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Abstract: This study proposes an unbalanced current compensation method based on a four-leg
inverter using an artificial neural network (ANN) under unbalanced load conditions. Distribu-
tion systems exhibit rapid load variations, and conventional filter-based control methods suffer
from the drawback of requiring an extended time period to reach a steady state. To address this
problem, an ANN is applied to calculate the unbalanced current reference and enhance dynamic
performance. Additionally, because of the periodic incorrect output inherent in the ANN, apply-
ing it to a proportional–integral controller would result in an error being directly reflected in the
current reference. In the aforementioned problem, an ANN is applied to the dq0 coordinate system
current controller to compensate for the periodic incorrect output in the current reference calculation.
The proposed ANN-based unbalanced current compensation method is validated through PSIM
simulations and experiments.

Keywords: unbalanced current compensation; artificial neural network; four-leg inverter;
grid-connected

1. Introduction

In recent years, power systems have become increasingly complex owing to con-
tinuous advancements. In particular, with the rising demand for power, the integration
of renewable energy sources, and the introduction of electric vehicles and distributed
power generation systems, power networks are now operating in dynamic and diverse
environments. These conditions can deteriorate power quality, significantly affecting the
stability and performance of power systems. Factors that contribute to the degradation of
power system quality can be explained in terms of harmonics, reactive power, and power
imbalances [1,2].

Harmonics arise owing to the discontinuous nature of rectifiers or AC/DC converters,
causing malfunctions in precision control equipment and a decrease in power quality
by reducing the power factor. Therefore, various approaches have been investigated to
compensate for harmonics in power systems, focusing on mitigating their effects [3,4].
Reactive power arises from the use of inductive and capacitive load components, which can
degrade the power quality by reducing the power factor of the system. Various methods for
controlling reactive power in power systems have also been studied to improve the power
quality [5,6]. Unbalanced power refers to situations in which the magnitudes and types of
loads used in each phase are different, resulting in phase and magnitude imbalances in the
current or voltage of the system. In particular, if voltage, current, and power imbalances
occur due to an unbalanced load, they can cause power quality issues across power genera-
tion and distribution systems [7]. Awareness of the risks posed by unbalanced power is
continually increasing, leading to a continuous increase in research aimed at minimizing
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the effects of unbalanced power [8]. Although LC filters can be used in power systems
to compensate for unbalanced power, issues such as filter size and parameter selection
arise [9]. Following the advancements in power electronics research, recently, the focus has
shifted towards active power filters and load unbalanced compensation (LUC) to address
harmonic distortions and non-linear loads, thereby improving the overall power quality of
grid systems [10]. The fundamental approach in such compensation strategies involves
integrating an inverter in parallel between the grid and the load to inject harmonic and
unbalanced currents back into the grid [11]. As a result, elements requiring compensation,
such as harmonics and unbalanced values, necessitate the computation of current refer-
ences for the inverter, which acts as a compensating agent. Therefore, this study aims to
investigate the process of determining current references using a specific methodology.
Typically, the instantaneous reactive power theory method is employed [12,13]. However,
this method has the disadvantage of being susceptible to noise. To address these limita-
tions, stationary reference frame (STRF) approaches have been proposed, transforming
the abc frame into a set of stationary coordinates of α-β-0 to mitigate unbalances [14,15].
Furthermore, various approaches based on the synchronous reference frame (SRF) have
been proposed to alleviate unbalances by synchronizing with the voltage of the power
system and transforming the abc frame into the dq0 synchronous frame [16,17]. Subse-
quently, research has been conducted to improve the performance of unbalanced power
compensation by applying bandpass filters, high-pass filters (HPFs), and low-pass filters
(LPFs) to STRF and SRF [18,19]. However, the filter-based method exhibits disadvantages
in regards to time delay [20,21]. In power electronics-based approaches, research has also
been conducted to apply artificial neural networks (ANNs) to replace controllers [22,23],
and as well as to employ ANN-based nonlinear compensation in active power filters [24].

