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Abstract: The transactive energy market is an emerging development in energy economics built
on advanced metering infrastructure. Data generated in this context is often required for market
operations, while also being privacy sensitive. This dual concern has necessitated the development
of various methods of obfuscation in order to maintain privacy while still facilitating operations.
While data aggregation is a common approach in this context, many of the existing aggregation
methods rely on additional network components or lack flexibility. In this paper, we introduce Cyclic
Homomorphic Encryption Aggregation (CHEA), a secure aggregation protocol that eliminates the
need for additional network components or complicated key distribution schemes, while providing
additional capabilities compared to similar protocols. We validate our scheme with formal security
analysis as well as a software simulation of a transactive energy network running the scheme. Results
indicate that CHEA performs well in comparison to similar works, with minimal communication
overheads. Additionally, CHEA retains all standard security properties held by other aggregation
schemes, while improving flexibility and reducing infrastructural requirements. Our scheme operates
on similar assumptions as other works, but current smart metering hardware lags in terms of
processing power, making the scheme infeasible on the current generation of hardware. However,
these capabilities should quickly advance to an accommodating state. With this in mind, and given
the results, we believe CHEA is a strong candidate for aggregating transactive energy data.

Keywords: aggregation; homomorphic encryption; smart grid

1. Introduction

Advanced metering infrastructures (AMI) have enabled new functionalities in the
power delivery sector. Smart meters enable frequent collection of detailed energy profile
data from the homes of consumers [1]. Additionally, smart energy grids facilitate the
transmission, storage, and analytic computations of consumers’ energy profile data by
means of Information and Communication Technology (ICT) networks that inter-operate
with energy grids. Novel developments of intelligent demand response by means of smart
thermostats, smart plugs, smart lighting, and smart appliances, as well as optimal power
flow algorithms, AI-based electric and thermal/cooling loads predictions are examples
of technological progresses in the smart energy grid sector [2]. These progressions will
enable greater energy economic efficiency through models such as transactive energy (TE)
markets, further enabling high frequency peer-to-peer energy trading between prosumers
(consumers who also produce energy) and power utilities [3]. These models will also
contribute to greater energy efficiency, due to shorter electrical transmission distances as
well as improved load balancing, demand response, and AI-assisted predictions.

Although a standardized transactive energy market (TEM) platform has yet to arise, in-
novative research works and proposals for TEM platforms are being published regularly, as
recently surveyed by Garcia et al. [4]. These platforms often employ blockchain technology
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to secure private information such as consumer trading history, identifying information,
and account balances, among others [5]. However, an often-overlooked privacy concern is
that of energy usage data. Usage data is regularly required for critical operations such as au-
tomated demand response, power flow optimization, and billing. While it is not inherently
identifying, many researchers believe it should fall under the category of protected private
information [6]. This is due to the fact that this data can facilitate many malicious attacks
on consumers, including profiling, trading pattern recognition, and malicious trading [7].

As energy usage data is required for many critical functions, it cannot be obfuscated
entirely, and instead must be accessible in some form to the distribution systems operator
(DSO). Proposals for adapting this information have included adding noise to the data,
performing algebraic transformations that preserve large scale statistical properties, and
using battery banks to disguise a household’s true energy needs [8–10]. However, the
approach we believe to be the most effective is aggregation [11]. Data aggregation is
successfully used in many other industries, including in healthcare [12]. It has the benefit
of not changing the data (like noising and algebraic transformation would), as well as
not requiring additional equipment to be installed at the household (like battery-based
techniques would).

Many protocols have been proposed to facilitate data aggregation in smart grids.
However, as will be seen in the related work, these protocols suffer from drawbacks in
terms of hardware requirements and/or flexibility. Additionally, these protocols were not
designed with transactive energy in mind.

Our proposed protocol, named Cyclic Homomorphic Encryption Aggregation (CHEA), was
designed from the ground up to be integrated into a transactive energy market environment.
It is designed to be both flexible and distributed, which are features that make it a natural
complement to blockchain-based TEM models.

In this paper, we outline the design of the CHEA protocol, investigate its strengths
and weaknesses from a security standpoint, examine the simulation results of the protocol,
and compare its performance with other energy data aggregation schemes.

The key contributions of CHEA, introduced in this paper, include:

1. Network infrastructure: While blockchain-enabled TE networks and smart grids often
have auxiliary nodes such as fog nodes (FNs) or edge nodes, CHEA does not rely
on them. This enables networks that do not have auxiliary nodes to use our scheme
without installing additional hardware. Networks that already have such nodes will
still benefit, as these nodes will have more resources available to them to perform
other tasks (e.g., blockchain validation) than if they were involved with aggregation.

2. Key distribution: Many proposed aggregation techniques in this space rely on compli-
cated cryptographic key distribution schemes in order to function. This is because
data in this context must be aggregated regularly, requiring synchronization between
the data generating, requesting, and aggregating parties. In contrast, other cases—
such as medical data—might only need to be aggregated once for a study. Our scheme
sidesteps the issue by performing the aggregation process entirely locally to the group
of data owners.

3. Single points of failure: Trusted authorities (TA) and FNs can be single points of
failure from both a security and operational standpoint. If an FN goes offline, then its
region of smart meters will no longer be able to report to the DSO. If a TA goes offline
then the entire network will not be able to report data. If either are compromised
then an adversary would be able to acquire individual readings from consumers,
enabling the attacks discussed in Section 2. Our scheme does not rely on either of
these mechanisms.

