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Abstract: This paper proposes a long short-term memory (LSTM) network to predict the power degra-
dation of proton exchange membrane fuel cells (PEMFCs), and in order to promote the performance
of the LSTM network, the ant colony algorithm (ACO) is introduced to optimize the hyperparameters
of the LSTM network. First, the degradation mechanism of PEMFCs is analyzed. Second, the ACO
algorithm is used to set the learning rate and dropout probability of the LSTM network combined with
partial aging data, which can show the characteristics of the dataset. After that, the aging prediction
model is built by using the LSTM and ACO (ACO-LSTM) method. Moreover, the convergence of the
method is verified with previous studies. Finally, the fuel cell aging data provided by the Xiangyang
Da’an Automotive Testing Center are used for verification. The results show that, compared with the
traditional LSTM network, ACO-LSTM can predict the aging process of PEMFCs more accurately,
and its prediction accuracy is improved by about 35%, especially when the training data are less. At
the same time, the performance of the model trained by ACO-LSTM is also excellent under other
operating conditions of the same fuel cell, and it has strong versatility.

Keywords: fuel cell prognostics; degradation prediction; hyperparameter; aging; ant colony algorithm;
long short-term memory; deep learning

1. Introduction

Since the 21st century, countries around the world have seen a growing demand for
efficient and low-emission new energy. Hydrogen energy, as a type of new energy, has been
defined as the “ultimate energy source” and has garnered widespread attention in recent
years. PEMFCs, as devices capable of efficiently utilizing hydrogen energy, are gradually
becoming a promising type of power generation equipment, with advantages such as zero
emission, no Carnot cycle limitation, high energy efficiency, high reliability, and convenient
maintenance [1]. Moreover, most renewable energy sources (such as solar and wind energy)
are intermittent, creating spatial and temporal gaps between the availability of energy and
the consumption by end-users. The combination of hydrogen energy and PEMFCs (proton
exchange membrane fuel cells) can effectively address this issue. However, in the course
of use, the fuel cells are extremely sensitive to the operating environment, and this will
accelerate the aging of the fuel cells in high dynamic operation, which will seriously affect
the reliability and safety of the fuel cells [2,3]. In addition, the control of fuel cells, such as
thermal and water management, also has a significant impact on their aging [4].

The causes of fuel cell degradation include carbon corrosion and catalyst particle
shedding [5,6]. In addition, the degradation performance of fuel cells (FCs) is completely
different under divergent control strategies [7–10]. However, the industry does not fully
understand the principle of fuel cell degradation. To correctly design a maintenance
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strategy for PEMFCs, the aging mechanism should be accurately predicted. Predictive and
health management (PHM) is a technology that aims at forecasting and maintenance [11].

The definition of PHM is as follows [12]: “an equipment management method for
detection, prediction, and maintenance, which is based on models, uses signals and mea-
surements, and finally combines algorithms to evaluate equipment degradation and predict
fault progress.” [13]. It can be inferred that, if the decline state of fuel cells can be pre-
dicted, targeted decisions or control strategies can be made to prolong its service life, and
failure risk can be avoided. Prediction can ensure the smooth operation of some fuel cell
systems, which shows that prediction is the key factor of PHM. Therefore, predicting the
performance degradation trend of PEMFCs has attracted much attention in recent years.

In recent research, many methods have been proposed and applied to predict the
performance decline of PEMFCs. According to the different emphases of prediction, we can
make a rough classification of these methods, such as model-driven method, data-driven
method, and their combination method.

In the research on the model-driven method, the models can be divided into mecha-
nism degradation models, empirical degradation models, and semiempirical degradation
models. Zhang et al. [14] established a fuel cell catalyst degradation model, and in order to
predict FC degradation, an unscented Kalman filter (UKF) method was proposed. However,
because the inherent mechanism of FCs is particularly complicated, it is often very hard to
establish an accurate physical model [15].