In this paper, we propose a current unbalance compensation method for distribu-
tion systems using ANN. Conventional filter-based methods require several cycles to
reach a steady state. To address this, we apply ANN to calculate the current unbalance
compensation component, reducing the time to reach a steady state to within one cycle.
However, periodic errors occur during this process. By applying ANN controllers instead
of traditional proportional–integral (PI) controllers, we mitigate the issue of oscillatory
components. ANN is applied to two aspects, and to verify control performance, simulations
and laboratory-scale experiments were conducted. The structure of this paper is as follows:
Section 2 discusses representative conventional methods, namely the p-q theory and the
synchronous frame theory. In Section 3, we describe the structure and training step of the
ANN applied for the proposed method. Section 4 details the performed simulations of
current compensation under unbalanced load conditions. Subsequently, Section 5 shows
the results of the experiments conducted to validate the proposed method. Finally, Section 6
presents the conclusion.

2. Conventional Grid Current Compensation under Unbalanced Load Conditions

Figure 1 illustrates the scenario of an unbalanced load in the system connected to
the inverter. When the inverter is not controlled, the load power is entirely supplied by
the power grid. Such an unbalanced load causes distortions in the distribution system
and deteriorates the overall power quality [25]. Figure 2 shows a vector diagram of the
distorted current improved by the inverter. To address these issues, research has been
conducted on the LUC method, which compensates for unbalanced loads. When the
inverter compensates for the unbalanced loads, the current in the system is balanced.
This LUC method comprises two parts: calculating the current reference to compensate
for the unbalance current, and the current controller [24]. In this section, we describe
the conventional method of calculating the current reference under an unbalanced load.
Equation (1) mathematically describes the principle of current compensations.

→
i g,abc(balanced) =

→
i l,abc(unbalanced) +

→
i c,abc(compensation) (1)
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Figure 3 depicts the block diagram for calculating the current reference based on the
instantaneous power p-q theory. Calculations based on the p-q theory remain effective in
both the steady and transient states, providing rapid response characteristics even under
transient conditions [11]. This method utilizes a band pass filter to compute the current
reference using the AC power component. Inputs for the calculation are obtained by
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2.2. LUC Based on the Synchronous Frame Theory

Figure 4 illustrates a block diagram for calculating the current reference based on
the synchronous reference frame theory. To compute the current reference, the current
values must be transformed from the abc coordinates to the dq0 synchronous coordinates.
Equation (5) represents the formula for transforming the abc coordinate system into the
dq0 coordinate system. When the load is in an unbalanced state, the dq0 current can be
expressed by Equation (6). Using this represented current, the unbalanced current reference
of the inverter can be computed [26,27]. In Equation (6), the current is divided into DC and
AC parts. To obtain a DC current component, an LPF with a very low cut-off frequency
must be used. By extracting the constant component of the current through the LPF, the
current reference in dq0 coordinates can be calculated using Equation (7). However, the
performance of deriving the current reference from an LPF-based synchronous coordinate
system is constrained by the time delay introduced by the filter [10,21]. Here, id, iq, i0 and
ĩd, ĩq, ĩo represent the constant and varying parts of the current, respectively.id
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 (6)

i∗d
i∗q
i∗0

 =

 id − id
iq − iq
i0 − i0

 (7)Energies 2024, 17, 1325 5 of 29 
 

 

 
Figure 4. Current reference calculation based on the synchronous reference frame method [27]. 

3. Proposed Current Compensation Method Using ANN 
Figure 5 shows the control block diagram of the inverter, outlining the proposed ap-

proach for compensating the grid current under unbalanced load conditions. Initially, an 
ANN was devised to calculate the reference current and compensate for the unbalanced 
current. The ANN was fed with the synchronous coordinate values of the AC current as 
the input. In addition, three supplementary ANNs were established to control the phase 
current. A conventional carrier-based pulse width modulation method was employed to 
govern the inverter, based on the output derived from the ANN training. 

 
Figure 5. Proposed current compensating method control block diagram based on ANN. 

3.1. Designing the ANN Structure using MATLAB 
The structure of an ANN is similar to that of a human neural network. The architec-

ture of the ANN applied in this paper is depicted in Figure 6, where 𝑥௞ represents the 
input variables; 𝑤௞ denotes the multiplication weights of the ANN; the activation func-
tion, the output function, and the bias represent the addition weights of the ANN; and y 
signifies the output value. 

Figure 4. Current reference calculation based on the synchronous reference frame method [27].



