term memory (CNN-LSTM) network for source–load forecasting.
The CNN network is commonly used to process raw data, automatically extracting internal
features and reducing algorithm complexity. The LSTM network, with its memory units, is
effective in handling long-term sequential data [26].

In the CNN-LSTM network, historical source–load data and meteorological data
are used as inputs. The CNN layer extracts features, followed by pooling operations to
reduce dimensionality. The fully connected layer then transforms the features into a one-
dimensional structure, extracting the feature vector. The LSTM layer learns the internal
patterns of load variations from the extracted features to achieve the forecasting function.
Finally, the output layer provides the prediction results, corresponding to the predicted
source–load sequence [27].

The proposed forecasting method starts with a four-layer one-dimensional convo-
lutional network for feature extraction from the input source–load sequence. The con-
volutional network uses larger kernel sizes to extract coarse-grained temporal features
initially and gradually reduces the kernel size to extract fine-grained temporal features.
The number of channels is increased as the network deepens. The kernel sizes for the
4 convolutional layers are 24, 12, 8, and 2, and the corresponding channel numbers are 132,
232, 332, and 432. Batch normalization is applied after each convolutional layer to stabilize
data distribution and accelerate convergence. Additionally, a dropout layer with a dropout
rate of 0.25 is added after each convolutional layer to prevent overfitting.
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The data extracted by the convolutional layers are then fed into the LSTM network
for model training. The LSTM network consists of 2 LSTM layers, with each layer having
256 neurons. After training, the model’s predictions are obtained by passing the results
through a fully connected layer.

In this paper, the input for day-ahead source–load forecasting consists of the source–
load data and weather data from the previous week, as well as the weather forecast for the
target day. The output is the hourly source–load data for the target day.

For intra-day forecasting, the input includes the source–load data and weather data
for the next 48 h, along with the weather forecast for the next hour. The output is the
minute-level source–load data for the next hour.

4. Dual-Stage Optimization Scheduling Model

The flowchart of the proposed dual-stage optimization scheduling model is presented
in Figure 2. The white blocks denote the preparation of the model, including data ac-
quisition, forecasting, and device modeling. The green blocks illustrate the day-ahead
scheduling model, while the yellow blocks are the intraday scheduling model. Blue blocks
denote the scheduling results. The architecture diagram of the proposed two-stage op-
timization scheduling model is shown in Figure 3. The model consists of two stages:
day-ahead and intra-day optimization. In the day-ahead stage, the time scale is one day
with a resolution of one hour and the optimization goal is to minimize the daily operation
costs. In the intra-day stage, the time scale is one hour, and it utilizes the day-ahead
optimization results as a reference. The intra-day optimization stage aims to compensate
for power deviations caused by inaccurate source–load forecasting using HESS balancing.
The resolution of the intra-day optimization is one minute. The optimization variables of
the proposed model are the power of the electrolyzer, the charging or discharging power of
the battery, and the power exchange with the utility grid.

Figure 2. The flowchart of the proposed dual-stage optimization scheduling model.
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Figure 3. Diagram of the dual-stage power allocation model. The numbers of day-ahead scheduling
denote the hours, while the numbers of intra-day scheduling denote the minutes.

4.1. Day-Ahead Optimal Scheduling Model
4.1.1. Optimization Goal

The objective of the day-ahead optimization stage is to minimize the daily operating
costs. In the proposed renewable energy system, the proposed renewable energy system,
these costs primarily include electricity price costs, equipment operation and maintenance
costs, battery degradation costs, and penalty costs incurred due to wind and solar power
curtailment. The operating revenue mainly consists of income from selling electricity to the
grid and hydrogen sales. The daily costs can be expressed as (9).

Objd−h = Ce−pur + Co−m + Cb−de + Cre−pal − Be−sell − Bh−sell (9)

The electricity cost benefits can be expressed as (10). The impact of electricity prices
on costs is significant. This paper aims to optimize the economic efficiency of the system
by utilizing the price difference between peak and off-peak hours through day-ahead
power scheduling.

Ce−pur =
T

∑
t=1

ce−pur(t)pe−pur(t) (10)

The equipment operation and maintenance costs can be expressed as (11). The battery
degradation costs are related to the battery’s charging and discharging power, which can
be expressed as (12).

Co−m =
T

∑
t=1

[
oelz pelz(t) + ocmp pcmp(t) + opv ppv(t) + owind pwind(t)

]
(11)

Cb−de =
T

∑
t=1

[db pb−ch(t) + db pb−dis(t)] (12)

Equation (13) illustrates the penalty costs incurred due to wind and solar power
curtailment.