Therefore, a lot of empirical or semiempirical models are widely used. Hu Di et al. [16]
reconstructed a model on the basis of an engineering experience formula recognized by
SAIC and Toyota, and two time vectors related to the working conditions are obtained to
describe two key working conditions that cause the degradation. Lu et al. [17] proposed
a semiempirical model of voltage degradation of a low-voltage PEMFC stack under bus
city driving conditions, and an important assumption in this model is that degradation
of several key parameters is linear with the running time. Jouin M et al. [18] selected the
key components in the heap through degradation assessment, introduced the fault tree to
define their fault principle, and finally established an aging prediction model including
these components and mechanisms. M. Ou et al. [19] introduced the aging model of
electrochemical active surface area (ECSA) and equivalent resistance and then established
a semiempirical model based on these. Many previous studies are model-based because
this method is highly interpretable and has little demand for data quantity and quality.
However, the decline mechanism of the fuel cell system is extremely complex, so it is
very hard to establish an accurate fuel cell decay model that is suitable for all operating
conditions. Therefore, most studies still use semiempirical or empirical models. In addition,
most models selectively simplify and ignore some causes of degradation.

Therefore, to avoid the shortcomings of the model-driven method and promote the
generality of prediction, many people have begun to pay attention to using data-driven
methods to build degradation prediction models. Z. Deng et al. [20] used the combination
of an echo state network (ESN) and a genetic algorithm (GA) to predict the decline of fuel
cells. Z. Liu et al. [21] predicted and evaluated the decline from two aspects: short term
and long term, which used a machine learning (ML) method under dynamic conditions.
K. He et al. [22] introduced a prognosis strategy of an ESN based on a minimum absolute
contraction selection operator (LASSO-ESN), which was used to optimize the input param-
eters and predict the long-term performance of PEMFCs. Z. Hua et al. [23] combined the
Bayesian theory with GRU to put forward a Bayesian gated recursive unit model (B-GRU)
to quantify the uncertainty of PEMFC degradation prediction results. Their article used
discrete wavelet transform and EESN (DWT-EESN) to predict degradation. In particular,
that study did not use conventional health indicators but defined a relative power loss
rate as a health index [24]. There are also many studies, such as the method based on ESN
in [25], the method of using correlation vector machine in [26], and the method based on
the LSTM algorithm in [27]. These data-driven methods mainly rely on the availability of a
lot of high-quality training data.
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Data-driven methods have been widely considered by many researchers in recent
years because they are less dependent on the model and can make degradation predictions
using only a lot of fuel cell degradation data. For the data-driven methods, apart from a
lot of high-quality data, the appropriate parameters are also very important, because this
will directly affect the final training effect. LSTM, as one of the data-driven methods, is not
immune from this problem. Determining the initial learning rate and dropout probability
is still a critical problem. In previous research, this information is often obtained through
previous experience or experimentation. For example, in [28], a comparison study was
performed, and it was found that a learning rate of 0.1 was best. The prediction results with
learning rates of 0.01 and 0.001 were also obtained. It was concluded that the simulation
result was closest to the actual value when the learning rate was 0.01. When training
with a learning rate of 0.1, the information about operation changes could not be learned.
However, for different datasets, different inputs, and different training ratios, the optimal
learning rate and dropout probability should be different. To solve this problem, a method
that uses an LSTM network and an ACO algorithm is proposed to predict the decline trend
of FCs. As the data-driven method requires high-quality training data, the decline principle
of PEMFCs is analyzed in order to select appropriate monitoring parameters to improve
the training effect and reduce the initial learning rate and dropout rate within a limited
number of iterations.

The terminal voltage, impedance, and peak power of a fuel cell can be used as health
indicators. According to the 2014 Data Challenge [29], the health state of fuel cells is
defined as the ability to guarantee sufficient power at all times, and the decline of FCs can
be defined as the power drop compared to the initial power. Therefore, this study uses
peak power to evaluate and predict the degradation state of PEMFCs.

The content of this article is arranged as follows: In the first section, the degradation
process of a fuel cell is qualitatively analyzed through the degradation mechanism. The
second section introduces the principle and architecture of the LSTM network for predicting
degradation trends, as well as the principle and implementation of the ACO algorithm for
optimization. The third section introduces the simulation results, that is, the prediction
effect of ACO-LSTM, and a comparison with the traditional LSTM. Finally, this paper is
summarized, and future work is described in the fourth section.