Energies 2024, 17, 1325 5 of 29

3. Proposed Current Compensation Method Using ANN

Figure 5 shows the control block diagram of the inverter, outlining the proposed
approach for compensating the grid current under unbalanced load conditions. Initially, an
ANN was devised to calculate the reference current and compensate for the unbalanced
current. The ANN was fed with the synchronous coordinate values of the AC current as
the input. In addition, three supplementary ANNs were established to control the phase
current. A conventional carrier-based pulse width modulation method was employed to
govern the inverter, based on the output derived from the ANN training.
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3.1. Designing the ANN Structure using MATLAB

The structure of an ANN is similar to that of a human neural network. The architecture
of the ANN applied in this paper is depicted in Figure 6, where xk represents the input
variables; wk denotes the multiplication weights of the ANN; the activation function, the
output function, and the bias represent the addition weights of the ANN; and y signifies
the output value.
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paper was validated through three steps. 
(1) Step 1: training data ratio validation 
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data to monitor the training progress, and testing data to evaluate the performance of the 

Figure 6. The structure of the ANN applied in this paper.

The ANN consists of three layers: the input, the hidden, and the output layers. The
output of the activation function is formulated as the product and sum of the inputs, as
expressed in the following equation, where xk,min, xk,max, ymin, and ymax are the minimum
and maximum values of each sample of training input and output data, respectively.
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y =
ymax − ymin

2

[
f
[{

2
(

x1 − x1,min
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)
− 1
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w1 +

{
2
(
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w2 +

{
2
(
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w3 + biasin

]
+ biasout

]
+ ymin (8)

The activation function outputs large values for inputs above a certain threshold,
without outputting small values. Owing to the characteristics of each activation function,
they typically output values between 0 and 1 or between −1 and 1, necessitating the scaling
of the input and output data. Although various activation functions exist, the three most
commonly used functions include the sigmoid, the rectified linear unit (ReLU), and the
hyperbolic tangent functions, which are represented in Figure 7.
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The reason for using nonlinear activation functions is to solve the problems of the
model more effectively. When using linear functions, the presence of hidden layers may
result in unnecessary outcomes because the relationship between the inputs and outputs
is merely represented by addition and multiplication. Therefore, the activation functions
must be non-linear. However, for the output function, it is necessary to reflect data passing
through the hidden layers of the output. However, the application of a non-linear function
to an output function may lead to data loss. In this study, we applied a sigmoid function
as the activation function, which is reflected in the simulation results presented in the
following section [28]. The MATLAB R2020b toolbox used to train the ANN applied in the
paper was validated through three steps.

(1) Step 1: training data ratio validation

In this study, MATLAB’s Neural Fitting (nftool), from MathWorks, was utilized for
the ANN training, and the structure of the ANN was configured as shown in Figure 8.
When using the training toolbox, the user can select the ratio of training data, validation
data to monitor the training progress, and testing data to evaluate the performance of the
trained ANN. In this study, 100 test datasets for the q-axis current controller were used to
determine the data sample ratio. The results are presented in Table 1 and Figure 9, where it
can be observed that the presence of appropriate ratios of validation and testing data is
essential for achieving high accuracy.
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Table 1. Result of training data ratio based on the q-axis current controller dataset.

Samples (%) MSE
(Mean Square Error) R

1 Set
Training 70 4.55392 × 10−8 9.99999 × 10−1

Validation 15 2.22321 × 10−7 9.99999 × 10−1

Testing 15 1.63285 × 10−7 9.99999 × 10−1

2 Set
Training 90 3.44847 × 10−7 9.99999 × 10−1

Validation 5 1.24599 × 10−6 9.99999 × 10−1

Testing 5 9.57606 × 10−7 9.99999 × 10−1

Energies 2024, 17, 1325 7 of 29 
 

 

trained ANN. In this study, 100 test datasets for the q-axis current controller were used to 
determine the data sample ratio. The results are presented in Table 1 and Figure 9, where 
it can be observed that the presence of appropriate ratios of validation and testing data is 
essential for achieving high accuracy. 

 
Figure 8. ANN structure in MATLAB. 

  
(a) Result of 1 set training. (b) Result of 2 set training. 

Figure 9. MSE of ANN training according to dataset ratio. 

Table 1. Result of training data ratio based on the q-axis current controller dataset. 