Cre−pal =
T

∑
t=1

[
cre−pal pre−pal(t)

]
(13)

Given the interconnected nature of the system, it is imperative to account for the
revenue generated by exporting electricity to the grid, as expressed in (14). Nonetheless, it
should be noted that the selling price of electricity to the grid is typically subject to temporal
variations and tends to be significantly lower than the purchasing price. This discrepancy
arises due to the inherent risk associated with integrating electricity from the renewable
energy system into the power grid, as it may potentially impact grid stability.

Be−sell =
T

∑
t=1

ce−sell(t)pe−sell(t) (14)
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Furthermore, the system can also generate revenue by selling hydrogen energy,
as shown in (15).

Bh−sell =
T

∑
t=1

ch−sellmh−sell(t) (15)

4.1.2. Constraints

Power and hydrogen balances should be satisfied during the operation, as expressed
in (16) and (17).

ppv(t) + pwind(t) = pload(t) + pelz(t) + pcmp(t) + pb−ch(t)− pb−dis(t) + pg−ex(t) + pre−pal(t) (16)

mh−sell(t) = mh−out(t) (17)

The operational power of the compressor is indeed related to factors such as the
hydrogen production rate of the electrolyzer and the pressure of the hydrogen storage
tank. In this paper, it is assumed that the operational power of the compressor is directly
proportional to the hydrogen production rate, as expressed in (18).

pcmp(t) = βmelz−out(t) (18)

In the day-ahead optimization, it is necessary to ensure the safe and stable operation
of the equipment. This necessitates operating the devices within certain power ranges.

pmin
elz ≤ pelz(t) ≤ pmax

elz (19)

pmin
cmp ≤ pcmp(t) ≤ pmax

cmp (20)

pmin
b−ch ≤ pb−ch(t) ≤ pmax

b−ch (21)

pmin
b−dis ≤ pb−dis(t) ≤ pmax

b−dis (22)

pmin
g−ex ≤ pg−ex(t) ≤ pmax

g−ex (23)

The states for both the battery and hydrogen storage tanks also need to be constrained.
Overcharging or over-discharging can lead to a decrease in battery lifespan. Additionally,
a portion of the storage capacity needs to be reserved for intra-day optimization during
day-ahead scheduling. Therefore, the lower and upper limits for the storage state are set at
0.2 and 0.8, respectively [28].

0.2 ≤ SoC(t) ≤ 0.8 (24)

0.2 ≤ LoH(t) ≤ 0.8 (25)

In order to maximize the energy utilization efficiency of the system, the battery is not
allowed to charge and discharge simultaneously.

pb−ch(t) · pb−dis(t) = 0 (26)

Ultimately, in order to ensure optimal energy utilization, it is necessary to limit the
curtailment rate of wind and solar power within a certain range, as indicated in (27).[

t=T

∑
t

pre−pal(t)

]
/

[
t=T

∑
t

pwind(t) + ppv(t)

]
≤ εre−cul (27)

4.2. Intra-Day Optimal Scheduling Model
4.2.1. Optimization Goal

The main objective of the intra-day optimization stage is to align the energy exchange
between the system, the energy flow of EHSS, and the grid with the day-ahead scheduling
results while minimizing the curtailment rate of wind and solar power. As a result, the intra-
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day optimization model becomes a multi-objective model with the objective functions
represented by (28).

Obji−d =
{

Egrd, Ecul , Ehess

}
Egrd =

τ=λ

∑
τ

|pg−ex − p̃g−ex(τ)|/(λpg−ex)

Ecul =
τ=λ

∑
τ

| p̃re−pal(τ)|/(λppv + λpwind)

Ehess =
τ=λ

∑
τ

(|pb − p̃b|+ |pelz − p̃elz|)/(λpb + λpelz)

(28)

where τ represents the optimization time interval of intra-day operation, while λ represents
the optimization time period.

4.2.2. Constraints

Similar to the day-ahead operation, during the intra-day operation of the system,
several constraints also need to be considered, including the power and hydrogen energy
balance constraint, as specified in (16) and (17), the compressor’s power constraint, as
specified in (18), the equipment operating range constraint, as specified in (19)–(23), storage
constraints for lithium batteries and hydrogen tanks, as specified in (24) and (25), as well
as the constraint that prevents simultaneous charging and discharging of the batteries, as
specified in (26).