2. Fuel Cell Aging Experimental Implementation
2.1. Fuel Cell Degradation Phenomena

Before predicting the decline trend of PEMFCs, the analysis of the degradation char-
acteristics of PEMFCs is very important because the essence of this study is to determine
the degradation-related factors of PEMFCs and predict them. Therefore, in this section,
some previous work is referenced, and the decline phenomenon of FCs is analyzed [30–35].
During the whole operation of a PEMFC, all its components will degenerate or fail, leading
to the decline of the PEMFC. The decline mechanisms of FCs often influence each other,
and the primary causes for the degradation are the decline of the gas diffusion layer (GDL),
the degradation of the catalyst layer, and the degradation of the polymer film. In addition,
degradation mainly occurs in the MEA section.

The main phenomenon causing the decline of the GDL is carbon corrosion, which is
often due to the high humidity and high potential of PEMFCs and the start–stop operation
cycle [36]. Oxygen starvation, large changes in load, and other reasons will also accelerate
performance decline.

In the catalyst layer, the important factor leading to the performance degradation is
generally the dissolution or sintering of the catalyst particles. Because platinum particles
are attached to carbon carriers, platinum particles easily fall off and gather when carbon
corrosion occurs, while in acidic media, platinum is more likely to dissolve with increasing
potential [37]. The shedding, migration, and accumulation of platinum will cause the loss
of the ECSA [38].
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In repeated chemical reactions, a polymer film is eroded and degraded [39]. Hydroxyl
or hydrogen peroxide radicals are often produced in fuel cells under the conditions of
high voltage, high temperature, and low humidity. These free radicals often come from
hydrogen peroxide formed by fuel pollution or gas crossover. The free radical reacts
with the end group of the polymer containing the terminal H group [40], resulting in the
decomposition of the polymer to form HF. On the other hand, HF corrodes metals and
forms metal cations to lead to the faster formation of free radicals. At the same time, due
to the thinning of the polymer film, hydrogen can more easily penetrate into the cathode
and accelerate the formation of free radicals, thus leading to a positive feedback loop and
causing performance degradation.

In addition, the start–stop cycle will greatly affect the durability of the membrane
electrode assembly (MEA). If FCs have a power outage for long, hydrogen will cross from
the anode to the cathode so that the anode channel is filled with air. When in this state,
starting the fuel cell will produce a transient operating condition, that is, although fuel is
present at the entrance, there is a lack of fuel on the anode side of the exit. This local fuel
shortage will cause the local potential of the cathode to be higher than 1.8 V, which will
lead to serious degradation of the MEA [41].

In summary, many factors, including temperature, current, voltage, humidity, poten-
tial cycle, load change, start–stop condition, and fuel supply, will affect the degradation
of PEMFCs.

It is worth noting that most of these factors are combined with each other, and there
are still many factors that cannot be quantified, but can only qualitatively analyzed, so
it is difficult to separate these factors to discuss the phenomenon of degradation. This is
why many current model-based fuel cell degradation predictions are based on engineering
empirical or semiempirical models rather than mechanism models. Therefore, regarding a
fuel cell stack as a “black box” and using the external characteristic data-driven method
to study its degradation characteristics has increasingly become an important method to
establish a PEMFC degradation model.

2.2. Aging Experiments for the Fuel Cell

The aging test was carried out with a 37 kW H2 core35 fuel cell stack containing
162 cells. The test bench is exhibited in Figure 1. This test was conducted at the Xiangyang
Da’an Automobile Testing Center. The fuel cell was operated under the dynamic load
conditions of stability assessment and rated conditions, as shown in Figure 2.
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The stability test condition (FC1) was run for 340 h according to Figure 2a, and the
sampling interval was 0.5 s. The working condition spectrum was as follows: start and
stop once per hour, load 27 times, idle condition for 21 min, and rated condition for 18 min.
After every 4 h of operation, the fuel cell stack was stopped and rested for 1 h. The rated
state test (FC2) was run for 75 h with a sampling interval of 0.5 s, including the start-up,
idle condition, rated current condition, reference current condition, and idle-stop condition.
The test cycle is shown in Figure 2b. A test cycle was completed every 4 h, and after each
cycle, the fuel cell stack was stopped for 1 h.