  Samples (%) 
MSE 

(Mean Square Error) R 

1 Set 
Training 70 4.55392 × 10−8 9.99999 × 10−1 

Validation 15 2.22321 × 10−7 9.99999 × 10−1 
Testing 15 1.63285 × 10−7 9.99999 × 10−1 

2 Set 
Training 90 3.44847 × 10−7 9.99999 × 10−1 

Validation 5 1.24599 × 10−6 9.99999 × 10−1 
Testing 5 9.57606 × 10−7 9.99999 × 10−1 

(2) Step 2: training algorithm validation 
Based on previous results, the ratio of the test data was configured as follows: train-

ing 70%, validation 15%, and testing 15%. In this study, ANN was trained using the back-
propagation method, and MATLAB provided three algorithms: the Levenberg–Mar-
quardt (LM) algorithm, Bayesian regularization (BR), and the scaled conjugate gradient 
(SCG) method , which can be summarized as follows: 
- Levenberg–Marquardt algorithm: The LM method combines the Gauss–Newton and 

gradient descent methods to efficiently determine both global and local minima. Alt-
hough this offers both stability and faster convergence, it requires significant compu-
tational effort to determine initial values when they are not provided. 

- Bayesian regularization: This method trains a neural network to minimize errors only 
for the provided training data, which may lead to over-confidence. Although BR con-
siders uncertainty and enhances robustness against noise or inputs beyond the train-
ing data, it tends to have a slower convergence. Additionally, it may produce differ-
ent outputs for the same parameters owing to its consideration of uncertainty. 

Figure 9. MSE of ANN training according to dataset ratio.

(2) Step 2: training algorithm validation

Based on previous results, the ratio of the test data was configured as follows: training
70%, validation 15%, and testing 15%. In this study, ANN was trained using the backpropa-
gation method, and MATLAB provided three algorithms: the Levenberg–Marquardt (LM)
algorithm, Bayesian regularization (BR), and the scaled conjugate gradient (SCG) method,
which can be summarized as follows:

- Levenberg–Marquardt algorithm: The LM method combines the Gauss–Newton and
gradient descent methods to efficiently determine both global and local minima.
Although this offers both stability and faster convergence, it requires significant
computational effort to determine initial values when they are not provided.

- Bayesian regularization: This method trains a neural network to minimize errors only
for the provided training data, which may lead to over-confidence. Although BR
considers uncertainty and enhances robustness against noise or inputs beyond the
training data, it tends to have a slower convergence. Additionally, it may produce
different outputs for the same parameters owing to its consideration of uncertainty.

- Scaled conjugate gradient method: Introduced by Moller, the SCG method differs from
other conjugate gradient algorithms in that it does not recalculate at each iteration
and performs backpropagation with a second-order approximation of the error. This
approach ensures the robustness and independence of the neural network from user-
defined training data. However, the approach is complex and requires substantial
computational resources and training times.

Figure 10 depicts the results of training the ANN current controller using three algo-
rithms supported by MATLAB. All simulations involved 1000 iterations of identical training
using the q-axis current controller dataset. When comparing the training performance and
error histograms, as shown in Table 2, it is observed that the LM training algorithm exhibits
the least amount of error.
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Table 2. Comparison of ANN training algorithms—Epoch 1000.

Training Performance Error Histogram

Levenberg–Marquardt 1.972 × 10−8 1.31 × 10−5

Bayesian Regularization 9.2814 × 10−7 −5.4 × 10−5

SCG Method 0.0048582 −0.1241

(3) Step 3: number of neural validations

Figure 11 illustrates the training performance and error histogram based on the number
of hidden neurons in the ANN using the q-axis current controller dataset. The training
performance of the ANN with 30 hidden neurons is superior; however, the error histogram
of the ANN with 20 hidden neurons indicates that the majority of errors are dominantly
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distributed in one area. Such dominant errors make it easier to compensate for the results
of the ANN through the feedforward method. Based on the simulation results, we applied
an ANN with 20 hidden neurons trained using the LM method.
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3.2. Designing an ANN for the Calculation of Current Reference under Unbalanced Load
Conditions

The structure of the ANN for calculating the current reference in the case of load
unbalance is illustrated in Figure 12. The ANN input consisted of the dq0 axis synchronous
reference frame currents of the load, while the output wass composed of the average values
of the unbalanced magnitudes in the dq0 axis. The ANN was configured using three inputs,
three outputs, and 20 hidden neurons. Figure 13 shows the training results of the ANN for
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unbalance calculation. Table 3 summarizes the approximately 40,000 samples of data used
to train the ANN.
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Table 3. ANN training data summary of current reference calculation.

