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Abstract: A wide-speed, ultra-light power generation system is a critical power generation unit
structure, often because of its high efficiency and power density. Lightness and reliability are two key
design indicators within the system, albeit they could lead to contradictory problems, particularly
in systems containing prime movers, batteries, generators, rectifiers, and inverters. Ultra-light
generator sets are facing more severe problems and contradictions in designing in terms of matching,
coordinating, and stabilizing the components in the systems. This paper describes the system design
of a low-cost and high-reliability microgenerator set: a gasoline engine, three-phase permanent
magnet synchronous generator, rectifier, and inverter. Moreover, the matching relationship between
the four parts and the design effect of each part of the power generation system was analyzed,
simulated, and tested to verify the effectiveness and feasibility of the so-designed system.

Keywords: ultra-light power generation; miniature gasoline engine; generator winding design;
rectifier; series power generation topology

1. Introduction

Ultra-light power generation equipment (ultra-light power plant) has high require-
ments in power density, continuous operation, and transient stability of the entire machine.
There is also a direct conflict between the design of high power density and substantial
stability control in the creation of power units. Considering that the ultra-light power
station needs to meet the power density requirements when designing the power unit
(engine-generator), the rated speed of the power unit is higher, and the speed regulation
range is more extensive, which increases the difficulty of the power and speed control of the
power unit and the control of the whole machine condition, especially for the load mutation
condition. Therefore, a feedforward control strategy for the power unit of ultra-light power
generation equipment is proposed to improve the load-switching response. The power
unit control strategy experiment of ultra-light power generation equipment was conducted
to verify the effectiveness and efficiency of the proposed control strategy [1–8].

A permanent magnet synchronous generator (PMSG) has many advantages, such as
high efficiency, high power density, flexible topology, no brush mechanism, etc. Therefore, it
is increasingly widely used on many occasions, such as in wind turbines [9–13], gas turbine
generators [14], aerospace main generators [15], vehicle generators or starting/generating
units [16–18], and flywheel energy storage system electric/generating units [19], and
covers a wide range of power from megawatts to watts. The engine and the generator
coaxially connect the power unit, so the control of the power unit is mainly reflected in the
management of the engine:

The topological division and selection basis of ultra-light power generation equipment
in multi-machine and single-machine systems are analyzed.

The physical and mathematical models of the engine are discussed and the relationship
of external characteristics is interpreted.
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According to the load-switching response speed requirements, the load current is
introduced into the control loop as the feedforward quantity. The power chain’s peak speed
limit is considered to prevent the car from stalling and ensure the unit runs for a long time.

The theoretical model was verified through the power unit test experiment to obtain
the measured external characteristic curve of the engine.

The permanent magnet synchronous generator itself outputs alternating current. The
output frequency of the generator is stable only when the prime mover speed is constant,
but the output voltage still varies with the load. To reduce the voltage adjustment rate when
designing the generator, it is often necessary to significantly increase the permanent magnet
load to reduce the number of turns and impedance of the winding. Therefore, the magnetic
load and the electrical load may be uneven, which has a negative impact on the power density
and cost of the generator. Moreover, the prime mover often has variable speed operation, and
even if the speed range is extensive (for example, the speed of the vehicle generator can change
by more than ten times [20]), the output frequency and voltage of the generator are unstable.
Therefore, permanent magnet synchronous generators usually require AC–AC or AC–DC–AC
power electronic devices to achieve AC voltage regulation and constant frequency and can
also reach AC grid connection. In the actual system, an AC–DC–AC structure is the most
common. Of course, permanent magnet synchronous generators can also provide DC power
through AC–DC devices (such as automotive generators). If necessary, DC–DC devices can
achieve high-quality DC voltage regulation.

Therefore, most practical applications of permanent magnet synchronous generators
require a set of power electronic devices to achieve rectification and voltage regulation (that
is, to provide a stable DC power supply), thus forming a basic generator system. Common
types of rectifiers and DC voltage regulation include thyristor-controlled rectifiers, diode-
uncontrolled rectifiers + DC–DC conversion, and PWM rectifiers [21]. If an AC power
supply or AC grid connection is required, the inverter can be connected after the DC link.
Of course, the inverter can stabilize the AC side voltage, so the requirements for front-end
DC voltage regulation are relatively low.