4. Scalability: It is noted by Ming et al. [13] and others that the resources of TAs could
become overwhelmed if the area covered by a DSO became too large. Since key
generation happens locally in CHEA, this concern does not exist. Additionally, as a
neighbourhood grows, new aggregating nodes would need to be installed to support
additional meters (in schemes that require them). Our scheme is not subject to this
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scaling factor. The distributed nature of the protocol means that scaling is limited only
by the communication capacity of the DSO.

5. Decentralization: As discussed in [7] the trend in TEM development is towards
decentralized applications. A decentralized solution for data aggregation supports
this trend and confers the same benefits seen by turning other power management
mechanisms into distributed applications.

6. Flexibility: CHEA supports flexible group membership, group size (which corre-
sponds to aggregated data resolution), and locality, meaning that groups can be sparse
or dense. These variables allow the scheme to support diverse applications that might
have different data requirements.

7. Fault tolerance: On-the-fly group generation means that member smart meters are
guaranteed to be active, provided that they do not malfunction during the ∼500 ms
aggregation cycle.

This paper will be of interest to practitioners who are designing Transactive Energy
Markets (TEMs), smart meters, and smart grid (SG) infrastructure. It provides a novel
solution to a common problem in these domains, making it directly useful to SG and TEM
operators. Smart meter hardware designers should consider these solutions to inform the
technical specifications of the meters. In addition, researchers can use our results as a basis
for the comparison of novel schemes, or they may choose to build on our scheme or adapt
it for other application fields.

The rest of this paper is structured as follows. Section 2 presents the background
and motivation behind the design and implementation of an innovative cybersecurity
protocol for smart grids and transactive energy markets’ stakeholders. Section 3 outlines
similar research works in the field and discusses the various approaches to smart grid data
aggregation that have been considered. In Section 4, the CHEA protocol is described in
detail. In Section 5, a formal security analysis is performed to demonstrate the privacy-
related benefits of the proposed approach. In Section 6, the implemented CHEA protocol
is demonstrated in a simulated smart grid network environment. We also discuss the
simulation results, as well as how they compare to simulations of similar schemes. Section 7
discusses limitations of our experiments. Finally, in Section 8, we conclude the study with
a reflection on the results and suggestions for further research.

2. Background and Motivation

Transactive energy markets (TEMs) are meant to represent autonomous distributed
platforms for trading energy and reserves among prosumers of energy (with numerous
and different types of distributed energy resources—DERs) and distribution system op-
erators (DSOs). Built on top of smart grid infrastructure, a TEM consists of software that
facilitates the trading of energy directly between consumers, prosumers, and DSOs. This
capability has the potential to increase efficiency, lower costs, and reduce environmental
impacts [14,15].

A typical TEM architecture consists of power consumers equipped with smart meters
(SMs), prosumers with distributed energy resources, battery energy storage systems (BESS),
electric vehicles (EVs), and a traditional power generation station [15–17]. Additionally,
there will be some form of distributed system operator, sometimes referred to as control
center (CC) or cloud control center (CCC), who handles billing, data management, demand
response, demand prediction, and other critical maintenance and operational tasks [16,18].

There is no shortage of data generated within smart grids and transactive energy
markets. While some of the mentioned data are personal, such as a user’s transaction
history, identity, or credit standing, other sources are more opaque.

CHEA is concerned with the privacy protection of energy usage data. These data are
required for many critical functions:

• Physical operation of the power grid, for example, when performing state estimation;
• Novel functionality offered by the smart grid, such as automated demand response;
• Operating a transactive energy market, for billing, transaction verification, etc.
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A recent literature review that examined privacy concerns in various transactive
energy market implementations found that, while steps were generally taken in TEM
proposals to protect identifying information, energy usage data are often mishandled [7].

Several studies, including those from McDaniel and McLaughlin [6] and from Lisovich
et al. [19], note that energy usage data should be considered private data, and that their
leakage can lead to a number of undesirable outcomes. These can include revealing
appliance profiles in consumer households, spying, facilitating theft, and allowing hackers
to understand activity within the home [5,6,19].

While proposed TE models have neglected this area of concern, smart grid research has
produced a number of novel methods for making such data available for important func-
tions, while maintaining user privacy [5]. Additionally, existing methods of aggregating
data have been adapted for smart grid environments.

Some proposed methods include:

• Algebraic Transformation [8]: Algebraic transformation refers to a family of mathematical
techniques that enable the modification of a set of data so that the individual values
are altered, but the results of certain computations remain consistent.

• Battery Filtering: Battery filtering is a method of disguising usage data proposed
by Kalogridis et al. [9]. This method suggests using a battery energy storage system
in the home (this could be an EV, a Tesla Powerwall, or another BESS product) as a
buffer between the home and the power grid. The BESS would be discharged to meet
the short term-term energy demands of the home and charged regularly from the grid.
The use of such an energy buffer has the effect of obfuscating the real-time energy
usage patterns in the home while maintaining power availability.

• Data Aggregation [11]: Commonly used in the medical sciences [12], data aggregation is
the process of summarizing data for analysis. Generally, this will consist of performing
a summation of each dimension or feature of the data before transmitting them to
the data receiver. This has the benefit of allowing analysis of real data without
compromising the privacy of individuals; since only the aggregate is analyzed, the
data receiver cannot tie any individual measurement to a specific person.