Input Data Output Data

Ide Iqe Ioe Ide_ref Iqe_ref Ioe_ref

−0.881433331 −9.342378775 −0.181107398 −6.01 × 10−1 −10.781192 0.000155916
−0.661866636 −9.316670329 −0.070921802 −6.01 × 10−1 −10.781192 0.000155916
−0.440898051 −9.324221858 0.039687159 −6.01 × 10−1 −10.781192 0.000155916

. . .. . .
−2.942782404 −9.855400085 −1.241158981 −0.77460625 −13.886127 0.000126828
−2.312665572 −9.575398404 −0.905744661 −0.77460625 −13.886127 0.000126828
−1.647599185 −9.393269653 −0.565187099 −0.77460625 −13.886127 0.000126828

3.3. Designing an ANN for the Current Controller in the dq0 Axis

The structure of the ANN for the dq0 axis current controller in the case of a load
unbalance is illustrated in Figure 14. The input of the ANN consists of the proportional and
integral error values of each axis, whereas the output is composed of the PI controller of
each axis. The ANN was configured with two inputs, one output, and 20 hidden neurons.
Figure 15 shows the training results of the ANN for the current controller of each axis.
Table 4 summarizes approximately 85,000 samples of each axis of the data used to train the
ANN. Table 5 summarizes the training results of the ANN conducted in this paper.
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Table 4. ANN training data summary of the current controller.

Input Data Output Data

Error
D-Axis

Integral
D-Axis

Error
Q-Axis

Integral
Q-Axis

Error
O-Axis

Integral
O-Axis D-Axis Q-Axis O-Axis

0.065365 12.41371 −0.0188 −358.686 0.074611 0.390667 13.72101 −359.062 1.882889
0.07662 12.5265 −0.0413 −358.738 0.034672 0.45742 14.05891 −359.564 1.150865

0.041886 12.50608 −0.04018 −358.977 0.038226 0.616964 13.34381 −359.781 1.38149
· · · ·

0.059906 12.49728 −0.07878 −358.877 0.076294 0.651035 13.69541 −360.452 2.176914
0.06789 12.1754 0.006137 −358.662 −0.04231 −0.22027 13.53321 −358.54 −1.06654
−0.00376 11.72399 0.075598 −359.193 −0.06424 0.526357 11.64879 −357.681 −0.75839

Table 5. Summary of ANN learning results.

Training Performance Dominant Error Histogram

Unbalance calculation 0.0091582 −0.04391
d-axis controller 3.6551 × 10−9 −3.9 × 10−5

q-axis controller 1.972 × 10−8 1.31 × 10−5

o-axis controller 1.19 × 10−9 2.58 × 10−5

4. Simulation Results

Simulations were performed using the PSIM 9.1.4 program to validate the effectiveness
of the proposed method. Three simulation cases are considered to conduct a comparative
analysis using the conventional method. The initial case involved the application of the
LPF-based dq0 reference generation and the PI current control. In the second case, an ANN-
based dq0 reference generation, coupled with a PI controller, was incorporated. Finally, the
proposed approach utilized an ANN-based dq0 reference generation and an ANN current
controller for simulation. Figure 16 illustrates the configuration of the applied simulation
and experimental setups. The parameters of the four-leg inverter and the load applied in
the simulations and experiments are listed in Table 6. The unbalance loads for each phase
are listed in Table 6, and the voltages and currents before the compensation are shown in
Figure 17.

Table 6. Parameters of the simulation and experiment.

Parameters Values Unit

Grid Line to Line Voltage 220 Vrms

DC-Link Voltage 380 Vdc

AC Load
A Phase 1.014 kW
B Phase 0.69 kW
C Phase 0.69 kW

Inverter Rated Power 20 kW

LCL Filter
Grid Inductance 100 µH

Filter Capacitance 22 µF
Converter Inductance 1500 µH

DC-Link Capacitance 1200 µF
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4.1. Case 1 (LPF-Based dq0 Reference Generation and PI Current Controller)