For the primary permanent magnet synchronous generator system with variable speed
and variable load, the voltage regulation control includes two categories: the generator’s
output voltage is not stable, but the DC voltage is challenging, called single-port voltage
regulation. The output end of the generator is regulated, and the DC end is controlled,
called dual-port voltage regulation. This paper will analyze and design the structure and
topology of these two kinds of systems.

In this paper, the topology scheme of the whole system and the scheme of multi-
machine expansion are carefully described, along with the model of the engine and compar-
isons of different converter schemes. The generator, rectifier, and the double buck inverter
are presented as both a model and in-depth analysis. The results of the simulation and
experiment prove that the so-modeled system exhibits high efficiency, reliability, and is
low cost. Engine and generator coaxial connection structure diagram, physical diagram of
the generator rotor, permanent magnet synchronous motor load density cloud and load
magnetic field line distribution simulation, actual drawing of the whole power generation
system platform, engine external characteristic test platform are shown in Appendix A.

2. System Topology and Structure Design

Similar to traditional power stations, the whole system of ultra-light power stations is
mainly composed of two parts: a power unit and a converter unit. However, for long-term
stability, it does not include an energy storage unit. Among these, the power unit comprises
the engine and the generator, two parts of a mechanical coaxial connection, and the engine is
the prime mover through the coaxial drive generator’s automatic movement. The generator
is responsible for converting the exceptional power into electrical energy. The converter unit
has different converter forms according to additional output electrical energy requirements,
responsible for various forms of electrical energy conversion. Depending on the power
level and demand occasions, the engine can choose a Stirling machine, gas turbine, diesel
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engine, gasoline engine, etc. At the same time, the generator can be considered a permanent
magnet motor, electric excitation generator, or hybrid excitation generator [4,5]. Common
power station system structure as shown in Figure 1.
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Figure 1. Configuration of power station common system.

When considering the topology design of the power station, based on the possibility
of port expansion, it can be divided into the standard DC bus topology scheme, as shown
in Figure 2a, and the classic AC bus topology scheme, as shown in Figure 2b. In the DC bus
scheme, each power unit selects the output DC for multi-machine parallel, then converts
the external power frequency power output. In contrast, in the standard AC bus scheme,
each power unit independently performs the rectification and inverter process, and then
selects the power frequency output end to directly parallel the power supply to the load.
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Figure 2. Multimachine extension topology of power plant system. (a) DC bus topology scheme;
(b) AC bus topology scheme.
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The two parallel expansion schemes have advantages and disadvantages. Considering
the stability problems caused by the increased coupling between the whole machine
driven by the inverter in the DC bus scheme as a common inverter unit, the AC bus
parallel scheme can consider the parallel connection without interconnection based on
independently completing the inverter output, increasing the expansion and stability of
the system while reducing the coupling degree between the whole machine.

When the AC bus scheme is adopted, the power unit control of each subunit is
relatively independent and flexible. Considering a single power station, a series non-
energy storage unit system structure is directly composed of a miniature gasoline engine,
a multi-winding permanent magnet synchronous generator, a three-phase rectifier, and a
single-phase inverter in a chain structure, as shown in Figure 3 below.
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3. Model Analysis and Improvement Design of Selected Engine
3.1. Engine Modeling Analysis

The main requirement for a light mobile power system is to provide as much mechani-
cal power as possible in the smallest possible size and weight. It should also have high fuel
economy and oil efficiency, as well as increased operational reliability. According to the
small capacity power characteristics of the light mobile power system, the engine options
to be considered are (1) micro gas turbine, (2) micro diesel engine, (3) small gasoline engine,
and three other engine options.

The light mobile power generation mainly uses a gasoline engine with higher speed
and lifting power, and relatively good torque adaptability, lighter mass, smaller size, low
vibration, and noise. Therefore, it is more suitable for the prime mover solution of an
ultra-light mobile power generation system.

