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Abstract: With the increasing penetration of renewable energy resources, their variable, intermittent
and unpredictable characteristics bring new challenges to the power system. These challenges require
micro-meteorological data and techniques to provide more support for the power systems, including
planning, dispatching, operation, and so on. This paper aims to provide readers with insights into
the effects of micro-meteorology on power systems, as well as the actual improvement brought by
micro-meteorology in some power system scenarios. This paper provides a review including the
relevant micro-meteorological techniques such as observation, assimilation and numerical techniques,
as well as artificial intelligence, presenting a relatively complete overview of the most recent and
relevant micro-meteorology-related literature associated with power systems. The impact of micro-
meteorology on power systems is analyzed in six different forms of power generation and three
typical scenarios of different stages in the power system, as well as integrated energy systems and
disaster prevention and reduction. Finally, a case study in China is provided. This case takes wind
power prediction as an example in a power system to compare the performance when applying
micro-meteorological data or not. The experimental results demonstrated that using the micro-
meteorological reanalysis dataset with high spatial–temporal resolution for wind power prediction
performed better, verifying the improvement of micro-meteorology to the power system to some
extent.

Keywords: micro-meteorology; new power system; renewable energy; data analysis

1. Introduction

The current global demand for energy is still growing [1]. Fossil fuels, as the traditional
main energy source, cause environmental and health problems [2,3]. The combustion of
fossil fuels emits large amounts of greenhouse gases, leading to serious problems such as
climate change [4], and posing a threat to humanity [5,6]. Therefore, governments have
revisited energy strategies and policies to reduce negative impacts [1], and at the same time,
a range of methods have been implemented to effectively curtail greenhouse gas emissions
and alleviate related challenges, e.g., promoting clean and renewable energy resources [7,8],
developing new devices with minimal environmental impact [9,10] and enhancing current
technologies’ efficiency [11,12]. Among these suggested methods, transitioning to renew-
able energy resources is one of the most promising methods to reduce greenhouse gases
and secure energy supplies [1].

As renewable energy gradually replaces fossil fuels, the proportion of renewable
energy in power generation continues to increase. However, as the penetration rate of
renewable energy continues to increase, the variable, intermittent and unpredictable charac-
teristics of renewable energy resources such as wind and solar energy bring new challenges
(e.g., flexibility and stability) to the power system [13].
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One of the main reasons for these challenges is that the output of various renewable
energy resources in the power system is determined by underlying meteorological fac-
tors [14,15]. Some researchers have focused on the effect of weather information (especially
with high temporal–spatial resolutions) on power systems [16–18]. Weather models are
capable of delivering relevant predictions in the planning and operation of power sys-
tems [17]. Therefore, meteorology-related data and technologies can provide support for
dispatching, distribution, operation and maintenance in power systems. Meteorology plays
a vital role throughout the complete lifecycle of power operation (including energy project
planning and site selection, design selection, construction, operation, maintenance man-
agement, and so on) and among various different forms of power generation. Therefore,
meteorological data and technologies are inevitably a cornerstone in power systems.

Focusing on the requirement of higher temporal–spatial resolutions in planning, opti-
mization and other models in power systems [16], this paper targets micro-meteorology.
This paper is devoted to presenting the association between micro-meteorology and new
power systems, and analyzing the role of micro-meteorology. Micro-meteorology studies
the interaction of the lower atmosphere with the Earth’s surface [19]. Compared with
general meteorology, micro-meteorology focuses on the lower atmosphere, which is closer
to the surface, and finer scales. Micro-meteorology is able to provide support for dispatch-
ing, distribution, operation, maintenance, etc. within the power system. For example,
as large-scale wind power and photovoltaic power are integrated into the power system,
the uncertainty of wind power and photovoltaic power pose severe challenges to the
balance and dispatch of the power system. Accurate high-resolution gridding observa-
tion and micro-meteorology forecasting can establish a solid foundation for accurately
predicting power output and load, providing excellent support for power spot market
transactions. Furthermore, renewable energy stations are often dispersed over a wide area,
with weak resilience in withstanding meteorological disasters. Therefore, high-quality
micro-meteorological early warnings can provide great help in preventing losses, casualties,
etc., caused by meteorological disasters.

Therefore, this study focuses on examining and analyzing the influence of micro-
meteorology on new power systems, and provides real cases for evaluation and support.
There are three parts of this work, i.e., (1) a brief review of power-system-related micro-
meteorology technologies, (2) a detailed analysis of the impact of micro-meteorology in
new power systems, and (3) a case study about a micro-meteorology reanalysis dataset
from desert, Gobi and desertification land, and the evaluation of wind power prediction
in this micro-meteorological dataset. The overall framework of this study is shown in
Figure 1.

Figure 1. Overall framework of this study.
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(1) Review of power-system-related micro-meteorology technologies. This paper
surveys several micro-meteorological fields related to the power system (i.e., observation
and assimilation, numerical technologies and artificial intelligence), providing a brief
introduction of the recent and common-used micro-meteorological technologies applied
in power systems. Specifically, this paper reviews the micro-meteorological technologies
from three aspects, i.e., observation and assimilation, numerical technologies and artificial
intelligence. Observation, assimilation and numerical technologies are the most commonly
used micro-meteorological technologies in power systems, involving micro-meteorological
data acquisition, micro-meteorological data refinement processing, micro-meteorological
feature forecasting, etc. Moreover, with the development of artificial intelligence, artificial-
intelligence-based methods present great competitiveness in various micro-meteorological
fields, e.g., weather forecasting and downscaling. Therefore, this paper specifically reviews
the literature related to micro-meteorology based on artificial intelligence in recent years,
which has utilized or has huge application potential in power systems.