4.3. Solution Method

The day-ahead optimization scheduling model can be formulated as a mixed-integer
linear programming (MILP) problem and is solved directly by applying Matlab R2022a
with Gurobi 10.0. However, the intra-day scheduling is a multi-objective optimization
problem. In this study, the non-dominated sorting genetic algorithm II (NSGA-II) method
is employed to solve the intra-day optimization problem.

The NSGA-II algorithm, originally proposed by Deb et al. [29], is a well-structured
optimization algorithm widely utilized for solving complex engineering problems. It incor-
porates several key components such as fast-non-dominated sorting, a smart maintenance
approach, and effective crowding distance assessment, which collectively contribute to
improving the convergence rate and maintaining population diversity. The solving process
of intra-day multi-objective optimization problems based on NSGA-II is shown in Figure 4.
During the initialization stage, careful consideration is given to the limitations of decision
variables for optimization. If an original population is available, the algorithm proceeds to
the generation of the second population; otherwise, it performs the non-dominated selec-
tion, followed by selection, crossover, and mutation steps to create the original population.
A merging technique is employed to combine the initial and offspring populations. If a
new parent population is generated, the algorithm continues with selection, crossover,
and mutation steps. Otherwise, it reverts back to the fast-non-dominated sorting, crowding
distance assignment, and selection of suitable individuals before proceeding to the selection,
crossover, and mutation steps. This iterative process continues for a specified number of
generations. Finally, when the maximum number of generations is reached, the algorithm
plots the Pareto frontier and employs an optimal point selection method to determine the
final optimal solution [21].

Non-dominated sorting and the elitism preservation strategy contribute to the im-
proved performance of the NSGA-II algorithm in terms of computational efficiency, preser-
vation of good solutions, and maintaining population diversity, thereby enhancing its
effectiveness in solving multi-objective optimization problems. With the NSGA-II, a three-
dimensional Pareto front can effectively showcase the results of multi-objective optimiza-
tion. It provides a clear visualization of the trade-off relationship between the three
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objectives and allows for a comprehensive understanding of the optimal solutions in the
problem domain.

Figure 4. The solving process with NSGA-II.

5. Case Studies
5.1. Parameters and Data Curation

This study validates the proposed scheduling method in a laboratory’s practical
experimental system, of which, the electrolyzer is presented in Figure 5. Due to the
limitations of the laboratory environment, the capacity of the equipment in the system is
relatively small, within 100 kW. It should be noted that the optimized operation method
proposed in this paper has little relationship with the equipment capacity level, and can
also be applied to large-scale renewable energy systems. The rated power of the wind
turbine, PV, electrolyzer, and compressor are 12 kW, 60 kW, 20 kW, and 5 kW, respectively.
The storage capacity of the battery and hydrogen tank are 15 kWh and 5 kg. The cut-in
wind speed of the wind turbine is 2.5 m/s, the cut-out wind speed is 25 m/s, and the rated
wind speed is 12 m/s. The equipment parameters for the PV and wind system of this study
are presented in Table 1. The other critical operation parameters, including unit operation
and maintenance costs, are presented in Table 2, where the parameter values related to the
equipment are derived from the real settings in the laboratory, and the parameter values
related to the price are derived from [5].

Table 1. Parameters of the PV and wind turbines.

Parameters Values Parameters Values

prated
wind 12 kW prated

pv 60 kW
vin 2.5 m/s vout 25 m/s

vrated 12 m/s GSTC 1 kW/m2

Tc,NOCT 20 °C Tre f 25 °C
GNOCT 0.8 kW/m2 αp 0.005 °C−1

Ta,NOCT 25 °C fPV 80%
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Table 2. Other operation parameters of the system.

Parameters Values Parameters Values

pmax
elz (kW) 20 opv/owind ($/kW) 0.033

ηb−in/ηb−out 0.975 oelz 0.29
pmin

elz (kW) 5 cre−pal ($/kW) 0.05
pmax

cmp (kW) 5 oHs ($/kg) 0.017
pmax

b−ch (kW) 30 db ($/kW) 0.020
LHVH2 kJ/mol 242 oCmp ($/kW) 0.012
β 2 γb/γh 0.0006%
ηelz 0.65 QRated

b (kWh) 15
QRated

h (kg) 5 ηh−in/ηh−out 0.975

Case studies were conducted in four scenarios, of which, the day-ahead source–load
forecasts are shown in Figures 6–8. As can be seen, the PV energy in Scenarios 1 and 2 is suffi-
cient, while the wind power in Scenario 1 is much less than the others. In Scenarios 3 and 4,
the PV energy is lacking, and there are non-steamed bun-shaped PV curves in Scenario 4,
which are caused by the gloomy weather. The energy demand of the system performs
basically the same in the four scenarios. Additionally, Figure 9a illustrates the electricity
price for energy exchange between the system and the grid, while Figure 9b represents the
hydrogen energy demand. In this study, it is assumed that the hydrogen energy output
of the system is connected to an industrial park, resulting in a relatively stable hydrogen
energy load.