The energy conversion and power generation involved in a gasoline engine’s opera-
tion are complex, non-electrical processes. The process includes air intake, fuel injection,
ignition, combustion, and exhaust. At the same time, this kind of engine often faces special
transient conditions when working, such as starting and stopping, sudden loading and
unloading. When the temporary load changes, the internal thermal stability state of the
engine will change due to the thermal inertia lag of the relevant stroke-executing com-
ponents. For example, the formation of a mixed gas in the engine cylinder will also be
affected by the inertia of the liquid fuel, which is more significant than the air, resulting
in the engine becoming thinner in the mixture during sudden load reduction, and the
acceleration response becomes worse, resulting in a shutdown. When it works under
unstable conditions, it is difficult to establish an accurate mathematical model that can be
used for real-time control.

When the load torque of the engine (the electromagnetic torque of the generator is the
load torque of the engine) is constant without other factors, it can be regarded as working
under stable conditions, which can be expressed under the given load torque:

TEng − Te = J
dωEng

dt
(1)
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where ωEng is the engine angular velocity (rad/s); J is the moment of inertia of the engine output
shaft; TEng is the engine output dynamic torque; Te is the load torque. If the load is unchanged
and only the input (carburetor opening θ) changes, then the following formula applies:

T∗
α

dφ
dt + Sδ = κθ · θ

φ = κη · (1 − e−
Sδ
Tα )

Sδ =
ω

TREng
· ( ∂Te

∂ω − ∂TEng
∂ω )

(2)

where T*
α is the response time constant of the engine (that is, the time required for the

engine to start to the rated working condition when the carburetor opening is at a particular
fixed power/torque value under no-load conditions).

According to Formulas (1) and (2), when the load is unchanged, the speed and carbu-
retor opening are first-order relations, and the transfer function can be obtained:

G∗(s) =
φ(s)
θ(s)

=
κθ

T∗
α s + Sδ

(3)

When considering the power model with pure hysteresis, we can obtain:

G(s) =
κ1

Tαs + 1
· e−τs (4)

Only the load torque is considered if the engine carburetor opening is unchanged.
This is because the relationship between the generator’s electromagnetic torque change
and the engine speed change is not part of the engine speed feedback loop. Thus, at this
time, the dynamic characteristic transfer function between the load torque (here, it is also
the electromagnetic torque of the generator) and the engine speed is:

GLT(s) =
κ2

Tβs + 1
(5)

When the engine is working under unstable conditions, such as sudden load changes, it is
difficult to establish an accurate mathematical model, and a relatively accurate mathematical
model can be obtained by combining experimentation and transient theoretical analysis.
External torque characteristics of engine and generator as shown in Figure 4 below.

Figure 4. External torque characteristics of engine and generator.
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3.2. External Engine Characteristics and Analysis

The comparison diagram of the torque external characteristic curves of the engine
and generator mentioned above is qualitatively obtained based on the design. The torque
characteristics and power characteristics of the engine are coupled with each other and
exhibit complex nonlinear characteristics. Further, by measuring the torque–tach–power
characteristic data of the micro-engine through the eddy current power measuring platform,
the engine’s mathematical model can be optimized, which provides a basis for analyzing
the speed instability condition of the power unit and designing the speed stability control
strategy. Fitting results of three-dimensional curve among engine throttle opening, speed,
and torque as shown in Figures 5 and 6 below.
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3.3. Modification of Engine Stall Restrictions

The speed limit stability control is mainly aimed at preventing excessive speed (more
than 10,000 rpm) caused by sudden load reduction when the load changes. Due to the
strong integration of the engine and generator, the output voltage of the generator under the
speed limit becomes too high, which can lead to breakdowns in the after-stage converter
unit. Therefore, it is necessary to impose a speed limit, which is implemented by the
ignition unit of the engine. The engine TCI ignition scheme design is shown in Figure 7
below. Because there is no energy storage unit in the ultra-light power station, choosing the
high-voltage lighter package scheme is impossible. Instead, select a hand-pulled generator
to start the ignition, and the generator design table is equipped with a permanent magnet
for ignition and an accompanying ignition winding.
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The response of the power unit output shaft speed for the engine ignition speed limit
and throttle adjustment is shown in Figure 8 below. The trigger point of speed can be
adjusted by adjusting the ignition angle and winding state.
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In summary, the timing sequence of the load switching response speed regulation
strategy of the power unit, considering the speed feedback PID closed-loop control of the
output shaft of the power unit, the load current feedforward control, and the ignition speed
limiting control, is shown in Figure 9. Among them, the ignition flameout speed-limit
trigger point is 8000 rpm, and the feedforward trigger current limit value of the load current
is 0.3 A (15% load current increment).
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4. Topology Scheme and Model Analysis of Generator Side Voltage Regulation
4.1. Motor Types and Modeling Analysis