(2) Analysis of the impact of micro-meteorology in new power systems. A detailed
analysis of the impact of micro-meteorology in new power systems is presented in this
study from four aspects, i.e., the impact on different power generation forms, the impact
on the entire lifecycle of renewable energy power operations, the integrated energy system,
and disaster prevention and reduction. In order to analyze the impact on different power
generation forms, this paper discusses how micro-meteorology affects power operation
and output of different power generations, as well as the differences in impacts caused by
different micro-meteorological factors. For the analysis of the impact on the entire lifecycle
of renewable energy power operations, three typical scenarios are selected, corresponding
to the early, middle and late stages of the entire lifecycle, respectively, (i.e., survey and
design, power prediction, and electricity spot market trading). Regarding the latter two
aspects, this paper analyzes the role of micro-meteorology in the integrated energy system
and introduces the support for disaster prevention and reduction.

(3) Case study about a micro-meteorological dataset and its evaluation of wind power
prediction. This paper presents a case in Jiuquan, China, introducing a micro-meteorological
reanalysis dataset constructed in desert, Gobi and desertification land, as well as taking
wind power prediction as a representative application for evaluation. Four models are
utilized to predict wind power, namely, eXtreme Gradient Boosting (XGBoost), Light Gra-
dient Boosting Machine (LightGBM), long short-term memory (LSTM) and gated recurrent
unit (GRU). This paper compares the performance of this micro-meteorological reanalysis
dataset with 0.01° × 0.01° resolution and an open source reanalysis dataset (ERA5 [20])
with 0.25° × 0.25° resolution. Two metrics are used for evaluation, i.e., mean absolute
error (MAE) and root mean square error (RMSE). The results demonstrate that using
the micro-meteorological dataset achieved about 1–3 improvements in MAE and about
1–2 improvements in RMSE, verifying the effectiveness of the micro-meteorological dataset.

The main contributions are as follows:

• This paper reviews the micro-meteorology technology applied and developed in the
new power system, including related observations, assimilation, numerical prediction,
dynamical downscaling and the artificial intelligence literature.

• This paper analyzes the importance of micro-meteorology in the new power system,
including the impact of micro-meteorology on different forms of power generation,
the implementation of micro-meteorology in the entire lifecycle of renewable energy
power operations, integrated energy system, and disaster prevention and reduction.

• This paper provides a case study in Jiuquan, China to illustrate the importance of micro-
meteorology in real applications. Wind power prediction is taken as a representative
application to evaluate the performance with a micro-meteorology dataset. The results
show that using a micro-meteorological dataset achieved better wind power prediction
performance utilized by four common models, presenting the effectiveness of micro-
meteorological data.
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2. Related Works

This paper chooses Google Scholar (https://scholar.google.com/, accessed on
19 February 2024) as the literature search engine, and uses “power”, “energy”, “meteorol-
ogy”, “climate”, “weather”, “power|meteorology”, “power|climate”, “power|weather”,
“energy|meteorology”, “energy|climate”, “energy|weather”, “meteorological observa-
tion”, “assimilation”, “wrf”, “weather|neural” and “weather|learning” as key words
during the search process. Google Scholar provides a service to broadly search for the
scholarly literature. Researchers can search in Google Scholar across many disciplines and
sources: articles, theses, books, abstracts and court opinions, from academic publishers,
professional societies, online repositories, universities and other web sites. Google Scholar
contains most of the academic literature across various databases. Compared with citation
databases such as Web of Science and Scope, Google Scholar provides more literature from
various databases, while the quality of the literature varies. Therefore, for the search results
corresponding to each key word, the retrieved literature were sorted according to the key
word relevance, and the top 500 were manually checked based on publication sources,
relevance and year of publication. Especially, the most relevant literature to the production
and application was filtered during the checking process, and, ultimately, 89 were cited in
this section.

Two statistical analyses of the 89 cited studies are conducted in this section. As
shown in Figure 2, the number of studies carried out by different countries or regions was
counted. Researchers from America contributed the most literature in this paper, followed
by researchers from China. The proportion of the literature from European countries (e.g.,
the UK, Portugal, Norway and Germany) is also relatively high. Figure 3 illustrates the
amount of research published during different periods in this paper. Most of the literature
cited in this paper has been published since 2010. The amount of research published from
2015 to 2019 was the highest among all the divided periods. The literature relevant to
artificial intelligent emerged after 2015.

Figure 2. The amount of research carried out by different countries or regions.

2.1. Observation and Assimilation

Meteorological observation is a scientific activity that conducts systematic, compre-
hensive and quantitative observation and recording of the atmospheric environment. It
is the basis of modern meteorological science and an important means of weather fore-
casting and climate research. It is important for meteorological service agencies, scientific
research institutions and related industries. Development is also of great significance. The
meteorological observation system involves land, sea, air and space, and can be classified
into nine categories: radar observation, high-altitude meteorological observation, ground
meteorological observation, ground-based remote sensing vertical observation, etc. [21].

https://scholar.google.com/
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Figure 3. The amount of research published during different periods.