Figure 5. Alkaline water electrolyzer of the system in the laboratory.

Figure 6. Wind power forecasting results.
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Figure 7. Solar power forecasting results.

Figure 8. Electricity load forecasting results.

(a) Electricity selling and purchasing prices (b) Industrial hydrogen energy load

Figure 9. Data input of the renewable energy system.

5.2. Day-Ahead Optimization Results

The comparison between the proposed method and the conventional operational
results is presented in Table 3. The operational strategy of the conventional method is as
follows: When the power output from renewable energy sources exceeds the electricity
demand, the excess power is primarily utilized by the electrolyzer to produce hydrogen.
Once the hydrogen storage tank is full or the remaining power is insufficient to meet
the minimum operating power of the electrolyzer, the remaining electricity is absorbed
by the battery for storage and later use. It can be observed that—for the four selected
typical days—the economic performance of the day-ahead optimization scheduling method
proposed in this paper surpasses that of the non-optimized system, with around a 6% cost
reduction rate.



Energies 2024, 17, 737 13 of 19

Table 3. Day-ahead optimization results of four typical days and the comparison with the conven-
tional operation.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Daily costs ($) Conventional operation 71.34 46.73 74.52 60.78
Optimized operation 66.82 44.10 70.10 56.46

Costs reduction rate (%) 6.34 5.63 5.93 7.11

These observations highlight the system’s adaptive strategies in response to electricity
prices and renewable energy availability. Such strategies involve optimizing hydrogen pro-
duction based on price differentials and leveraging energy storage capabilities to maximize
system efficiency and cost-effectiveness.

The system operation results for the four scenarios are shown in Figure 10a–d. In the
figure, “ELZ” refers to the electrolyzer power, “GRDP” represents the power purchased
from the grid, “GRDS” represents the power sold to the grid, and “SOC” and “LOH”
indicate the energy storage levels of the battery and hydrogen tank, respectively.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 10. Day-ahead optimization results of different scenarios.

By examining the power exchange between the system and the grid, it can be observed
that the system’s power purchase from the grid is considered as the power input (negative
value), while the power sold to the grid is considered as the power output (positive value).
Comparing the four scenarios, it is evident that almost all the power sold to the grid is
concentrated between 11:00 and 15:00, as indicated by the red box in the figure. This is because
the electricity selling price to the grid is the highest during this time period, and the PV power
generation is also high, resulting in concentrated power selling during this timeframe.

The power sold to the grid is closely related to the system’s source–load balance. When
renewable energy generation is low, as shown in Scenario 3, the system only purchases
power from the grid and does not sell power to the grid. It is worth noting that the
optimization model proposed in this paper takes into account the varying electricity prices.
Therefore, the system attempts to avoid purchasing power from the grid during high-
priced periods, such as 11:00–15:00 and 18:00–20:00 in Scenario 3. In these two time
periods, the system compensates for the low input from the source and the high output
from the load in two different ways. In the former time period, the system reduces the
electrolyzer’s power and releases hydrogen from the storage tank to minimize energy
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consumption. In the latter time period, the system achieves energy balance by discharging
the battery. These operational strategies contribute to the economic benefits of the system.
Similar time periods can be observed in Scenarios 2 and 4, as indicated by the black box
in the figure. Furthermore, it can be observed that the variation trend of the hydrogen
storage level is generally opposite to the trend of electricity prices. This confirms that
the optimization method proposed in this paper can effectively allocate renewable energy
power by producing hydrogen during periods of low electricity prices and prioritizing
meeting the electricity demand during periods of high electricity prices, thereby reducing
system costs.

Finally, it can be seen that the variation rate of the battery’s SOC is relatively small.
This also indicates that adopting the HESS can effectively reduce the required battery
capacity, which is beneficial for reducing the system’s construction costs. If only a battery
energy storage system is used, a significant increase in battery capacity would be required
to achieve source–load balance.