• Random Noise [10]: The introduction of random noise is a common method of providing
access to data while preserving privacy and preventing statistical attacks. This involves
generating noise, or random datapoints, using a random function, such as Perlin
noise [20]. Noise can have different statistical properties, such as smooth transitions
between points. The generated noise is then used to modify the real measured values
(for example, by adding the absolute value of the noise at a particular point) enough
to disguise them from attackers, but subtly enough that the result is still useful to the
party analyzing the data. In circumstances where approximations suffice, this can be
an appropriate solution.

Table 1 displays the attributes of the privacy-preserving data collection methods
discussed. MA1 is hardware independence; MA2 is preservation of exact measurements;
MA3 is discrete values reporting; and MA4 is timely data reporting (for use in demand
response applications).

Table 1. Comparison of privacy-preserving data collection methods.

Method MA1 (HW) MA2 (Exact) MA3 (Discr.) MA4 (Timely)

Algebraic Transformation yes no yes yes
Battery Filtering no no yes no

Data Aggregation yes yes no yes
Random Noise yes no yes yes

Our scheme (CHEA) performs data aggregation in order to preserve privacy. We find
this to be most appropriate for the TE environment for several reasons. Unlike introducing
random noise and algebraic transformation, aggregation allows the DSO to work with real
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values. While some operations—such as demand response—might function adequately
given approximate values, others—for example, transaction verification—are not so for-
giving. Battery filtering is a compelling solution, but suffers from requiring prosumers to
own expensive hardware. User privacy should not be predicated on purchasing additional
equipment, and for this reason, a software solution is preferable. Of course, users with EVs
or BESS can still employ battery filtering if they desire.

Homomorphic encryption (HE) is a mechanism commonly employed to facilitate
privacy-preserving data aggregation [21]. HE refers to encryption in which mathematical
operations can be performed on the cyphertext, and the result will be equivalent to having
encrypted the result of the same operation performed on the plaintext. For example,
assuming an HE-based encryption function E() and the use of the sum operator (+) as the
aggregation function, then E(x) + E(y) = E(x + y). Hence, the aggregated result can be
decrypted without knowing the nature of the individual operands.

While there are many aggregation schemes based on HE, simulation results (presented
later in Section 5) indicate that CHEA excels uniquely in a few key areas (on top of being
a “truer” distributed application), including privacy, collusion-resistance, and flexibility,
which make it a valuable contribution to the field.

3. Related Work

There is extensive body of literature on the topic of data privacy. Even if we restrict
ourselves only to a smart grid context, many solutions exist, as hinted at in Section 2. In
this section, we focus our analysis of similar works on privacy solutions that employ data
aggregation, and ideally those that are also based on homomorphic encryption. A search
on Scopus (the most comprehensive index for such literature) with the query privacy AND
(“smart grid” OR “transactive energy”) AND “data aggregation” AND “homomorphic encryption”, executed
on 1 December 2023, returned 100 journal and conference papers. The related work closest
to ours is discussed below.

There are many privacy-preserving aggregation schemes that rely on homomorphic
encryption [13,21–26]. Of those, the majority [22–25] use the Paillier cryptosystem [27,28],
which we also chose to use when implementing CHEA due to its relative computational
efficiency. Other HE cryptosystems, such as Elliptic Curve ElGamal [29,30], are occasionally
used and some researchers compared the performance of multiple cryptosystems [31].

The vast majority of aggregation protocols [13,26,32–37] use a system in which smart
meters connect to an intermediate node who aggregates the data before sending them to
the distributed system operator. This architecture is outlined in Figure 1.

There are several drawbacks to this architecture. One is that each aggregating node
represents a single point of failure, whose outage would prevent a large region of smart
meters (the ones aggregated by the failing node) from reporting data. Another is that
collusion between the DSO (who owns the HE private key) and an aggregating node
is trivial and hence may compromise many households. Finally, there are concerns of
scalability given the need to add physical nodes to support neighbourhood expansion.

Another common theme is the use of a trusted authority (TA) to generate and dis-
tribute cryptographic keys. This can leave the system vulnerable to a number of attacks,
including man-in-the-middle, false data injection, and data deletion if the TA is compro-
mised [13,21,22]. Key distribution is a central problem for traditional schemes, such that it
has become its own area of research. For example, Cheng et al. [38] propose a key distribu-
tion scheme that reduces communication overhead and improves security. One can thus
conclude that avoiding key distribution altogether would be a valuable proposition.

Some solutions do attempt to address these concerns. For example, the scheme by
Chen et al. [25] attempts to improve resilience and flexibility by enabling variable subsets
of meters, but still relies on a TA to generate and distribute keys.

Instead of relying on external fog nodes, several of the aggregation schemes use in-
network aggregation, or aggregation that happens on the smart meters as the data are
sent along. This means that intermediate meters will add their encrypted measurements
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to those sent by previous meters, a strategy we also use in CHEA. In fact, one of the
earliest examples of a smart-grid aggregation scheme for data privacy used this technique.
Li et al. [11] describe a technique in which an aggregation “tree” is created to describe the
path the data will take. In their case they are employing in-network aggregation for the
sake of computation and communication efficiency, so the aggregation tree remains static
based on the network topology (as it would not make sense to send the data down a less
efficient path). Despite making use of this technique for a different purpose than CHEA, it
is encouraging to see that the assumption we make about smart meters being capable of
performing such aggregation is not unprecedented in the literature.
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Figure 1. Typical architecture for an aggregation protocol employing fog nodes. (Figure adapted
from Khan et al. [32]).

Table 2 presents the attributes of each of the relevant schemes.