With the development of society and the advancement of science and technology, me-
teorological observation technology is also constantly improving and innovating. Compre-
hensive meteorological observation technology is one of the most advanced meteorological
observation technologies at present. It includes a variety of meteorological observation
methods and technologies and can measure the physics of the five major layers of the earth’s
climate system: the atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere [22].
It is able to carry out long-term, continuous and systematic observations of chemical and
biological characteristics and their changing processes and interactions, thereby providing
more accurate and comprehensive meteorological data.

Countries around the world have established meteorological observatories to monitor
the physical, chemical, biological, and hydrological aspects [23]. For example, the Blue Hill
Meteorological Observatory, situated at the 194 m peak of Great Blue Hill in Milton, MA,
USA, was established in 1884/1885 to conduct continuous observations of weather and
climate conditions, along with extensive atmospheric science education and outreach activi-
ties [24,25]. The Lindenberg Meteorological Observatory, situated roughly 50 km southeast
of Berlin’s outskirts in Germany, dates back to 1905 and was created for conducting field
measurements of the atmosphere is vertical structure and conducting research [26–29]. The
Sphinx Observatory, located above the Jungfraujoch peak in Switzerland at an altitude
of 3571 m, was constructed in 1936/1937 [30]. The Nepal Climate Observatory–Pyramid
is situated at an altitude of 5079 m above sea level in the eastern Nepal Himalaya and
was installed in March 2006 to observe trace gases, aerosols, and meteorological parame-
ters [31,32]. The China Meteorological Administration (CMA) selected five national climate
observatories (including Dali in Yunnan, Zhangye in Gansu, Xilinhot in Neimenggu, Shoux-
ian in Anhui, and Dianbai in Guangzhou), and launched 24 national climate observatories
to carry out long-term, continuous, stereoscopic, and integrated observations [23].

In order to carry out power prediction and operation planning more accurately, it is
necessary to monitor the micro-meteorological factors, to provide more accurate and higher
temporal–spatial resolution micro-meteorological information [15]. Wang et al. designed
micro-meteorological disaster monitoring and pre-warning system in the power grid [33].
Gu et al. constructed an integrated micro-meteorological monitoring system composed of
meteorological monitoring stations and clusters [15]. Li et al. proposed a system of micro-
meteorological data collection and application (SMDCA), including micro-meteorology
collection, data transmission, and data application [18].

In addition, the performance of meteorological satellites has been continuously up-
graded. Currently, the spatial and temporal resolution of Fengyun meteorological satellite
products can reach 250 m [34]. With the continuous development and improvement of
smart meteorology, strengthening smart collaborative observation systems and improving
high-precision atmospheric live monitoring products are important development directions
for micro-meteorological observation technology.
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Although observations are critical for estimating the state of the Earth system, they
suffer from two key limitations [35]. The first limitation is that observations contain errors,
i.e., bias, randomness, and representativeness [36,37]. The second limitation lies in spatio-
temporal gaps [38]. It is necessary to fill in the gaps in the observations, and during this
process, a model is needed, e.g., linear interpolation or geostatistical approaches based
on the spatial and temporal auto-correlation of the observations [38]. For instance, the
model could be a chemistry-transport model (CTM) [39], a general circulation model
(GCM) [40], a land surface model (LSM) [41], etc., combining chemical equations and
heterogeneous chemistry, incorporating the discretized Navier–Stokes equations, and
exploiting the transfer of energy between the land surface and the atmosphere, respectively.
Therefore, the observations can be extended by the model and the observational gaps are
filled. It is desirable to implement automatic or intelligent interpolation methods, that use
models to fill observation information gaps. The method that allows such interpolation is
data assimilation [38,42].

Data assimilation is an objective approach of combining observational and model
information to provide an estimate of the most likely state of the Earth system and its
uncertainty [35]. Data assimilation mainly encompasses two broad categories of numer-
ical algorithms, i.e., variational algorithms (e.g., 4-D variational method) and sequential
algorithms (e.g., Kalman filter) [43].

The 4-D variational (4D-Var) method is developed based on the 3-D variational (3D-
Var) method via incorporating temporal dimension [43]. Minimization is performed within
a time window usually of 6 or 12 h, e.g., for chemical data assimilation [39,44]. To make
variational methods more efficient, incremental methods are often used, replacing the non-
linear assimilation problem with a series of approximate linear least squares problems [45].
The applicability of 4D-Var in weather forecasting has been demonstrated [46].

The Kalman filter (KF) method [47] is a typical method of sequential assimilation
algorithms, in which a recursive sequential algorithm is applied to evolve a forecast. A
variant of the KF is the Physical-space Statistical Analysis Scheme (PSAS) [48], which is
very effective for systems where the number of observations is much smaller than the
model state space dimensions. KF can be generalized to non-linear operators, and the
resulting equations is called the Extended Kalman filter (EKF) [43]. Eskes et al. developed a
KF method for ozone analysis and prediction [49]. They use observation minus prediction
statistics [50] to estimate horizontal error correlations, observation errors, and prediction
errors, aiming to reduce the required computer resources. A Variational Kalman filter
(VKF) was developed to overcome the limitations of KF and EKF for high-dimensional
systems [51], demonstrating comparable results to standard KF and EKF. Following this,
Solonen et al. proposed an extension of the VKF to ensemble filtering [52].

Meteorological observation and data assimilation technology are important founda-
tions for micro-meteorological research and the key to application fields such as weather
forecasting and climate research. In practice, the spatial and temporal resolution and quality
requirements for meteorological observation data are increasing, and micro-meteorological
observation and data assimilation technology will become more and more important.