For this paper, stability assessment condition data were selected to train the fuel cell
degradation model. Then, the prediction performance of the model was further verified
with the data from the rated test conditions.

3. Degradation Model with an ACO-LSTM Architecture

This section, firstly, describes how the data directly obtained through the sensor were
processed to eliminate specific points and enhance the characteristics of the degradation
trend. In addition, it explains how the LSTM was improved to train the decline prediction
model. Then, we will discuss the principle of the ACO method. Thus, a data-driven
prediction model based on ACO-LSTM was developed for fuel cell degradation prediction.

3.1. Data Acquisition and Processing

In general, in the course of operation, the data directly obtained through the sensor are
rarely directly used as training data, because these data often contain a lot of unexpected
information, such as noise, downtime, specific points, and so on.

Therefore, after obtaining the original data, the first step is to resample and filter the
data. As a finite impulse response (FIR) digital filter, a Savitzky–Golay (SG) filter smooths
original time-domain signals based on local polynomial least-square fitting in the time
domain. The most important feature of this method is that it can maintain the same signal
structure as that of the original data after filtering. In this work, the SG filter [42] was used
to eliminate the noise in the original data. The main parameters of the SG filter are the
order of the polynomial and the length of the filter window [43].

The order of the polynomial and the window length of the SG filter were set to 2 and
20, respectively. The health state of the fuel cell has been defined in the previous text as its
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ability to guarantee sufficient power. Therefore, the degradation of the fuel cell’s health
status can be represented by the power reduction, as shown in Equation (1):

Pdrop =
P − Pinit

Pinit
× 100% (1)

This formula represents the percentage drop in power, where Pdrop is the percentage
decrease in power, P is the current power, and Pinit is the initial power.

Therefore, the degradation of the PEMFC’s health status can be characterized by
predicting the decay in power. However, under different operating conditions, especially in
dynamic situations, defining an appropriate power value to characterize the health status
is complex, because the power is not fixed but fluctuates within a certain range. Therefore,
we chose to use the peak power Ppeak under the current condition for description:

HealthFC,decline = Ppeak,drop =
Ppeak − Ppeak,init

Ppeak,init
× 100% (2)

In this formula, HealthFC,decline represents the degradation of the fuel cell’s health
status, Ppeak,drop represents the reduction in the fuel cell’s peak power, Ppeak represents the
current peak power of the fuel cell, and Ppeak,init represents the peak power of the fuel cell
in its initial state.

Therefore, the decline of the PEMFC is defined as the decline of peak power in this
paper. The power envelope data under the condition of stability evaluation were selected
in this study, and Figure 3 shows the data before and after filtering.
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3.2. LSTM Architecture

An LSTM recurrent neural network is a special RNN. Its main advantage is that it
can avoid the gradient disappearance and explosion of traditional neural networks in the
process of long-sequence training. Its structure is shown in Figure 4. Unlike the traditional
RNN, which has only one transfer state C(t), the LSTM RNN has two transport states, a
cell state (C(t)) and a hidden layer state (h(t)). Among them, the update of C(t) adds some
information on the bias of the previous state C(t−1), and the change range is very small. In
contrast, h(t) makes large updates between different nodes. The main difference between
the LSTM RNN and the traditional RNN is the improvement of the “gate” structures, such
as the forget gate, input gate, and output gate. The gate structure is a sigmoid unit. Another
key aspect of the LSTM, the internal state S(t), which is the core of each linearly activated
neuron, can be seen as a carrier for adding or deleting information, in which the control of
information flow is realized by the “gate” structure.
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(1) Forget gate: the first step of the LSTM algorithm is to selectively discard part of the
information with the forget gate. It receives the inputs of C(t) and h(t), then outputs a
number between 0 and 1 to the internal state s(t), where 1 represents the fully reserved
state and 0 indicates complete discarding.

f (t) = σ(W f cC(t) + W f hh(t−1) + b f ) (3)