Many types of motors can be used as generators in DC energy systems. For example,
synchronous motors include electrically excited synchronous machines (EESM), permanent
magnetic synchronous motors [12], hybrid excited synchronous machines (HESM) [1–4],
induction machines (Induction Machine, IM), switched reluctance motors (Switched Reluc-
tance Machine, SRM), etc. Many scholars have studied the system performance (stability
and dynamics) and control methods of induction generators (IG) used in wind power
generation, automotive power generation, aircraft power generation systems, and other
applications. Its beneficial characteristics include low cost, high reliability, and robustness.

In recent years, the use of permanent magnets has become very attractive due to the
improvement of their performance and the reduction in their cost. On the other hand, with the
progress of power electronics technology, sensor technology, control technology, large-scale
integrated circuits, and other related technologies, the performance of permanent magnet
motors has been dramatically improved. Permanent magnet synchronous motor (PMSM) and
permanent magnet synchronous generator (PMSG) with its high power density, efficiency,
and reliability, PMSG is an excellent model for various industrial applications. Therefore,
permanent magnet motors, together with full-power converters, are becoming more and more
attractive and are increasingly being applied. The advantages of permanent magnet syn-
chronous generators compared with electrically excited synchronous generators and doubly
fed induction generators can be summarized as follows: 1⃝ higher efficiency, 2⃝ no additional
excitation power supply, 3⃝ improved thermal characteristics, 4⃝ higher reliability, 5⃝ lighter
weight, higher power density. However, a permanent magnet synchronous generator has a
constant magnetic excitation flux linkage. Because of the danger of demagnetizing permanent
magnets, achieving the weak magnetic regulation required by a high-speed working area is
not easy in a permanent magnet synchronous motor.

The generator studied in this paper is a surface-mounted six-phase PMSG. Because
of the multi-winding structure and the three-phase primary winding as its central part,
the six-phase motor can be simplified into a three-phase motor for modeling analysis and
discussion. The structure diagram of the five-pole six-phase PMSG is shown in the figure
below, and the phase windings are evenly distributed by 60◦ on the stator circumference.
Take the phase around the axis as the origin, and the space angle of any position on the
inner circle of the stator in the counterclockwise direction is θ. As shown in Figure 10, the
generator has different specific forms of winding and its simplification into three-phase
winding. As shown in Figure 11, the generator has three sets of specific forms corresponding
to different functions: (1) the primary winding for AC power output; (2) ignition winding
for engine ignition; (3) auxiliary winding for direct current and other purposes.
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Figure 10. Six-pole-multi-winding PMSG.
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For the simplification of the physical model, the following assumptions are made:

(1) The influence of other harmonic components is ignored in the stator winding and
permanent magnet flux linkage of the motor.

(2) The magnetic circuit of the motor is linear, without considering the influence of core
saturation, hysteresis, and eddy current effects.

(3) Regardless of the influence of the stator surface teeth and slots, there is no damping
winding on the rotor.

In summary, the generator voltage equation can be analyzed:{
Vd = −(Rsid + Ld

did
dt ) + ωeLqiq

Vq = −(Rsiq + Lq
diq
dt )− ωeLdid + ωeψm f

(6)

where a and b are stator d axis and q axis voltages, respectively; c and d are stator d axis
and q axis currents, respectively; e is the stator resistance of PMSG; f is the excitation
flux produced by the rotor permanent magnet in the armature winding; g and h are the
inductance of stator d axis and q axis, respectively; i is the electrical angle of the rotor; j in
the d-q axis coordinate system, the motor back electromotive force is represented as k and
m. Equivalent diagram for a three-phase PMSG vector is as shown in Figure 12. And the
Designing parameters of PMSG in the model experimental test is as shown in Table 1.