2.2. Numerical Techniques

Traditional numerical techniques used for high-resolution micro-meteorological fore-
casting and downscaling are generally dynamic forecasting and downscaling techniques.
Among micro-meteorological dynamic forecasting and downscaling technologies, the
Weather Research and Forecasting (WRF) model is the most common and widely used
micro-meteorological forecasting and downscaling technology. WRF is a widely used
numerical weather prediction and atmospheric research tool developed by the National
Center for Atmospheric Research, the National Oceanic and Atmospheric Administration,
and their partners. It is used to model short-term weather forecasts, atmospheric processes,
and long-term climate simulations. WRF has higher accuracy than traditional numerical
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weather prediction models and has higher spatial and temporal resolution, making it an
important tool for micro-meteorological research.

In terms of micro-meteorological research and application, WRF has had many suc-
cessful practices. Heikkila et al. used ERA-40 reanalysis data to drive the WRF model
for double-nested downscaling simulations [53]. The results showed that the simulation
showed great advantages in the spatial distribution of precipitation, extreme precipitation
values, and precipitation frequency. Soares et al. proposed a dynamically downscaled
climatology of Portugal, produced by a high resolution (9 km) WRF simulation, forced by
20 years of ERA-Interim reanalysis (1989–2008), nested in an intermediate domain with
27 km of resolution [54]. WRF results at 9 km compare favorably with published results
supporting its use as a high-resolution regional climate model. This higher resolution
allows for a better representation of extreme events, which is critical for developing miti-
gation/adaptation strategies by policy makers and downstream users of regional climate
models in applications such as flash floods or heatwaves. Evans et al. used NNRP reanal-
ysis data as the lateral boundary conditions of the WRF model and conducted a 24-year
long-term simulation of Australia [55]. The resolution of the main region was 50 km and
the resolution of the sub-region was 10km. The results showed that the sub-region can
be simulated well. It can obtain the statistical characteristics of precipitation from daily
to interannual time scales and can capture the spatial distribution characteristics of pre-
cipitation anomalies related to ENSO anomaly years. Zhang et al. used the WRF model
to conduct a triple nested simulation of the United States [56], and the results proved
that increasing the resolution can significantly improve the precipitation simulation effect.
In East Asia, relevant studies also showed that the WRF model can simulate the overall
characteristics of the East Asian monsoon system and the characteristics of the regional
precipitation diurnal cycle, and is a good downscaling tool [57–59]. Liu et al. developed
a multi-scale four-dimensional weather data assimilation and large eddy simulation sys-
tem WRF-RTFDDA-LES [60]. They used the Newton relaxation method to assimilate
observation data on kilometer-level mesoscale model grids for large eddy simulation and
realize weather forecasts. Weather forecasts on nested grids from large scale (~2000 km)
to small scale (~100 m) can capture the wind field characteristics and micro-scale airflow
inside many wind farms. Cardoso et al. presented and evaluated precipitation from a
high-resolution WRF climate simulation against daily gridded observations in the Iberian
Peninsula [61]. The simulation with higher resolution displays a remarkable improve-
ment in representing Iberian precipitation patterns across all time scales, emphasizing the
representation of variations and extreme weather statistics. KUSAKA et al. adopted the
WRF model at a 3 km horizontal grid increment to achieve dynamical downscaling and
predicting heat stress in August 2070 for the Tokyo, Osaka, and Nagoya metropolises [62].
Yang et al. employed the WRF model, coupled with a single-layer Urban Canopy Model,
to simulate urban climate in Nanjing, located in eastern China. Drawing from the results
of simulations spanning ten summers between 2000 and 2009, they found that the WRF
model has the capability to capture high-resolution features of urban climate in the Nanjing
area [63]. Marta-Almeida et al. studied a high resolution atmospheric modelling for a
20-year recent historical period [64]. The dynamic downscaling approach adopted used the
Max Planck Institute Earth System Model (MPI-ESM) to drive the WRF running in climate
mode. Three online nested domains were used covering part of the North Atlantic and
Europe, with a resolution 81 km, reaching 9 km in the innermost domain which covers the
Iberian Peninsula. To sum up, the WRF model has good capabilities in dynamic forecasting
and downscaling and is currently widely used in actual operations.

WRF is also widely adopted in energy-related meteorological and resource fields.
Carvalho et al. evaluated the performance of the WRF model in wind simulation under
different numerical and physical options for an area of Portugal located in complex terrain
and characterized by its significant wind energy resource and compared the results of six
different WRF simulations on the wind data collected at thirteen wind measuring stations
located in Portugal in areas of high wind energy potential [65,66]. Deppe et al. used
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the WRF model with 10 km horizontal grid spacing to explore improvements in wind
speed forecasts at a typical wind turbine hub height (80 m) [67]. They evaluated version
3.1.1 of the WRF model to accurately reproduce 80 m wind speeds and ramp events by
comparing WRF simulations using six different planetary boundary layer (PBL) schemes to
observations of 80 m wind speed gathered at the Pomeroy, Iowa wind farm site. Aiming
at estimating offshore wind power potential for the central coast of Chile, Mattar et al.
adopted the WRF model to simulate wind fields at the regional level on the wind speed
data from in situ stations and ERA-Interim reanalysis [68]. Wind field simulations were
performed at different heights (20, 30, 40 and 140 m.a.s.l.) and a spatial resolution of
3 × 3 km for the period from 1 February 2006 to 31 January 2007, which comprised the
entire series of in situ data available. Tuy et al. used the WRF and Sentinel-1 level 2 ocean
(L2 OCN) products to assess the offshore wind power potential in Cambodia, aiming to
evaluate potential sites and to estimate the annual energy production (AEP) and equivalent
CO2 reduction [69]. The model was initially calibrated and validated against observed
onshore winds at four weather stations before its main simulation for the two-year study
period of 2018–2019.