Table 2. Comparison of related schemes (SA1: fog node independence; SA2: multidimensionality;
SA3: collusion resistance; SA4: forward/backward secrecy; SA5: fault tolerance; SA6: dynamic mem-
bership; SA7: dynamic/variable group size; SA8: trusted third party/trusted authority independence).

Scheme SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8

Liu et al. [37] no yes yes yes yes yes no no
Song et al. [39] no no no yes no yes no yes
Zuo et al. [40] no yes yes no no no no yes

Zhang and Liu [22] no yes yes yes no yes yes no
CHEA yes no yes yes yes yes yes yes

Another example which shows conceptual similarities to our protocol is the solu-
tion proposed by Gomez Marmol et al. [41]. In their scheme, bilinear homomorphism
is employed because it allows the aggregate of the data to have a separate decryption
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key from the components that make up the aggregate. This way, the meters can send
their encrypted data to the DSO directly (avoiding intermediate nodes), followed by an
aggregate key, and the DSO can only decrypt the data once it has summed the ciphertexts
(with some exceptions).

4. CHEA Scheme

CHEA is built around homomorphic encryption (HE), with algorithmic parameters
described in Table 3. Although a specific HE implementation is not required to employ the
protocol, for the purposes of implementation we have used the Paillier cryptosystem [27,28]
due to its computational efficiency [31]. This last property is essential due to the relatively
weak processing power of AMI equipment. In general, the only requirement is that the
cryptosystem is additively homomorphic and supports unlimited additions (unless the
group size parameter α is fixed at three, in which case it only needs to support two addi-
tions; in general, the HE must support αmax − 1 additions, where αmax is some maximum
acceptable value for α. The parameters α and β enable the DSO to dynamically adjust the
level of aggregation as well as the precision of the aggregation regions. Zhang and Liu [22]
note that variable subset sizes enable improved data analysis by the DSO. The capacity
to target different regions and/or degrees of aggregation allows the scheme to support
multiple privacy-preserving applications making use of aggregated data.

Table 3. Nomenclature.

N number of aggregation groups
Gn nth aggregation group

α group size parameter (must be three or above)
β locality parameter
T total SM population

SMi ith smart meter
SMGn

j smart meter at position j in group Gn

SMGn
leader leader of group Gn (=SMGn

0 )
SMx currently selected smart meter

Pi ith selection pool
Li leadership status of ith smart meter

Mj measurement of SMGn
j

Aj aggregate at position j in group (note: A0 = M0)
Pk public key of SMGn

leader
Vk private key of SMGn

leader
E(X)Pk cyphertext of X encrypted using Pk

p, q large prime numbers
m, γ, µ cryptographic intermediaries

4.1. Overview

CHEA works by dynamically splitting the region of SMs controlled by the DSO into
distinct sets, referred to as groups. Each of these groups is a set of SMs that will have their
data aggregated together. It is noted that different applications might require different
densities of aggregation, or more or less tightly localized aggregation. In order to support
these different applications, CHEA offers flexibility along these dimensions, expressed
using the parameters α and β. α represents the number of SMs that will be in each group;
a higher number equates to larger groups and less precise information, and vice versa.
β controls the localization of aggregation; a high β value corresponds to a wide search
region when generating groups, meaning that meters within groups may be physically
distant. Conversely, a low β value corresponds to a tight search region, meaning that
meters within groups will be physically close (a necessity for some applications, such as
demand response).
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Once these parameters have been set, the DSO will generate a “plan” consisting of a
set of groups and cycles within those groups. An example of this can be seen in Figure 2.

G0 G1

G2
α = 4
β = 0 DSO

Figure 2. Sample CHEA plan construction at DSO is demonstrated with T = 13, α = 4, β = 0.

Once the plan has been generated, the DSO sends a signal to each meter SMi to take
a measurement along with a packet specifying their position in the group and the ID or
address of the meter to which they will be sending data (Figure 3).

DSO

SMLeader

Pk, HE(Mleader)

Pk, HE(A1)

HE(AN)

SM1 SM2 SMN

Start here:

SMLeader generates Pk, 

Vk, and encrypts Mleader

Pk, HE(An)

Figure 3. CHEA protocol aggregation phase is demonstrated; the dotted line represents an unknown
number of intermediate nodes.

4.2. Formal Description

The aggregation process begins with the DSO initiating an aggregation request. The
DSO will select values for the parameters α and β, which, respectively, determine the group
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size (or data resolution) and locality. These parameters are set based on the application that
the aggregated data will be used for.

At this stage, the DSO must generate aggregation groups of smart meters from within
its population. It begins by sending a ping signal to all of the registered meters to ensure
that only active meters are added to the plan. These active meters are split into regions
of size β2 using Algorithm 1. These pools are then used to generate groups of size α
using Algorithm 2. While it cannot be guaranteed that a given pool will have a number
of meters divisible by α, the pools are constructed such that each subsequent pool will be
geographically close to the previous pool. This means that, during Algorithm 2, the DSO
can simply iterate over the pools to find the next closest meter if needed. This guarantees
minimum deviation from the desired plan while maintaining computational efficiency.