Electromagnetic torque equation:

Te =
3
2

p[ψm f + (Lq − Ld)idiq] (7)
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Table 1. Designing parameters of PMSG in the model experimental test.

Parameters Value Parameters Value

Stator equivalent inductance Ld/(mH) 7.79 Number of poles 5.0
Stator equivalent resistance/(Ω) 5.84 Rotor equivalent resistance/(Ω) 3.89
Rated speed/(rpm) 7000 Rated torque/(N·m) 0.5
Rotor equivalent inductance Ld/(mH) 7.79 Mutual inductance/mH 0.39
Permanent magnet flux linkage ψf/(Wb) 0.59 Moment of inertia/(kg·m2) 0.008

4.2. Motor Output Rectifier Scheme Selection

Power electronics technology plays an essential role in integrating renewable energy
systems and the design of generator systems. The AC power generated by the permanent
magnet synchronous generator is converted into direct current by an AC/DC converter.
AC/DC converters, also known as rectifiers, come in some significant types, such as diode
rectifiers, thyristor rectifiers, and PWM rectifiers. Due to the unpredictability of the speed
of the prime mover, the generators used in the studied DC electric energy system generally
work under variable speeds. Different AC/DC converter topologies have different effects
on motor selection, system control, and performance [14]. Several mainstream rectification
topologies are shown as in Figure 13. Comparison of topological characteristics of power
converter is as shown in Table 2.
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Table 2. Comparison of topological characteristics of power converter.

Converter Topology Main Characteristics

Diode + Buck converter
1. Low price (diode);
2. High quality DC bus;
3. The voltage level is determined by CEMF.

Thyristor rectifier
1. Low price, wide use;
2. Large fluctuation of DC bus (low quality);
3. The voltage level is determined by CEMF.

PWM rectifier 1. The voltage level is determined by the DC bus voltage;
2. Simple structure.

The diode rectifier belongs to the early rectification scheme. The output voltage is
not adjustable, and a regulator has manual voltage regulation, poor dynamic response,
significant losses, and other shortcomings; even with the addition of a buck circuit, there
is still the problem of a small voltage regulation range. Thyristor rectifiers can overcome
the shortcomings of diode rectifiers with the advantages of a large capacity and a wide
power range. While the switching rectifier can reasonably achieve the rectification effect,
the cost is very high. Therefore, due to the high-reliability requirements of the occasion
and low-cost control, the final choice is the thyristor rectifier.

4.3. Topology Design and Parameter Design of AC Output Inverter

The inverse converter is regarded as an important element in electro-electronic tech-
nology. It is widely used in modern intelligent power networks and energy source power
generation systems, where the “transmission bridge inverter” is located in the upper and
lower bridge arms with high-frequency switching tubes. It is necessary to add a dead zone
time between the opening and closing signals of the upper and lower bridge arms. The
bridge inverter continues to conduct on the body diode of the opening and closing tube,
and the reverse recovery time is long, which will create large opening and closing losses.
The increase in the switching frequency and efficiency of the inverter system is limited.

The double Buck inverter is a toppling structure studied and widely used in recent
years. Its basic circuit unit is the Buck circuit, where the switching tube and the diode tube
are connected in series to form the current bridge arm. The problem that does not exist
in the high-frequency switching tube is more reliable than that of the transmission bridge
inverter. In addition, the double Buck inverter uses the Buck circuit diode instead of the
body diode of the switch tube as the output continuous current, which reduces the output
inductive current commutation time and reduces the reverse recovery losses. This can help
improve the system’s switching frequency and efficiency.