Zhao et al. proposed a new multi-step forecasting method for operational wind
forecast, using 96 steps of the next day, termed the CS-FS-WRF-E model, which is based on
a WRF ensemble forecast, a novel Fuzzy System, and a Cuckoo Search (CS) algorithm [70].
This novelty model outperformed other approaches in different wind farms and was used
for operational wind forecasting within acceptable computations. Next, they proposed to
divide multi-step forecast into waves based on their synoptic backgrounds and developed a
new multi-step forecasting method termed CSFC-Apriori-WRF, providing a one-day-ahead
wind speed and power forecast consisting of 96 steps [71]. For the stability conditions
evaluation of the marine atmospheric boundary layer (MABL) in an offshore wind farm
development, the WRF model has been applied over the North Sea during March 2005 [72].
The performance of the WRF model was analyzed for sensitivity to different horizontal
resolutions, input datasets, PBL parameterizations, and nesting options. When comparing
the model results with other modeling studies and high-quality observations recorded at
offshore measurement platform FINO1, it was found that the combination of ERA-Interim
reanalysis data and the 2.5-level MYNN PBL scheme successfully simulated the MABL
over the North Sea. Salvação et al. presented a ten-year wind hindcast for the Iberian
Peninsula coast and conducted simulations with the WRF model at a spatial resolution
of 9 and 3 km with a 6-hourly output [73]. Prósper et al. performed high-resolution
(333 m) WRF forecasting for a farm in complex terrain and conducted detailed validation
with observations at the nacelle of each turbine for one full year [74]. The results showed
that the forecasts were very skillful with wind speed MAE = 1.87 m/s and wind power
NMAE = 14.75%.

2.3. Artificial Intelligence

In recent years, innovative applications of fundamental theories such as mathematics,
probability, and statistics, coupled with the widespread adoption of high-performance
computing capabilities and the increasing availability of massive data, have propelled
the rapid development of artificial intelligence (AI) technology. This has fostered the
emergence of a new scientific research paradigm known as “AI for Science”, providing
researchers with novel methods and tools to enhance the accuracy of weather prediction
and forecasting [75,76]. Grover et al. explored forecasting weather as a data-intensive
challenge [77]. They proposed a hybrid approach and utilized a deep neural network
to model the joint features of meteorological variables. The experiments on real-world
meteorological data highlighted the promise of this approach. Volkovs et al. proposed a
novel deep learning method for weather forecasting [78]. They primed the model states
with atmospheric data, which achieved better results.

AI has already been applied to various finer-divided areas such as temperature fore-
casting, short-term precipitation forecasting, ENSO prediction, numerical forecasting model
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interpretation, remote sensing, extreme weather events identification and prediction, and
so on [79–92]. For example, on the issue of short-term precipitation forecasting, researchers
have developed numerous short-term precipitation forecasting methods based on Doppler
radar echo data and machine learning, and have been well verified in operational applica-
tions [83,93]. Agrawal et al. proposed the MetNet nowcast precipitation forecast model
based on satellite cloud images (GOES) and radar data (MRMS) [94]. They adopted convo-
lutional downsampling, ConvLSTM structure and attention mechanism, achieving an 8-h
precipitation forecast with a resolution of 1 km in the United States. The results demon-
strated that the methods performed better than the US NOAA integrated forecast system
within the 2-h nowcast time limit. Kaparakis et al. utilized UNet as the core model and
proposed the Weather Fusion UNet (WF-UNet) model to investigate its performance for
precipitation nowcasting [95]. The WF-UNet model integrates precipitation and wind speed
variables as input. In the evaluation in Western Europe, the WF-UNet model performed
better compared to other UNet-based methods using only precipitation radar input data.

AI technology has also been widely applied in addressing the resolution challenge [96].
For dynamic modeling, researchers trained dynamic convolutional layers, filtering whose
weights are updated dynamically based on inputs during the forward pass, in short-term
weather forecasting [97]. Vandal et al. proposed a generalized stacked superresolution
CNN framework for statistical downscaling of climate variables [98]. Superresolution refers
to the ability of a network to produce an output image with a higher resolution than the
input. It was suggested that a single trained model can effectively downscale spatial hetero-
geneous regions, and the deep learning methods have demonstrated advantages over other
techniques. Gentine et al. utilized MLP to learn intricate dynamics like convective heating,
moistening, and cloud-radiative transfer feedback from high-resolution simulations, with
the aim of replacing multiple existing parameterization methods [99]. Furthermore, the
climate modeling community is assembling large datasets to facilitate large-scale big data
deep learning [100]. Albert et al. utilized GAN to model urban expansion, which is closely
linked to water consumption [101]. Trained on images of 30,000 cities, GAN was able to
accurately replicate the realistic patterns and distribution of urban masses without any
externally imposed restrictions, such as rules prohibiting the construction of cities on bodies
of water. Instead, GAN learned these rules through the training process.