The conventional method employs a synchronous reference frame LPF-based current
reference calculation. This approach calculates the magnitude of the unbalance value using
an LPF and compensates for the unbalanced current using an inverter with a PI current
controller. Figure 18 shows the simulation waveforms obtained using the conventional
method. At time t1, a load is applied during the simulation, and at time t2, the load is
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removed. The load was applied with 1.014 kW in phase A, 0.69 kW in phase B, and 0.69 kW
in phase C, making an unbalanced current situation. The waveform depicts the current in
the distribution system and the compensating phase current provided by the inverter. The
next waveform represents the magnitude of the unbalance component calculated using
the LPF. The final simulation waveform depicts the current reference for the compensation
performed by the inverter. The simulation waveform on the left represents the situation
in which the system transitions from a no-load to a moderate load condition, while the
simulation waveform on the right represents the situation in which the system transitions
from a loaded state to a no-load condition. The first waveform in Figure 18 represents
the grid current under unbalanced load conditions. This current slowly follows the load
variations owing to the delay in determining the unbalance magnitude using the LPF, as
depicted in the third plot. When transitioning from a no-load to a loaded condition, it takes
0.125 s to reach an average q-axis current value of −10.788 in a steady state. Similarly, when
transitioning from a loaded to a no-load condition, it takes 0.1 s to reach a steady state.
Figure 19 shows enlarged waveforms of points A and B in Figure 18. The ripple magnitudes
and total harmonic distortion (THD) of each phase current are listed in Table 7. However, for
Point B, the ripple in the phase A current is negligible and is thus not indicated separately.
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Table 7. Maximum ripple and THD of phase currents in the transient state owing to load fluctuations
in Case 1.

A Phase B Phase C Phase Average

Point A [A]
Grid 16.43 12.52 3.52 10.82

Inverter 4.67 9.02 6.85 6.85

Point B [A]
Grid - 16.79 15.24 16.02

Inverter - 11.31 10.62 10.97

THD [%]
Grid 3.365 3.409 3.451 3.41

Inverter 5.637 12.21 10.852 9.57

Such delays are unsuitable for distribution systems in which loads continuously
fluctuate. To address this issue, an ANN was applied to the dq0 reference generation in the
inverter, reducing the time required for compensation to reach a steady state.

4.2. Case 2 (ANN dq0 Reference Generation and PI Current Controller)

In Case 2, unlike in Case 1, the synchronous reference LPF-based current reference
calculation was performed using an ANN. The current controller used the same PI current
controller as that employed in Case 1. In the simulation, the load transitioned from no load
to load at t1, and from load to no load at t2, as in Case 1. The load values were also the
same as in Case 1, with 1.014 kW in phase A, 0.69 kW in phase B, and 0.69 kW in phase
C. The simulation waveforms shown in Figure 20 are arranged in a manner similar to
that in Case 1; however, the third waveform represents the magnitude of the unbalanced
current calculated by the ANN. Figure 21 shows enlarged waveforms of points A and B
from Figure 20. The maximum ripple magnitude and THD for each current are listed in
Table 8. Similar to Case 1, for Point B, the ripple in the phase A current is negligible and is
thus not indicated separately.
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Table 8. Maximum ripple and THD of phase currents in the transient state due to load fluctuations in
Case 2.

A Phase B Phase C Phase Average

Point A [A]
Grid 19.09 11.51 8.34 12.98

Inverter 9.11 9.61 4.08 7.6

Point B [A]
Grid - 21.61 23.05 22.33

Inverter - 12.82 12.2 12.51

THD [%]
Grid 5.385 6.809 5.595 5.93

Inverter 9.41 30.24 28.11 22.59

Instead of the synchronous reference LPF-based current reference calculation, applying
an ANN significantly reduces the transition time from no-load to load conditions. Specifi-
cally, the time to reach the steady state decreases from 0.125 s to 1.7 ms, which is 73.5 times
faster when transitioning from no-load to load conditions. Similarly, when transitioning
from load to no-load conditions, the time reduces from 0.1 s to 1.76 s, which is 56.82 times
faster for reaching the steady state. The simulation results revealed the following outcomes.
The MSE for calculating the dq0 commands using an ANN was found to be exceedingly
low. However, owing to the error and integral value changes in the PI current controller,
unlearned input values distort the output of the ANN every 8.5 ms. Consequently, this
decreases the THD of the currents in the inverter and grid. However, this problem arises
because the periodic occurrence of the incorrect ANN output leads to an overall increase
in the phase current ripple in both the grid and inverter. This ripple increase resulted in
deteriorated THD levels. The outcomes of this study are presented in Table 8. Ultimately,
at Point A, the average maximum ripple in the grid increased by 1.2 times, and for the
inverter current, it increased by 1.12 times. At Point B, the average maximum ripple in the
grid increased by 1.39 times, and for the inverter current, it increased by 1.14 times. The
THD was calculated to be 1.74 times higher than the average current distortion at Point A
and 2.36 times higher at Point B. In the no-load condition, the ANN unbalance calculation
outputs values close to zero for the d, q, and o currents. In addition to these training results,
considering that the three inputs (the dq0 axis currents) determine the three outputs (dq0
axis current references), all three values include AC components, resulting in a slight time
delay in outputting the DC component values.