Algorithm 1 Beta Pool Creation

Input: β ▷ size of aggregation regions
Input: S = [SM0, SM1, ..., SMn] ▷ list of smart meters
Input: (Latmin, Lonmin), (Latmax, Lonmax) ▷ DSO region boundaries (latitude, longitude)
Output: [P0, ..., Pmax] ▷ list of pools
imax ← ⌊Latmax/β⌋
jmax ← ⌊Lonmax/β⌋
for i = 0..imax do

for j = 0..jmax do
▷ ensures that IDs are assigned in a snake-like pattern, i.e., subsequent pools will
▷ also be physically close
if i%2 == 0 then

pool.id← i ∗ jmax + j
else

pool.id← i ∗ jmax + jmax − j− 1
end if
Initialize empty list Ppool.id
Define Ppool.id region as:
((Latmin + β ∗ i, Lonmin + β ∗ j), (Latmin + β ∗ (i + 1), Lonmin + β ∗ (j + 1))

Add all SMx to Ppool.id where:
(Latmin + β ∗ i) ≤ SMx.Lat ≤ (Latmin + β ∗ (i + 1)) and
(Lonmin + β ∗ j) ≤ SMx.Lon ≤ (Lonmin + β ∗ (j + 1))

end for
end for

Each group that is generated can be stored as a list of tuples, one for each smart meter,
where the first half of the tuple is the SM identifier, and the second half of the tuple is the
identifier points for the next SM in the group. For example, group G0 would look like the
following circular list: [(SMG0

0 ,SMG0
1 ), (SMG0

1 ,SMG0
2 ), ..., (SMG0

α−1,SMG0
0 )].

Additionally, a list containing the identifiers of the SM leader for each group is stored:
[(G0,SMG0

leader), ..., (GN ,SMGN
leader)]

The DSO will now communicate this plan to the meters. Each meter receives a packet
containing:

• The aggregation request.
• Its leadership status.
• The identifier/address of the next meter in the group (i.e., the one it will be sending

data to).

Algorithm 3 is the algorithm used to generate public and private keys in the Paillier
homomorphic cryptosystem. This algorithm will be run by the SMleader of each group in
order to generate the public key, which will be sent to each meter in the group and used to
encrypt each reading, as well as the private key, which will be used to decrypt the resulting
aggregate before sending it to the DSO.
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Algorithm 2 Dynamic Group Generation

Input: α ▷ group size
Input: T ▷ total population
Input: P = [P0, P1, ..., Pmax] ▷ list of pools
Output: [G0, ..., GN ] ▷ list of groups
N ← ⌊(T/α)⌋ ▷ number of groups
j = 0 ▷ pool index
for i = 0..N − 1 do

Initialize empty list Gi
while Pj is empty do ▷ find the earliest pool with ungrouped meters

j = j + 1
end while
Select random SMx from Pj ▷ select the group leader
Add SMx to Gi as SMleader ▷ SM0 is the leader
Remove SMx from Pj
Prev = SMx
if i < N − 1 then size← α− 1 ▷ regular group size = α
else size← T − 1− i ∗ α ▷ last group size ≥ α
end if
for j = 1..size do ▷ add the other group members

while Pj is empty do ▷ find the earliest pool with ungrouped meters
j = j + 1

end while
Select random SMx from Pj
Add SMx to Gi as SMj
Remove SMx from Pj
Prev.next = SMx
Prev = SMx

end for
SMx.next = SMleader

end for

Algorithm 3 Paillier Key Generation (from Paillier [27])

Output: Pk ▷ public key
Output: Vk ▷ private key
Choose large primes p, q ∋ gcd(p× q, (p− 1)× (q− 1)) = 1 ▷ greatest common divisor
m← p× q
λ← lcm(p− 1, q− 1) ▷ least common multiple
Choose integer g ∈ Z∗m2 ▷ such that g is relatively prime to m2

µ = ( m
(gλmod(m2))−1 )mod(m) ▷ modular multiplicative inverse

Pk← (m, g)
Vk← (λ, µ)

Once the groups have been generated and the DSO has communicated these plans to
the meters, aggregation can begin (see Algorithm 4). The full sequence of events, including
the plan distribution, can be observed in terms of message exchanges in Figure 4.

4.3. Initialization

The DSO first selects values for α and β based on the application that the data are being
aggregated for (e.g., demand response, state estimation, etc.). The parameter α indicates
the number of members in each aggregation group, and is thus inversely proportional to
aggregation resolution. The parameter β, used in Algorithm 1, determines the maximum
physical distance between smart meters in the same group.
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Algorithm 4 Aggregation

Input Group Gn[SM0..SMz−1] ▷ group of size z ≥ α
Output An ▷ aggregated value for Gn
for j = 0..z− 1 do ▷ simultaneous

Mj ← SMGn
j measurement ▷ taking measurement

end for
i← 1
SMleader ← SM0
SMleader generates public key Pk and private key Vk using Algorithm 3
SMleader encrypt(M0) as E(A0) ▷ A0 = M0 in this case
SMleader → (SMleader.next) : [E(A0), Pk] ▷ send encrypted measure & key to next node
SMi ← SMleader.next
while SMi ̸= SMleader do

SMi encrypt(Mi) as E(Mi)
SMi add(E(Mi) + E(Ai−1)) as E(Ai)
SMi → (SMi.next) : [E(Ai), Pk] ▷ send encrypted aggregated value & key to next
SMi ← SMi.next
i← i + 1

end while
SMleader decrypt(E(Az−1)) as An
SMleader → DSO : An

Figure 4. Execution cycle of the CHEA protocol with a group of n smart meters from a population of
T smart meters illustrated as a sequence diagram. SMleader..SMn are part of the group under focus
but the others (SMT) are part of other groups.
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The DSO begins by generating N = T/α arbitrary groups of size α (except the last
group, which can be larger), which is a tunable parameter based on the immediate needs
of the DSO specified at the time of request. More specifically, Algorithm 2 generates a
number of groups equal to the floor of the population divided by the group size. We
ensure that groups contain at least three members each (as implied by the last comment in
Algorithm 2). This is because we do not want to risk having a group of size two or one,
which would remove the security benefit for those meters. In the case of one, it is clear
that security cannot be attained via aggregation, and they would be relying purely on the
security of the communication with the DSO, eliminating the benefit CHEA provides. In
the case of a group size of two, the leader of the group would be able to determine the other
meter’s consumption data by subtracting their own data after the aggregation is received
and decrypted.