Most recently, large-scale weather forecast models based on deep learning have re-
ceived great attention and development, becoming a strong competitor of traditional
numerical forecast models [102–107].

Researchers proposed a data-driven deep learning earth system simulator FourCast-
Net [102,103]. FourCastNet used the Adaptive Fourier Neural Operator (AFNO) to solve
continuous and high-resolution inputs and can generate real-time weather forecasts one
week in advance. It is faster than the existing NWP in predicting global weather and
generating mesoscale forecasts. It has reached five orders of magnitude and the achieved
state-of-the-art accuracy.

Subsequently, Bi et al. proposed a powerful AI-based medium-range global weather
forecasting system Pangu-Weather [104]. Pangu-Weather adopted the Swin Transformer
as the backbone and designed a three-dimensional Earth-Specific Transformer (3DEST).
Earth-specific absolute positional bias related to latitude, longitude and height was in-
troduced to learn the irregular components of each spatial operation. In addition, the
Pangu-Weather proposed a hierarchical temporal aggregation strategy and trained four
models with different forecast intervals, namely 1-h intervals, 3-h intervals, 6-h intervals,
and 24-h intervals. These models were called according to the greedy algorithm. Minimize
the number of iterations required to predict meteorological conditions at a specific time.
The results on the fifth generation of the European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis (ERA5) data showed that Pangu-Weather performed well
at deterministic forecast and extreme weather forecast, while achieved 10,000 times faster
than the Operational IFS.
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Next, GraphCast, a state-of-the-art AI model capable of medium-range weather fore-
casting with unprecedented accuracy, was proposed [105]. GraphCast used graph neural
network (GNN) as the basic architecture and adopted an encoding-processing-decoding
structural configuration. The encoder mapped the data from the latitude and longitude
grid to multi-grid graph nodes to learn features. The processor used a 16-layer deep
GNN to learn the information transfer process and update multiple Grid nodes, the final
decoder used directed GNN to map the learned multi-grid features back to the latitude
and longitude grid and combine them with the input information to form the output.
GraphCast was able to predict weather conditions up to 10 days in advance with greater
accuracy and speed than the industry gold-standard weather simulation system, the High-
Resolution Forecast (HRES), produced by the European Centre for Medium-Range Weather
Forecasts (ECMWF).

Following, researchers from the Shanghai Artificial Intelligence Laboratory, University
of Science and Technology of China, Shanghai Jiao Tong University, Nanjing University of
Information Science and Technology, the Institute of Atmospheric Physics of the Chinese
Academy of Sciences, and the Shanghai Central Meteorological Observatory, released the
large-scale global medium-range weather forecast model called Fengwu [106]. The model
was built based on multi-modal and multi-task deep learning methods. It utilized multi-
modal neural networks and multi-task automatic equalization weights to solve the problem
of representation and mutual influence of multiple atmospheric variables. Fengwu only
took 30 s to generate high-precision global forecast results for the next 10 days.

Chen et al. proposed a cascaded deep learning weather forecast system (called Fuxi)
that provides a 15-day global weather forecast [107]. Fuxi was an autoregressive model,
consisting of three modules, i.e., Cube Embedding, U-Transformer and a fully connected
layer. It used the weather parameters of the first two time steps as input to predict the
weather parameters of the next time step (one time step is 6 h), and used an autoregressive
multi-step loss to reduce the cumulative error over long lead times. Experimental results
showed that Fuxi achieved 15-day forecasts.

Details of the current large-scale global weather forecast models are compared in
Table 1.

Table 1. A summary of the current large-scale global weather forecast models.

Methods Training Data Forecasting
Variables Parameters Training Settings Forecasting Speed

FourCastNet ERA5 data 20 - 67.4 min with
3072 A100 GPUs

7 s to compute a
100 member,
24 h forecast

Pangu-Weather ERA5 data 69 0.256 B 16 days with
192 V100 GPUs

1.4 s to achieve
global forecast

GraphCast ERA5 data 227 - 3 weeks with
32 TPUv4

60 s to compute
10 days forecast

Fengwu ERA5 data 189 - 17 days with
32 A100 GPUs

30 s to compute
10 days forecast

Fuxi ERA5 data 70 4.5 B 30 h with 8 A100
GPU Clusters -

3. Analysis
3.1. The Impact of Micro-Meteorology on Power Generation

Micro-meteorology plays a crucial role in the collection and storage processes of
various energy sources such as wind power, photovoltaic power, hydropower, and thermal
power [108]. Monitoring meteorological changes at a micro-scale in real-time allows for
timely adjustments to the operational status of power generation devices, maximizing the
capture of renewable energy and optimizing energy storage methods.



Energies 2024, 17, 1365 11 of 33

3.1.1. Wind Power

The micro-meteorological factors have three main effects on wind power. Firstly,
micro-meteorological factors can affect the variations in wind speed and direction. Factors
such as terrain, buildings, and vegetation can cause the flow of wind to generate vortices
and turbulence, resulting in changes in wind speed and direction in space and time. These
factors must be considered in wind farm layout and turbine design to maximize the
utilization of available wind energy.

Secondly, micro-meteorological factors can influence turbulence and buffeting effects.
Turbulence refers to irregular variations in wind speed and direction, playing a significant
role in micro-meteorology. Turbulence can lead to vibration and stress concentration
on wind turbine blades, thereby reducing the lifespan and performance of the turbines.
Therefore, by measuring and predicting micro-meteorological conditions, it is possible to
avoid areas with strong turbulence, reducing vibration and damage to the turbines.