Combining the conventional PI current controller with the ANN reference calculation
resulted in a reduction in the transient states. However, the average maximum ripple and
current average THD decreased. To mitigate this periodic distortion, a separately trained
ANN-based current controller, which learned the repeated incorrect output and transients
of the ANN, was applied in Case 3.

4.3. Case 3 (ANN dq0 Reference Generation and ANN Current Controller)

In Case 3, both ANN-based reference calculations and current controllers were applied.
The ANN-based current controller applied in Case 3 was trained to address the repetitive
incorrect outputs of the ANN observed in Case 2, along with the transient and steady
states, based on the PI current controller. Case 3 also applied the same load magnitude
at the same time as in Cases 1 and 2 to compare the transient states at the same point in
time. Figures 22 and 23 represent the simulation results for Case 3, with a simulation setup
identical to that of Case 2. The maximum ripple magnitude and THD for each current are
listed in Table 9. Similar to the previous cases, for Point B, the ripple in the phase A current
is negligible, and is thus not indicated separately.
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Table 9. Maximum ripple and THD of phase currents in the transient state due to load fluctuations in
Case 3.

A Phase B Phase C Phase Average

Point A [A]
Grid 7.08 3.03 0.49 3.53

Inverter 4.43 4.12 0.65 3.07

Point B [A]
Grid - 5.23 5.28 5.26

Inverter - 4.32 4.22 4.27

THD [%]
Grid 3.46 3.44 3.5 3.47

Inverter 6.16 12.8 14.1 11.02

The time required for the current reference calculation to reach a steady state, based on
the ANN, was confirmed through simulations to be the same as that in Case 2. As shown in
Table 8, when the ANN and PI current controllers were applied, the maximum ripple and
THD of the current deteriorated significantly. However, with the improvement achieved by
the ANN current controller, compared to Case 1, the maximum ripples of the grid at points
A and B decreased by 3.05 times and 2.57 times, respectively. For the inverter currents,
they decreased by 3.06 times and 2.23 times, respectively, at each point. Simulation results
confirm that compared to Case 2, the THD of both the grid and inverter currents improved
by 1.71 times and 2.05 times, respectively, approaching a performance level similar to that
of Case 1 in terms of THD.

Table 10 summarizes the average values of the three cases and compares their overall
performance. The simulation results indicate that Case 3, which applies the proposed
method, is advantageous for distribution system applications.

Table 10. Comparison of simulation average results for the three cases.

Case 1 Case 2 Case 3

Point A maximum
ripple [A]

Grid 10.82 12.98 3.53
Inverter 6.85 7.6 3.07

Point B maximum
ripple [A]

Grid 16.02 12.33 5.26
Inverter 10.97 12.51 4.27

Average
THD [%]

Grid 3.41 5.93 3.47
Inverter 9.57 22.59 11.02

Average steady state
reaching time [s] 0.1125 0.00173 0.00173

5. Experimental Results

Figure 24 shows the experimental configuration used to verify the proposed ANN-
based compensation method under unbalanced load conditions. The parameters of the
three-phase the four-leg inverter and the three-phase unbalanced resistance load are listed
in Table 6. In the experiment, the current compensation method was applied to a four-leg
inverter in a distributed system under unbalanced load conditions using an ANN.

The experiments were conducted in three cases, similar to the method used in the sim-
ulations. The AC voltage was maintained by the grid, while the DC voltage was controlled
by the AC/DC converter connected in a back-to-back system linking to a delta-winding
grid. The laboratory grid was in a delta-winding configuration, so three single-phase
transformers were connected in a Y-Y configuration to perform the four-wire experiments.
The experiments were conducted only on the no-load to loaded state sequence. Figure 25
depicts the voltage and current waveforms of the secondary side of the Y-Y transformer.
Since the experiments were conducted in the laboratory, the grid was limited to the op-
eration of the unbalanced experiments, and there is slight distortion in the voltage due
to the presence of harmonics caused by the characteristics of the Y-Y transformer. The
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switching frequency of the four-leg inverter is 10 kHz, and the control period is 5 kHz, with
experiments conducted accordingly.
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5.1. Case 1 (LPF-Based dq0 Reference Generation and a PI Current Controller)