Instead, we guarantee sufficient group size using the method described; as a re-
sult, all but one group are guaranteed to have size alpha, with the final group having
α ≤ size ≤ 2 ∗ α− 1.

In each of these groups, we identify one smart meter as the “leader”, who begins the
aggregation process, generates the required cryptographic keys, and reports the aggregated
result to the DSO. Although all the meters will take their measurement simultaneously, the
aggregation process necessarily takes place sequentially within each group.

4.4. Aggregation

The lead smart meter (SMGn
leader) will begin by generating a public and private key for

the HE cryptosystem (Algorithm 3). It will then use this public key to encrypt its own
measurement (Algorithm 4). The leader then sends its encrypted measurement along with
the public key it generated to the next smart meter in the group (each meter will be sent the
address of the next meter in the chain, the order of which is generated by the DSO at the
same time the group is generated).

The next meter in the chain then encrypts its own measurement using the public key
sent by the leader. By the property of additive homomorphism, it can add its encrypted
measurement to the one sent by the leader, resulting in a cyphertext that contains the total
usage by both the leader and the current meter.

As α is a minimum of three (to avoid privacy issues in small groups); the second
meter sends the public key and current aggregate to a third meter, who then encrypts their
own data using the private key and adds them to the current aggregate, creating a new
encrypted aggregate that contains the sum of all three meters’ usage. This goes on until the
last meter of the group sends the cyphertext to the leader.

4.5. Decryption

The lead smart meter will have received the cyphertext containing the aggregate of the
group’s usage data from the last meter in the group. At this point, the leader will decrypt
the usage data using the private key it generated at the beginning of the process. There is
then no way for the leader to discover the usage data of any of the previous meters. This is
because even if a leader maliciously decrypts the aggregate and subtracts its own usage
data, the result will simply be the aggregate of the other α− 1 meters’ data, from which no
precise information can be gained.

This aggregate data can now be sent to the DSO (end of Algorithm 4). Because the data
are pre-aggregated, they can be sent in plaintext. However, the cost of encrypting with a
public key from the DSO is insignificant and likely worth the small security improvement.

Note also that the groups are created dynamically and randomly at each request from
the DSO to prevent statistical attacks that could be performed over multiple iterations.
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4.6. Faults

Smart meters are sent a ping immediately prior to the generation of aggregation
groups. This ensures that they are online and active before they are added to a group for a
particular aggregation cycle (input S of Algorithm 2).

If groups are large enough (α), this may not be a sufficient guarantee. In these cases,
some communication efficiency can be sacrificed by including the full plan in each in-
termediate step, i.e., the full list of addresses in the group. Each meter in a given group
would wait for a response from the subsequent meter before discarding the aggregate. If
no response is received, they would defer transmission to the next address in the list.

5. Security Analysis

This section analyses how CHEA protects privacy under common attacks. This
analysis goes beyond the points related to security, privacy, and fault tolerance made in the
previous section.

5.1. Man-in-the-Middle Attack

A man-in-the-middle attack is a privacy attack where two parties are communicating
and a third party, the attacker, intercepts this communication. The attacker may then use the
intercepted information to facilitate burglary or blackmail, or may modify the information
before it reaches its intended recipient.

A smart grid with TE running CHEA has several distinct interception points:

(a) Communication from the DSO to the SMs;
(b) Communication from the SMleader to the next SM;
(c) Communication from a non-leader SM to the next SM;
(d) Communication from the SMleader to the DSO.

In (a), the greatest risk would be altering the plan. The attacker may be able to change
the address for the meter SMGn

j to send information to. This would not enable false data
injection (FDI), since they would need to intercept multiple transmissions in order to change
the plan coherently; however, it could disrupt the cycle path and cause an aggregation
failure for the group in question.

Communication from SMleader to the first intermediate meter in the group (b) poses a
slight risk because it is the only transmission that contains non-aggregated data. However,
it is encrypted using SMleader’s public key, so they should be the only one capable of
decrypting it. If they were to collude, they would only be putting their own data at risk.

Communication between two intermediate meters (c) poses little risk, since the data
would be both encrypted and aggregated. Even in the unlikely scenario that the attacker
can decrypt the message, it will not expose any private information.

Considering the final transmission (d), there is no privacy risk to the users in the
aggregation region since the data have already been aggregated before this step occurs. The
greatest risk would be FDI, which is the main reason the data should be protected using
the public key of the DSO before sending.