Thirdly, micro-meteorological factors also affect temperature and humidity variations.
An increase in temperature can lead to a decrease in air density, which then affects the
transmission and conversion efficiency of wind energy. Changes in humidity can also
impact air density and wind speed. Therefore, understanding the influence of micro-
meteorological factors on temperature and humidity can optimize the operation of wind
farms and the performance of turbines.

In practical applications, the collection and processing of micro-meteorological data are
critical steps in wind farm construction and operational management. Typically, multiple
micro-meteorological observation sites are established at various heights around the wind
farm, and the data is transmitted to a central control room for real-time monitoring and
analysis through wireless or wired networks. These observation sites measure micro-
meteorological parameters such as wind speed, wind direction, temperature, humidity,
and other relevant meteorological elements. Through the collection and analysis of these
data, the meteorological conditions inside and around the wind farm can be understood,
providing effective references and guidance for the operation of wind turbines.

At the same time, researchers also conduct relevant studies and simulations on differ-
ent micro-meteorological factors [109]. For example, simulations are conducted to evaluate
the impact of terrain and buildings on the wind field and to understand the stress dis-
tribution on wind turbine blades under different turbulence conditions. Simulations are
also carried out to investigate the effects of temperature and humidity variations on the
transmission and conversion of wind energy. Through these studies and simulations,
a better understanding of the mechanisms by which micro-meteorological factors affect
wind power can be achieved, providing a scientific basis for the optimization design and
operational management of wind farms.

In conclusion, micro-meteorological factors play a crucial role in wind power, directly
influencing the efficiency of wind energy utilization and the reliability of wind turbines.
Through in-depth research and real-time monitoring of micro-meteorology, the layout of
wind farms and the design of turbines can be optimized, resulting in improved utilization
of wind energy and extended lifespan of turbines, thus promoting the development of
sustainable energy.

3.1.2. Photovoltaic

Meteorology plays a crucial role in photovoltaic power generation, as it directly
influences the performance and operation of photovoltaic systems.

Solar radiation analysis is a key aspect of meteorological observations in photovoltaic
power generation. Solar radiation encompasses the process of solar energy propagation in
the atmosphere, including total radiation, direct radiation, and scattered radiation, among
other components. Solar radiation is the basic energy source for photovoltaic power plants,
so accurate measurement and analysis of solar radiation are crucial for assessing the power
generation potential of photovoltaic power plants. Meteorological observations allow for
the detection of variations in solar radiation across different time periods and seasons,
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offering a foundation for site selection and power generation forecasting for photovoltaic
power plants. In addition, the spatial distribution of solar radiation also affects the layout
and installation of photovoltaic power plants. Through the analysis of meteorological data,
the optimal tilt angle and orientation of the components can be determined to optimize the
utilization of solar radiation resources.

Temperature is another important meteorological parameter in photovoltaic power
generation. Temperature directly affects the efficiency and performance of photovoltaic
cells. Excessive operating temperature of photovoltaic cells can result in decreased ef-
ficiency and diminished power generation. Therefore, comprehending the impact of
temperature fluctuations on photovoltaic power generation is crucial. By utilizing me-
teorological observations and mathematical models, the temperature characteristics of
photovoltaic components can be assessed, enabling adjustments in component layout and
heat dissipation design to enhance power generation efficiency. Moreover, high tempera-
tures can impact the longevity of photovoltaic components, underscoring the significance
of regulating component operating temperatures as a key method to prolong their lifespan.

Wind speed and wind direction are two other meteorological parameters that have
a significant impact on the operation of photovoltaic power systems. Strong winds can
affect the stability and safety of photovoltaic components, leading to potential damage.
Observing the variations in wind speed and wind direction can help take corresponding
structural design and protective measures to ensure the normal operation and safety
of photovoltaic components. Furthermore, wind can also affect the heat dissipation of
photovoltaic components. Appropriate wind speed can help with heat dissipation, lowering
component temperature and improving power generation efficiency. Therefore, monitoring
and analyzing wind speed and wind direction are necessary in the design and operation of
photovoltaic power systems.

Humidity and precipitation are also factors to consider in meteorological observations.
High humidity and heavy precipitation can have negative effects on the performance and
lifespan of photovoltaic components. Humidity can contribute to the accumulation of dust
and dirt on the surface of photovoltaic components, reducing their light absorption capacity.
Precipitation can cause water pooling on component surfaces, increasing optical losses and
potentially causing electrical short circuits. Through meteorological observations, variations
in humidity and precipitation are obtained; thus, appropriate protective measures can be
taken to ensure the normal operation and lifespan of photovoltaic components.

In addition to the parameters mentioned above, meteorological observations can also
provide a scientific basis for site selection, component layout, tilt angle selection, and
power generation prediction in photovoltaic projects. By utilizing meteorological data, the
potential and risks of photovoltaic power plants can be assessed, and rational planning
and decision-making can be made to improve the performance and economic benefits of
photovoltaic power systems. For example, through the analysis of parameters such as solar
radiation, temperature, and wind speed, the optimal site for a photovoltaic power plant
can be determined to achieve higher power generation. By collecting and analyzing meteo-
rological data, the annual and seasonal power generation of a photovoltaic power plant
can be predicted, providing a decision-making basis for its operation and management.