5.3. Intra-Day Optimization Results

Figure 11 illustrates the intra-day optimization Pareto frontier for the first hour of a
typical day in Scenario 1. The points on the Pareto frontier represent the optimal solution
set of the multi-objective optimization model for day-ahead planning. At each point
along this boundary, one objective cannot be further improved without sacrificing another
objective. In other words, it represents the best trade-off or balance achieved among
multiple objectives. The Pareto frontier showcases the range of feasible solutions that
offer different trade-offs between objectives, allowing decision-makers to choose the most
suitable solution based on their preferences and priorities.

The intra-day operation results of Scenario 1 are presented in Figure 12a. It is evident
that the operation of the electrolyzer during the intra-day period closely follows the day-
ahead scheduling plan. Furthermore, Figure 12b depicts the power exchange between the
system and the grid, demonstrating good tracking performance.

Figure 11. Pareto frontier of the first hour in Scenario 1.

(a) Power of the electrolyzer (b) Exchange power with the grid

Figure 12. Intra-day optimization results of Scenario 1.
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5.4. Model Comparison

We compare the proposed dual-stage optimization model with the other existing mod-
els, of which, the optimization goals and solution methods are shown in Table 4. Model
A represents a day-ahead model designed to minimize day-ahead costs as its optimiza-
tion objective. The particle swarm optimization (PSO) algorithm is employed to solve
this model. Meanwhile, Model B incorporates minute-level intra-day optimization and
encompasses two objectives: operational profit and curtailment rate of renewable energy.
Given its multi-objective nature, the study employs NSGA-II to tackle this optimization
problem. In Model B, the original optimization objective was operational profit. However,
in this paper, the consideration of revenue generated from hydrogen energy is omitted.
As a result, the objective is transformed into the operational cost as a substitute measure to
facilitate model comparison. Model C shares similarities with the proposed model in this
paper, as both are dual-stage optimization models. In the day-ahead optimization, Model C
focuses on minimizing operational costs but diverges in the intra-day optimization, where
the objective is to achieve a tracking rate based on the day-ahead dispatch results, with-
out explicitly considering the curtailment rate of renewable energy. Notably, the literature
does not emphasize the two-stage solving approach for Model C, and this paper replaces it
with the PSO algorithm.

Table 4. Optimization goals and solution methods of the four models.

Optimization Goals Solution Methods

Day-Ahead Intra-Day Day-Ahead Intra-Day

Model A [7] Daily operation costs / Particle swarm
algorithm /

Model B [30] / Costs & Power
abandonment rate / NSGA-II

Model C [31] Daily operation costs Trace the day-ahead
operation schemes

Particle swarm
algorithm

Particle swarm
algorithm

Model D
(Proposed model) Daily operation costs

Trace the day-ahead
operation schemes &
Power abandonment
rate

MILP NSGA-II

Table 5 illustrates the daily operating costs, the deviation of exchanged electricity with
the grid compared to the day-ahead schedule, and the actual renewable energy curtailment
rate for four models, using Scenario 2 as an example.

From the optimization results of the four models, it can be observed that there is
minimal difference in the daily operating results. This is because the daily operation is
consistently considered by all the models. However, in terms of tracking the day-ahead
operation results and managing renewable energy curtailment, Model D exhibits a more
balanced and outstanding performance. This can be attributed to the fact that Model A
focuses solely on day-ahead optimization and cannot handle the uncertainties arising from
wind and solar forecasts. On the other hand, Model C’s intra-day optimization stage is a
single-objective optimization that only considers tracking the day-ahead dispatch results,
overlooking the issue of renewable energy curtailment. In contrast, both Model B and
Model D adopt multi-objective optimization, providing a more balanced consideration
of renewable energy curtailment. However, Model B is an intra-day optimization model
and cannot provide operational guidance for the day-ahead operation. Therefore, Model
D can be considered a more balanced and effective system operation optimization model
among them.
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Table 5. Optimization results of the four models.

Model A Model B Model C Model D

Daily operating costs ($) 45.2 46.1 45.3 44.1
Deviation of exchanged electricity (%) 5.3 / 1.4 2.1
Renewable energy curtailment rate (%) 6.4 1.7 7.6 1.3

By comparing the solution methods of the four models, it is evident that NSGA-II
achieves good results for multi-objective optimization, while PSO is more favored for single-
objective optimization due to its powerful search capabilities. The day-ahead optimization
in this paper is formulated as a MILP model, which can be solved directly using solvers,
resulting in faster computation. However, this approach sacrifices modeling accuracy, such
as not considering the variability of electrolyzer efficiency with power. It is important
to note that the proposed intra-day optimization stage in this paper helps alleviate the
potential issues arising from the lower modeling accuracy to some extent.