(2) Input gate and input node: the second step is to decide which information to store in
the internal state. This step needs to be completed in two small steps. First, the input

gate (t) determines which values to update; then, a candidate state
∧

S(t) is created by
the input node g(t):

i(t) = σ(WicC(t) + Wihh(t−1) + bi) (4)

g(t) = tanh(WgcC(t) + Wghh(t−1) + bg) (5)

Thus, Equations (3)–(5) can update the old internal state s(t−1) to s(t).

o(t) = σ(WocC(t) + Wohh(t−1) + bo) (6)

(3) Output gate: the output gate determines what information to output.

o(t) = σ(WocC(t) + Wohh(t−1) + bo) (7)

Finally, the hidden layer status is updated by combining the output door and the new
internal state.

h(t) = tanhs(t) × o(t) (8)

Moreover, w and b are weights and biases, respectively, and their superscripts corre-
spond to the corresponding relations. For example, wfc are the weights of the forget gate
corresponding to C(t), and b f are the biases of the forget gate.

3.3. Structure and Implementation of ACO

The ACO is a kind of swarm intelligence algorithm, which is often used to solve
optimization problems. In the ACO, there is a group of ants. “Nest” represents the nest,
“Food” represents the food, and obstacles are randomly distributed on the map. The group
of ants sets out randomly from the nest and gradually spreads all over the map until food
is found. Then, the ants begin to move between the Nest and the Food. If an obstacle
suddenly appears in front of an ant, the ant must make a decision about which direction
to move in. Because there are no pheromones left by the first ants on the road, ants are
equally likely to travel in any direction. However, when an ant is walking on the road,
it releases pheromones on the road, and the pheromones are released at a certain speed.
The pheromone is one of the tools for communication between ants, and it is also the core
parameter of ant colony algorithm optimization. Each ant makes a decision and determines
the direction of action based on the concentration of pheromones left on the road by the
previous ants. Obviously, the pheromones along the shortest route will become increasingly
thicker, attracting an increasing number of ants to walk along this path.

This kind of population intelligence behavior is transformed into a mathematical
equation. Suppose there are M ants on the whole map, and the movement dimension of
each ant is D, then, the location of ant i is Xi = (xi1, xi2, . . . , xiD, ) . Then, the transfer
probability is shown in Equation (9) as follows:

P(G, i) =
max(Tau)− Tau(i)

max(Tau)
(9)
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where max(Tau) represents the maximum value of the pheromone, Tau(i) represents the
pheromone of ant i, and P(G, i) represents the transfer probability value of ant i in the Gth
iteration. When the transfer probability P is less than the transfer probability constant P0, a
local search is performed, and the search is shown in Equation (10):

New = Old + γ1 × step × λ (10)

where new is the position to be moved to, old is the current position of the ant, r1 is a
random number from [−1,1], step is the local search step, and λ is the reciprocal of the
current iteration number.

When P > P0, a global search is performed, and the search formula is shown in
Equation (11):

New = Old + r2 × µ (11)

where r2 is a random number in [−0.5, 0.5] and µ is the range of the solution space.
In defining the position of an ant within the range of values, whether or not to update

the current position of the ant will be determined by judging the value of the objective
function of the position to be moved to and the value of the objective function of the current
position, and the boundary condition will be processed by using the boundary absorption
method. The pheromone value for the new ant location is then set as follows:

Tau(i) = (1 − Rho)× Tau(i) + f (12)

3.4. Dropout

At present, the commonly used methods to prevent neural network overfitting are the
L1 and L2 regularization methods. Both methods rely on adding an extra term to the cost
function, and this term can also be regarded as a penalty term of the loss function, which
is used to limit some parameters in the loss function. In 2014, dropout technology was
introduced by Srivastava et al. [44] to address the problem of overfitting more effectively.

The core of this method is to randomly delete some neurons and their connections
temporarily (only before the next iteration) in the training process, as shown in Figure 3,
and then randomly delete them in the next iteration so that each iteration trains a different
network. The probability of deleting neurons is P (the probability between neurons is
independent of each other). This approach is equivalent to sampling a “sparse” network
in the original network. Thus, the training of the whole network is able to be seen as
training multiple “samples”, so the completely unchanged network can avoid being trained
repeatedly. Therefore, the whole network is no longer very sensitive to the specific weights
of neurons. At the same time, this approach can also enhance the generalizability.