In the Case 1 experiment, the conventional method was applied. The unbalanced
current reference was calculated based on LPF, and a PI current controller was applied.
Additionally, the transition to the load state occurred at time t1. Figures 26 and 27, respec-
tively, illustrate the grid current and converter current. Figure 28 represents the amount
of unbalance in the dq0 axis using LPF. At time ts, as shown in this figure, it reaches the
average value, which takes approximately 81.1 ms. Figure 29 depicts the current reference
in the dq0 axis generated by the calculation. Figures 30 and 31 show an enlarged waveform
of Figures 26 and 27. The experimental results indicate that it requires more than several
cycles to reach the overall steady state.
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5.2. Case 2 (ANN dq0 Reference Generation and PI Current Controller)

In Case 2 of the experiment, an ANN was applied instead of an LPF for calculating
the magnitude of unbalance. The unbalanced current reference was calculated based on
the ANN, and a PI current controller was applied. Similar to Case 1, the transition to
the load condition occurred at t1. Figures 32 and 33 represent the grid current and the
converter current, respectively. Figure 34 illustrates the unbalance in the dq0 axis using an
ANN. At ts, it reaches the average value, taking approximately 6.7 ms. Figure 35 depicts
the current reference on the dq0 axis calculated by the ANN. Figures 36 and 37 show the
zoomed-in waveforms of Figures 32 and 33, respectively. Overall, the experimental results
show the achievement of a steady state within one cycle. Additionally, it can be observed
that the peak portion of the current exhibits more distortion compared to that noted when
the conventional method was applied. However, unlike in the simulations, it appears
challenging to quantitatively compare the size of the current ripples due to the inability to
transition to the load condition at the same point.
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5.3. Case 3 (ANN dq0 Reference Generation and ANN Current Controller)

In the Case 3 experiment, an ANN was applied for unbalanced magnitude calcu-
lation and for the current controller. Figures 38 and 39 represent the grid current and
converter current, respectively. Figure 40 illustrates the amount of unbalance on the dq0
axis calculated using the ANN. In this figure, it reaches the average value at time ts, which
shows a similar time to that noted in Case 2. Figure 41 shows the current reference on
the dq0 axis generated by the ANN. Figures 42 and 43 display the enlarged waveforms of
Figures 38 and 39, respectively. The experimental results confirm a similar attainment of
steady state as that noted in Case 2, with an improvement in distortion at the peak portion
of the current.
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6. Conclusions

This study aimed to alleviate the current imbalance in power distribution systems
with significant load fluctuations in order to obtain balanced power from the power source.
The conventional method, which employs an LPF-based dq0 reference generation and a PI
current controller, can determine the degree of imbalance, but it requires a low-frequency
LPF to extract the magnitude of the AC component. This drawback leads to an excessive
time delay. In addition, the PI current controller introduces time delays through the action
of the integrator. This poses challenges when applying the method to distribution systems
in which loads vary in real-time. To address the aforementioned issues, this study applied
an ANN-based reference generator and a current controller to an unbalanced compensation
system. The ANN was trained using MATLAB, and the optimal values for the training
algorithm and the number of neurons were selected through simulations. To validate the
proposed method, simulations and experiments were conducted for the three cases. Case 1
applied the conventional method, Case 2 applied the ANN reference calculation with a PI
current controller, and Case 3 applied the ANN reference calculation with an ANN current
controller. Case 2 showed a faster estimation of the unbalance compared to Case 1, but
it exhibited the drawback of an increased maximum current ripple and a degraded THD.
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This problem stems from the periodic incorrect output of the ANN reference calculation.
In Case 3, by training the ANN current controller with periodic incorrect output and the
steady and transient states of the PI controller, the maximum current ripple and THD
were improved compared to those noted in Case 1. The improvement in the current THD
was confirmed, through simulations and experiments, to be comparable to that of Case
1. Therefore, the proposed ANN-based current compensation method was validated as
suitable for power distribution systems with rapidly changing load conditions. In this
paper, it was observed that a complete balance of the grid currents could not be achieved
due to voltage distortion in the experiments. However, in the future, it will be necessary
to research compensation, not only for current, but also for voltage, especially under
constrained grid conditions, in order to maintain a higher level of balance.
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