A dual Buck inverter consists of two sets of identically symmetrical Buck circuits, as
shown in Figure 14 and the equivalent model of dual Buck inverter is shown as in Figure 15.
ud is the input power supply, uC is the filter capacitor voltage, iL1 and iL2 are the currents
of the filter inductor L1 and L2, io is the load current, and Co, L1, and L2 constitute the
low-pass filter. Because of the existence of power devices, the inverter is essentially a
nonlinear system. Assuming that the input voltage is constant, the power tube is an ideal
device, and the switching frequency is much higher than the output fundamental frequency
of the inverter and the resonant frequency of the LC filter, the approximate model of the
inverter can be simplified as shown in Figure 16. Physical diagram of the main circuit and
controller of the inverter is shown as in Figure 17.

ud is a voltage pulse sequence with amplitude ±ud, L = L1 = L2. Taking inductance
current iL and capacitance voltage uC as state variables, the equation for the small signal
state of dual Buck inverters is: ( .

iL.
uC

)
=

( 1
L ud − 1

L uC
1
C iL − 1

RC uC

)
(8)
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Write the inverter’s small signal equation as a standard mode (distinguish state
quantity and control quantity):[

dîL(t)
dt

dûC(t)
dt

]
=

(
0 − 1

L
1
C − 1

RC

)(
îL(t)
ûC(t)

)
+

( 1
L
0

)
ûd(t) (9)

According to the small signal equation of state, the transfer function between induc-
tance current and control quantity (PWM) is obtained (small signal premise):

If the filter capacitor equivalent series resistance r is considered, the open-loop transfer
function of the main power loop can be written as:

Gvd(s) = Ud
1 + s

ωesr

1 + s
ωoQ +

(
s

ωo

)2 = Ud
1 + Cresr·s

1 + L
R ·s + LC·s2 (10)

Buck circuit small signal transfer function:

G(s) =
u f bk(s)
uCtrl(s)

= Gvd(s) · Gpwm_gen(s) · G f c =
uC(s)

ud_pwm(s)
·

ud_pwm(s)
uCtrl(s)

·
u f bk(s)
uC(s)

(11)

5. Simulation and Machine Experimental Result

Simulation is conducted for small gasoline engines, three-phase thyristor bridge recti-
fier circuits, and single-phase inverters to model and analyze the system. The effectiveness
and stability of the designed system can be determined by observing the engine’s change
process. System program simulation structure is shown as in Figure 18.
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Figure 18. System program simulation structure. (a) Engine module; (b) generator module; (c) rectifier
module; (d) inverter module.

The prime mover of the ultra-light power generation system, using a series engine
and a coaxial link generator without energy storage, is a miniature gasoline engine with
high speed and small inertia. The speed response curve of its closed-loop and open-loop
control is shown below. The experimental results show that the engine, with high speed
and low inertia, cannot recover the required speed without closed-loop control, and the
speed is 30% lower (at 100% load), which means that sufficient generating speed cannot be
guaranteed. Therefore, closed-loop control must be adopted. Open-loop and closed-loop
engine speed response is shown as in Figure 19.
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The output voltage simulation and actual experimental results of the three-phase main
winding of the generator are shown as follows. According to the results of simulation and
platform experiments, the generator winding scheme designed in this paper can guarantee the
power output with a good sinusoidal degree (less than 5% THD) and the maximum efficiency
output (94% efficiency) over a wide speed range. Since the rated speed of the generator
designed in this paper is twice that of the same kind of motor, it can also effectively improve
the power density of the generator and the whole system, with an average increase of 45%.
Light load generator phase voltage waveform is shown as in Figure 20.
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6. Conclusions

This paper first points out several key steps in ultralight generator system design:
prime mover selection and working principle analysis, generator modeling and winding
design analysis, rectifier components, and topology selection and analysis. According to
the two important design requirements of an ultra-light power generation system for high
power density and high stability, the need for high power density makes the rated speed
of the generator higher than the ordinary generator speed, and the need for high stability
makes the devices used in the rectifier circuit need to be more resistant to high voltages.
Finally, a small gasoline engine is determined as the prime mover of the power generation
system, a multi-winding six-phase permanent magnet synchronous motor is used as the
generator part of the generator system, and a three-phase thyristor bridge circuit is used
as the rectifier part of the power generation system. Finally, the simulation design of the
micro-power generation system is carried out to verify the effectiveness, low cost, and high
reliability of the designed scheme.
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