3.5. ACO-LSTM Approach

The previous sections of this paper analyzed the advantages and disadvantages of the
traditional LSTM approach. The conventional LSTM method performs exceptionally well
in long-term forecasting, for instance, it can prevent issues like gradient explosion and van-
ishing, and it is capable of retaining a moderate number of old experiences during training,
rather than completely ignoring the impact of past experiences on the future. However,
as a type of neural network, the setting of hyperparameters has a significant impact on
LSTM training and forecasting performance. To some extent, improper hyperparameter
settings can lead to the complete failure of the neural network. Existing studies often
set key parameters based on prior experience or through continuous trial and error, but
these methods can lead to numerous problems, such as being time consuming and labor
intensive, leading to uncertainty about whether the parameter settings are appropriate,
and fixed parameter settings based on different data characteristics and data volumes can
lead to inappropriate parameters or even complete inapplicability. To address this, our
study introduces the ACO (ant colony optimization) method to adaptively optimize the
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hyperparameters of the LSTM network, ensuring outstanding performance across different
data characteristics and data volumes.

The ACO-LSTM method used in this study effectively combines the advantages of
both approaches. It not only retains the excellent training and forecasting performance of
the LSTM but also adaptively optimizes its key parameters. This prediction method can be
divided into three independent parts, which are described in Figure 4a. The upper part
corresponds to the selection and processing of data. The second part located at the bottom
left is the ACO module, which can optimize the LSTM parameters. The last part, which is
at the bottom right, is the prediction process.

The flowchart of the ACO-LSTM method is shown in Figure 4b, and the more specific
implementation measures are listed as follows:

(1) After the dataset is initially divided into a training set and a prediction set, the training
set is subdivided into an LSTM simulation training set and an ACO optimization set.

(2) The ACO algorithm is initialized, and a two-dimensional (initial learning rate, dropout
probability) ant population is randomly generated.

(3) The LSTM simulation training set is used as the training set, and the ACO optimization
set is used as the test set to simulate the LSTM prediction process and let the ant with
the smallest prediction error (defined as the RMSE in this paper) produce the densest
pheromone in each iteration.

(4) When the end condition is satisfied, the ant with the smallest historical error is selected
as the optimal solution. Then, the optimal initial learning rate and dropout probability
are obtained from this solution and are used to obtain the prediction results.

4. Degradation Prediction Results
4.1. Criteria of Predictive Performance

In this study, the mean absolute percentage error (MAPE), the root mean square error
(RMSE), and the coefficient of determination (R2) are used to represent the prediction
performance of the degradation model. Smaller MAPE and RMSE values indicate a more
accurate prediction with lower errors. In contrast, the larger the R2 value is, the better the
prediction result is because it indicates the degree of agreement between the predicted data
and the actual data. We can assume that in a perfect degradation prediction model, the
MAPE and RMSE values are equal to 0, and the values of R2 are 1:

MAPE =
1
N

N

∑
i=1

∣∣Xpre,i − Xobs,i|∣∣Xpre,i
∣∣ (13)

RMSE =

√√√√√ N
∑

i=1
(Xpre.i − Xobs,i

)2

N
(14)

R2 = 1 −

N
∑

i=1
(Xpre.i − Xobs,i

)2

N
∑

i=1
(Xover − Xobs,i

)2
(15)

where Xpre represents the predicted power value, Xobs is the actual value of power, Xobs is
the average of the actual power value, and N represents the total amount of data.

4.2. Degradation Prediction Model Based on ACO-LSTM

This section describes how the ACO-LSTM is trained with the FC1 (stability test)
dataset and verified with the FC2 (rated test) dataset. It should be noted that FC2 did not
participate in model training. The experiments of the two methods were based on CPU
calculation and simulation. The LSTM RNN used in both groups consisted of an input layer,
an LSTM layer (containing 100 hidden layer neurons), a fully connected layer, a dropout
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layer, and a regression layer. All used the Adam solver, and the total number of iterations
was 100. In addition, 20%, 40%, 60%, and 80% of the dataset were selected for training
(training data/total data) in both groups of experiments. In the first group, according to
the recommendation in [27], the learning rate and the dropout probability were set as 0.01
and 0.5, respectively. The parameter settings of LSTM and ACO-LSTM were compared as
shown in Table 1.