6. Conclusions

This paper proposes a dual-stage optimization scheduling method for grid-connected
systems with hybrid energy storage to balance renewable energy. The model consists of
an economically optimal day-ahead scheduling model and an intra-day stage that uses
accurate renewable energy forecasting to minimize curtailment. The proposed model
offers several advantages, including enhanced economic efficiency in the day-ahead stage
and multi-objective optimization in the intra-day stage. It provides a comprehensive
approach to optimize the scheduling of grid-connected systems with hybrid energy storage,
achieving a balance between different optimization objectives. Compared with other
works, the proposed model balances economic and operational considerations, enabling
the system to operate economically and stably. However, the faster solution speed of the
day-ahead stage sacrifices some modeling accuracy, making it suitable for scenarios where
high modeling accuracy is not critical.

Overall, the proposed dual-stage optimization model offers a promising solution for
achieving economic efficiency and minimizing curtailment in grid-connected systems with
renewable energy sources, contributing to the effective integration of renewable energy
and the sustainable operation of the power grid.

Refining electrolyzer modeling and exploring faster and more effective optimization
algorithms are promising directions for future research. Improving electrolyzer modeling
accuracy will better capture system dynamics, while advanced algorithms will enhance
the efficiency and effectiveness of the optimization process, enabling more comprehensive
and optimal system operations. These advancements will contribute to the development of
sophisticated and efficient energy management strategies in the future.
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Nomenclature

HESS hybrid energy storage system
PV photovoltaic
PSO particle swarm optimization
MILP mixed-integer linear programming
NSGA-II non-dominated sorting genetic algorithm II
CNN-LSTM convolutional neural network–long short-term memory
STC standard test condition
NOCT nominal operating cell temperature
ppv solar power output
pwind wind power output
pload electricity load
pelz electrolyzer power
pcmp compressor power
pb−ch charging power of battery
pb−dis discharging power of battery
pg−ex exchange power with the utility grid
pre−pal renewable power curtailment
pm−out hydrogen output of system
melz−out hydrogen generation amount of electrolyzer
mh−out hydrogen demand
SoC stage of charge of battery
LoH level of hydrogen of storage tank
p̃re−pal intra-day renewable power curtailment
p̃g−ex intra-day exchange power with the utility grid
p̃elz intra-day electrolyzer power
p̃b intra-day charging/discharging power of battery
Objd−h objective function of day-ahead stage
Obji−d objective function of intra-day stage
Ce−pur electricity purchasing costs
Co−m operation and maintenance costs
Cb−de battery degradation costs
Cre−pal penalty costs of renewable power
Be−sell revenue from selling electricity
Bh−sell revenue from selling hydrogen
p̃g−ex power exchange with the grid: day-ahead optimization result
p̃re−pal renewable power curtailment: day-ahead optimization result
p̃b charging or discharging power of the battery: day-ahead optimization result
p̃elz power of electrolyzer: day-ahead optimization result
prated

wind rated power of wind turbine
prated

pv rated power of PV
γb dissipation rate of the battery
γh dissipation rate of the hydrogen tank
ηbch charging efficiency of the battery
ηb−dis discharging efficiency of the battery
QRated

b rated capacity of the battery
ηelz electrolytic efficiency of the electrolyzer
LHVH2 low heat value of the hydrogen
ηh,in input efficiency of the hydrogen tank
ηh,out output efficiency of the hydrogen tank
QRated

h rated capacity of the hydrogen tank
ce−pur/e−sell unit electricity purchasing/selling prices
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oelz/cmp/pv/wind unit operation costs of electrolyzer/compressor/PV/wind turbine
db unit degradation cost of the battery
cre−pal unit cost of renewable power curtailment.
ch−sell unit hydrogen selling price
β the ratio of compressor power consumption to compressed

hydrogen energy
pmax/min

e lz the maximum/minimum power of electrolyzer
pmax/min

c mp the maximum/minimum power of compressor
pmax/min

b−ch the maximum/minimum charging power of the battery
pmax/min

b−dis the maximum/minimum discharging power of the battery
pmax/min

g−ex the maximum/minimum exchange power with the grid
ϵre−cul the upper limit of the renewable power curtailment rate
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