5.2. Collusion Resistance

CHEA is extremely collusion resistant. Since group membership is allocated on the
fly, it is impractical to form an adversarial coalition in advance. Additionally, an attacker
would need the total aggregate that is sent by the victim (which may not be sent to them,
depending on the plan), as well as the total aggregate that was sent to the victim. In the best
case scenario, where the group size is three, this would require cooperation with one other
user. Where α > 3, it would require cooperation with two other users, and specifically
the two users interacting with the victim (which is determined by the flow of the plan).
Even if this contrivance was successfully achieved during one iteration, the plan would
be extremely unlikely to succeed in the next iteration as group assignments and data flow
would be reassigned.
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Requirements (SMv is the victim):

• SMleader colludes;
• SMv−1 colludes;
• SMv+1 colludes;
• Attacker colludes or has (by chance) one of these three roles.

The probability of the DSO generating a plan that enables attackers to target a particu-
lar meter during a particular aggregation cycle is:

( α
N )3 ∗ (∏3

i=1
i
α )

(3!)2

where N is the total smart meter population (or selection pool) and α is the group size
during that cycle. The value three comes from the three parties required to collude with
the attacker.

This expression can be simplified algebraically to:

1
6N3

This function shrinks extremely quickly, demonstrating that the probability of successful
collusion is negligible. With only 100 smart meters in a selection pool, the odds of success
are already exceedingly low (1 in 6 million). In this case, even if aggregation was performed
every second (an improbably high rate), a plan enabling a collusion attack would only be
generated once every 70 days; this frequency is not useful for any class of cyberattack.

5.3. Quantum Attacks

Although our implementation and simulation employed the Paillier encryption scheme,
the core CHEA protocol is cryptosystem agnostic. Therefore, it would be trivial to imple-
ment the protocol with a quantum-resistant cryptosystem, such as lattice-based cryptogra-
phy [42,43].

6. Performance Analysis
6.1. Overview

We simulated the operations carried out by the smart meters and the DSO, respectively,
using two custom C programs that communicate using sockets, as they would in a real
networking application. Simulations were performed on a 2017 MacBook Pro with a Intel
Core i5 CPU at 3.1 GHz and 8 GB RAM. The code is available online in a replication
package [44].

Each smart meter process simulates the operations carried out by a smart meter, and
contains a unique identity that comprises physical variables associated with the smart
meter being simulated to improve the accuracy of the simulation. The DSO application
acts as a server for the smart meters and generates and distributes the plan as described in
Section 4.

In addition to employing a realistic network implementation, we further enhanced the
simulation’s accuracy by employing current IEEE smart meter communication protocols as
outlined by Zaraket et al. [45] and Shanmukesh et al. [46].

6.2. Results

We compared the performance of our scheme against schemes by Liu et al. [37], Song
et al. [39], and Zuo et al. [40]. Table 4 summarizes the results in terms of net communication
overhead for each scheme. Table 5 summarizes the results of processing time impacts for
each phase of aggregation for each scheme.

Processing time for competing schemes was produced by simulating several tests of
the most impactful operations on our hardware and extrapolating the assessment method
employed by Liu et al. [37]. The Stanford Pairing-Based Cryptography library was em-
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ployed to perform the tests, which were run on the aforementioned 2017 MacBook Pro.
The testing parameters were population = 30 and dimensionality = 10. CHEA was ex-
tended theoretically to support multidimensionality to ensure a fair comparison with the
other schemes.

Table 4. Comparison of communication overhead.

Scheme Initialization Phase Aggregation Phase To DSO

CHEA 1024 bits 2072 bits 1024 bits
Liu et al. [37] 3456 bits 2368 bits 2368 bits

Song et al. [39] 4192 bits 1056 bits 1024 bits
Zuo et al. [40] 1088 bits 1600 bits 1600 bits

Table 5. Comparison of performance (times averaged over 10 runs)

Scheme Initialization Phase Aggregation Phase Decryption Phase

CHEA 125 ms 497 ms 29 ms
Liu et al. [37] 79 ms 340 ms 27 ms

Song et al. [39] 122 ms 1036 ms 34 ms
Zuo et al. [40] 119 ms 731 ms 1337 ms

We found that our scheme has communication overheads comparable to the other
schemes. Specifically, our initialization phase and end phase are as good as or better than
the schemes compared. In the aggregation phase, our scheme has the second highest
communication overhead. This result was anticipated, as sending the public key (Pk) along
with the intermediate aggregate (E(Ai)) necessarily incurs additional communication cost.

With regards to processing time, we found that our scheme is comparable to the
others in the decryption phase, except for the much slower approach from Zuo et al. [40].
This result is not surprising since there is no additional processing required. CHEA’s
initialization phase is the slowest of the group (but not by much); this can be attributed to
the extra processing required to generate the plan each round. In the aggregation phase,
CHEA is the second fastest. It is slower than Liu et al. [37]’s scheme because encryptions
must be performed sequentially (other schemes have a parallel reporting phase). However,
the structure of the scheme requires fewer cryptographic operations overall, resulting in
performance gains compared to the rest of the schemes. Additionally, scaling analyses
indicate that our scheme could see a comparably superior performance as neighbourhood
sizes increase, as we note and explain in the next section.

Overall, our scheme incurs a slight communication disadvantage compared to some
similar schemes, as well as a slower initialization time. However, the aggregation time
is competitive and scaling (discussed in Section 6.3) is improved. Additionally, CHEA
improves flexibility, fault tolerance, and security. For example, although Liu et al. [37]
remains the fastest scheme, it lacks the flexibility of CHEA’s dynamic group membership,
which offers versatile locality and aggregation resolution.

6.3. Scaling

Registration. Since there is no centralized key distribution, the registration/initialization
phase is essentially of complexity O(1), incurring no extra time cost as the population
of smart meters grows. As we discuss in Section 1, local in-group key generation, the
distributed nature of the protocol, and the avoidance of complex key distribution make our
scheme significantly more scalable than comparable protocols [39,47].