Table 1. Comparison of the parameter settings between LSTM and ACO-LSTM.

LSTM ACO-LSTM

Hidden units 100 100
Solver Adam Adam
Iteration number 100 100
Learning rate decay algebra 50 50
Learning rate decay rate 0.2 0.2
Learning rate 0.01 Adaptive optimization
Dropout probability 0.5 Adaptive optimization

In this paper, the health status of FCs is defined according to the IEEE PHM 2014 data
challenge [35] as the ability of a fuel cell stack to guarantee sufficient power at all times.
Therefore, we use the peak power decay to indicate the health status of an FC stack.

Figure 5 shows a comparison of the prediction results of the LSTM method and the
ACO-LSTM method under four different data proportions. In this figure, the blue curve is
the actual power of PEMFCs, the green one is the power decline trend that is predicted using
the LSTM, and the red curve represents the result predicted using the ACO-LSTM method.

Energies 2024, 17, x FOR PEER REVIEW 12 of 19 
 

 

Table 1. Comparison of the parameter settings between LSTM and ACO-LSTM. 

 LSTM ACO-LSTM 
Hidden units 100 100 
Solver Adam Adam 
Iteration number 100 100 
Learning rate decay algebra 50 50 
Learning rate decay rate 0.2 0.2 
Learning rate 0.01 Adaptive optimization 
Dropout probability 0.5 Adaptive optimization   

In this paper, the health status of FCs is defined according to the IEEE PHM 2014 data 
challenge [35] as the ability of a fuel cell stack to guarantee sufficient power at all times. 
Therefore, we use the peak power decay to indicate the health status of an FC stack. 

Figure 5 shows a comparison of the prediction results of the LSTM method and the 
ACO-LSTM method under four different data proportions. In this figure, the blue curve 
is the actual power of PEMFCs, the green one is the power decline trend that is predicted 
using the LSTM, and the red curve represents the result predicted using the ACO-LSTM 
method. 

  
(a) (b) 

  
(c) (d) 

Figure 5. LSTM and ACO-LSTM degradation model prediction performance: (a) 20% dataset 
for training; (b) 40% dataset for training; (c) 60% dataset for training; (d) 80% dataset for training. Figure 5. LSTM and ACO-LSTM degradation model prediction performance: (a) 20% dataset for

training; (b) 40% dataset for training; (c) 60% dataset for training; (d) 80% dataset for training.



Energies 2024, 17, 968 12 of 17

Table 2 shows the learning rate and dropout probability obtained by using the adaptive
optimization of the ACO-LSTM under different data ratios. In addition, the learning rate
and dropout probability of the LSTM method remained at 0.01 and 0.5 under the four
training data ratios.

Table 2. The learning rate and the dropout probability optimized using the ACO-LSTM method.

ACO-LSTM 20% 40% 60% 80%

Learning rate 0.0091 0.0089 0.0088 0.0083

Dropout probability 0.0968 0.0462 0.0395 0.0181

As can be seen in Figure 5, the prediction accuracy of the decline prediction model
trained using LSTM and ACO-LSTM increases with an increasing proportion of training
data. The more training data are used, the more power degradation information the
model will learn. According to the power RMSE error in Figure 6, the error increases
gradually with time, regardless of which method is chosen. A single data-driven model
always produces this result, and a solution is to introduce physical models for constraints.
Although the error increase is inevitable, it is clear from Table 3 that the MAPE, RMSE, and
R2 based on the ACO-LSTM method were all smaller than those of the traditional LSTM
method. However, the gap between the ACO-LSTM method and the LSTM method was
small at a high data ratio (60%, 80%), but was more significant at a low data ratio (20%,
40%). In particular, it is obvious that the LSTM method gradually lost different degrees of
data traction for the power degradation curve, and the fitting accuracy of the prediction
data was low. In contrast, although the ACO-LSTM method had a certain degree of error at
low data ratios, it accurately tracked the degradation trend. Thus, it can be seen that the
hyperparameters selected for the LSTM were more suitable for training the model under
a high data ratio than under a low ratio, but the learning rate and dropout probability
in [27] were selected on the basis of experience under the proportion of 25% training data,
which is more suitable for a low ratio than a high ratio. This phenomenon further shows
that different hyperparameters should be configured for diverse datasets and different
proportions of training data.
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Table 3. Error assessment for LSTM and ACO-LSTM.