Aggregation. As is the case with registration (Section 6.2), the aggregation happens
locally and concurrently within each group, thus there is no time scaling associated with
having larger neighbourhoods (i.e., more groups). Larger groups (corresponding to a larger
α value), on the other hand, will incur an increased time penalty during this phase, since
the aggregation is generated sequentially within a group.
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Scaling tests were performed using the custom simulation, the results of which are
presented in Figure 5. The simulation used libhcs instead of PBC for HE, hence the faster
times relative to the earlier test. For these tests, β was set to zero (which is interpreted as
nearest neighbour instead of pooling) and the neighbourhood size was 10 km2. Population
and α were varied as seen in the graph.

Figure 5. CHEA aggregation times for different neighbourhood populations. The sublinear increase
can largely be explained by the computer being under greater load as it simulates more smart meters.

It can be seen that the results support the theoretical scaling properties; that is, increas-
ing the population has a limited effect on performance, while increasing α has a small but
noticeable effect. Unfortunately, simulating all devices (and, in particular, DSO operations)
on the same computer somewhat dampens the visibility of these effects, and future tests
should include a distributed hardware simulation to better isolate them.

7. Limitations

Due to the lack of available hardware for testing, the protocol was tested using a
software simulation of a smart grid environment. Ideally this would have been tested in a
more accurate setup using real, physical smart meters to demonstrate feasibility and gather
data for prospective users. However, given that most current-generation AMIs are not
capable of performing the necessary operations, it is difficult to test HE-based aggregation
schemes in practice at this time. As a result, related literature largely relies on software
simulations, as we did.

Another limitation lies in the assumptions made about the capabilities of smart meters.
Although we did not make any unprecedented assumptions—that is, assumptions that
have not already been made in similar literature—we do presume smart meters to be
capable of certain tasks that are not currently among their commonly-found functionalities.
This may call into question the feasibility of this architecture as a real-world solution.
In discussions with industry experts, it was noted that manufacturers prefer to avoid
unnecessary upgrades to grid hardware, which may limit short-term adoption. However,
in spite of the current state of smart meter hardware, it seems reasonable to assume that
they will follow the trend of computational ability in virtually every other domain, and
that they will receive increased computing power at decreased costs as time goes on.
As this happens, it will become cost effective for utility companies to provide increased
processing capabilities to metering equipment in order to support more comprehensive
security measures, as this will increase consumer trust, provide marketing opportunities,
and reduce expensive breaches, all at limited cost. For these reasons, we believe security
research regarding the smart grid should not be limited to current hardware capabilities,
and continue the example set by other researchers with CHEA.
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8. Conclusions and Future Work

This paper introduced Cyclic Homomorphic Encryption Aggregation (CHEA) as a
new scheme for protecting privacy. We found CHEA to be effective in providing privacy-
protecting aggregation of energy usage data for distributed smart grid energy trading
settings, including TEMs. Formal analysis and software simulation confirm that the proto-
col provides significant security benefits without sacrificing performance.

Although the scheme performs similarly to other smart grid aggregation schemes, cur-
rent smart meters are likely incapable of supporting the requisite cryptographic operations,
so real-world deployment will depend on hardware improvements in AMI.

The CHEA protocol presents a novel, distributed, HE-based aggregation solution for
TE that could potentially be generalized to other environments with similar infrastructures,
e.g., environments consisting of networked devices that generate data to be consolidated,
and operate on distributed applications. One potential candidate may be smart electric
vehicles, which generate driving quality and accident data to inform insurance providers
for different demographics. Other metered utilities, such as water and gas, may also
potentially benefit from our solution, although extending the scheme to these areas may
present novel domain-specific challenges.

Some other potential areas for future research include:

• Improving upon CHEA by making it even more robust against communication or me-
ter failures during the aggregation phase. Future iterations could include plans that are
dynamically adjusted based on where communication drops off, but this will require
making the meters even more autonomous (thus increasing their computational load).

• Investigating different methods of group generation. It may be possible to forgo
the requirement of the DSO creating a plan centrally if smart meters create the plan
dynamically in a more procedural manner, perhaps using cellular automata, for
example. While there is no guarantee that this would be more efficient, it could
be an interesting research topic and would at least confer the benefit of increasing
distribution, reducing reliance on centralized computing even further.

• Adding finer control to the locality parameter to enable the DSO to be more specific
about how regions are divided. For example, it may want to consider network
topology, neighbourhoods, or other currently unsupported factors when requesting
an aggregate reading.

• Looking into other applications of HE to grid management operations. This technol-
ogy may enable distributed applications for functionality such as state estimation,
transaction verification, or power flow optimization. Distributing these tasks could
present further privacy, security, and reliability benefits to TEM users and operators,
similar to those seen with CHEA.
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The following abbreviations are used in this manuscript:

AMI Advanced Metering Infrastructure
BESS Battery Energy Storage System
CHEA Cyclic Homomorphic Encryption Aggregation
DER Distributed Energy Resource
DSO Distribution System Operator
EV Electric Vehicle
FDI False Data Injection
FN Fog Node
HE Homomorphic Encryption
ICT Information and Communication Technology
P2P Peer-to-Peer
RES Renewable Energy Sources
SG Smart Grid
SM Smart Meter
SPOF Single Point of Failure
TA Trusted Authority
TE Transactive Energy
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