LSTM 20% 40% 60% 80%

MAPE 0.0049 0.0019 0.0008 0.0004
RMSE 0.1996 0.1007 0.0409 0.0209
R2 0.6328 0.9135 0.9604 0.9573

ACO-LSTM 20% 40% 60% 80%

MAPE 0.0014 0.0009 0.0007 0.0003
RMSE 0.0640 0.0470 0.0326 0.0201
R2 0.9623 0.9812 0.9774 0.9603

4.3. Verification of the Degradation Prediction Model

To verify the predictive performance and generality of the trained model, the 60%
data ratio training model was used to predict FC1 and FC2. As can be seen in Figure 7,
the overall degradation trend of the fuel cell under dynamic load input was affected by
the power recovery phase (power recovery to a certain extent after each shutdown restart).
However, the ACO-LSTM still obtained the decline trend.

Brilliantly, for the whole prediction phase of FC1 and FC2, most of the errors between
the target and the output were within 0.2 kW, which shows that the learning effect of the
network is acceptable. It is worth noting that after 3321 s of FC2, the power degradation
curve showed an abnormal jump, and the tracking effect of the prediction model decreased
obviously. This was due to a short shutdown caused by a failure at 3321 s, and the anode
inlet relative humidity control was not initialized during restart, as shown in Figure 8.

There was a more obvious downward trend in fuel cell power after 75 h under the rated
test condition. For this condition, which is completely different from FC1, the proposed
ACO-LSTM prediction network also performed well in the whole operating time range.
The predicted output RMSE was 0.0471. The error distribution was within 0.2 kW most of
the time, and within 0.4 kW after 3321 s. Thus, it can be concluded that the ACO-LSTM
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degradation model can achieve higher prediction accuracy of fuel cell aging. Table 4
summarizes and compares the error assessment.

Table 4. Error evaluation of the prediction results using the 60% data training model for LSTM and
ACO-LSTM.

LSTM FC1 (Stability) FC2 (Rated)

MAPE 0.0006 0.0012

RMSE 0.0406 0.0564

R2 0.9857 0.9584

ACO-LSTM FC1 (Stability) FC2 (Rated)

MAPE 0.0005 0.0008

RMSE 0.0330 0.0463

R2 0.9905 0.9711
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4.4. Conclusions

In this paper, a new data-driven method is proposed to predict the degradation trend
of fuel cells, in which an LSTM network with ACO optimization is used to solve the problem
of inappropriate setting of hyperparameters in the process of network training. And the
dropout technology is introduced to avoid gradient disappearance or explosion during
network training. Two different dynamic load conditions from the H2 Core35 fuel cell
are used to train and verify the results of the prediction. At the same time, the traditional
LSTM, which has the same setting but sets the hyperparameters according to experience,
is compared with ACO-LSTM, which is introduced in this paper. The conclusions are
as follows:

1. The results show that ACO-LSTM can efficaciously train the high-precision degra-
dation prediction model under different training data ratios and has a significant
improvement compared with the traditional LSTM, especially in the case of a low
data ratio.

2. The proposed model shows good prediction performance in working conditions
that are completely different from the training conditions, which proves its excellent
generalizability.

3. However, when there is a large instantaneous change in the prediction data, the
prediction model loses part of its tracking ability, although its performance is still
better than that of the traditional LSTM.

This method can be used to predict the performance degradation of fuel cells and
further determine the failure threshold, which is helpful to monitor the performance of
FCs. Because of its simple construction, the proposed ACO-LSTM prediction model can
be easily implemented online once it has been trained. The proposed method is also
expected to be combined with a model-driven method to constrain the error and further
improve the prediction accuracy and interpretability, which needs to be further solved in
the following work.
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