Through meteorological observation and analysis, the impact of factors such as so-
lar radiation, temperature, wind speed, wind direction, humidity, and precipitation on
photovoltaic power generation can be assessed. Decisions can then be made regarding
component layout, heat dissipation design, protective measures, and power generation
prediction to improve the efficiency, reliability, and economic performance of photovoltaic
power systems. The study and application of meteorology will provide important support
for the development and promotion of the photovoltaic power generation industry.

3.1.3. Hydropower

Micro-meteorology plays an equally important role in the hydropower industry, as it
directly affects the operation and efficiency of hydroelectric power plants. In the planning,
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design, construction, and operation of hydroelectric power plants, the collection and
analysis of micro-meteorological data are crucial for ensuring the safety, stability, and
efficient operation of the plants. The following will elaborate on the role and impact of
micro-meteorology in the hydropower industry.

Firstly, rainfall observation and prediction are among the important applications of
micro-meteorology in the hydropower industry. Rainfall is a significant factor in determin-
ing the inflow volume and available water resources for hydroelectric power plants. By
monitoring rainfall in real time using micro-meteorological observation data and integrat-
ing them with meteorological models, precise rainfall predictions can be generated. Precise
rainfall forecasts help hydroelectric power plants make reasonable reservoir scheduling
to maximize the utilization of water resources and reduce the risks of disasters caused
by excessive or insufficient rainfall. Furthermore, rainfall monitoring offers timely alerts
and warnings to pertinent personnel at the power plants, empowering them to implement
suitable emergency measures for ensuring the safe operation of the plants.

Secondly, temperature observation and its impact are also key applications of micro-
meteorology in the hydropower industry. Temperature has a direct influence on the
operation and efficiency of hydroelectric power plants. By observing micro-meteorological
data, the changes in ambient temperature can be understood, thereby assessing the cooling
conditions of the power plants. High temperatures can lead to decreased efficiency and
power generation capacity of hydroelectric units, as well as increased heat dissipation
loads on the turbines and generating equipment. Through temperature observation and
analysis, corresponding measures can be taken, such as increasing cooling equipment and
optimizing turbine designs, to improve the efficiency and reliability of the hydroelectric
power plants.

Additionally, humidity observation and its impact are also significant applications of
micro-meteorology in the hydropower industry. Humidity affects the power generation
efficiency and equipment lifespan of hydroelectric power plants. High humidity increases
the heat dissipation load on hydroelectric units and may cause surface condensation and
corrosion of equipment. By monitoring humidity changes through micro-meteorological
observation data, timely adjustments can be made, such as strengthening ventilation and
implementing moisture-proof treatments, to ensure the normal operation and extended
lifespan of the power plant equipment.

Moreover, wind speed observation and its impact are important applications of micro-
meteorology in the hydropower industry. Wind speed is a crucial factor in wind power
generation and also has an influence on the operation of hydroelectric power plants. Strong
winds may affect the fluctuation of the water surface in reservoirs, thereby impacting the
power generation efficiency and safety of hydroelectric units. Real-time monitoring of wind
speed through micro-meteorological data, combined with the characteristics of wind power
generation, enables wind energy forecasting and adjustments to the power generation plan,
maximizing the utilization of wind energy resources.

Furthermore, solar radiation observation and its impact are significant applications of
micro-meteorology in the hydropower industry. Solar radiation is the fundamental energy
source for photovoltaic power generation and also affects the operation of hydroelectric
power plants. The intensity and variations of solar radiation affect factors such as evapora-
tion rates from the water surface and water temperature, which in turn impact the power
generation efficiency and reservoir water management of hydroelectric units. Through
real-time monitoring of solar radiation using micro-meteorological data, optimization of the
power generation plan and scheduling of the hydroelectric power plants can be achieved
based on the characteristics of solar energy generation.

By collecting and analyzing micro-meteorological observation data, optimization and
improvements can be made in aspects such as rainfall prediction, temperature control,
humidity regulation, wind energy utilization, and solar energy generation. These measures
contribute to enhancing the power generation efficiency, reliability, and economic viability
of hydroelectric power plants, as well as promoting the utilization and conservation of
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sustainable energy sources. The application of micro-meteorology provides technical
support and a decision-making basis for the development of the hydropower industry,
making significant contributions to the development of sustainable energy.

3.1.4. Thermal Power

Micro-meteorology also plays an important role in the field of thermal power generated
by coal combustion, which is converted into kinetic energy to produce electrical energy,
and it has a direct impact on the operation and power generation efficiency of thermal
power plants.

Firstly, temperature observation and its impact is one of the key applications of micro-
meteorology in the field of thermal power. The combustion process in a thermal power
plant necessitates specific temperature conditions to achieve complete fuel combustion and
adequate heat supply. Monitoring variations in environmental temperature using micro-
meteorological observation data enables the adjustment of boiler operating parameters
in thermal power plants to sustain the required combustion temperature. Simultane-
ously, micro-meteorological data can aid in forecasting the evolving trends in atmospheric
temperature, facilitating the development of a sound heating plan and adjustments in
thermal power operations to ensure the stable and efficient power generation of the thermal
power plant.

Secondly, humidity observation and its impact are also one of the important applica-
tions of micro-meteorology in the field of thermal power. Humidity has a direct impact on
the combustion process and environmental pollutant emissions of thermal power plants.
High humidity may cause incomplete combustion of fuel and increase the water content
in the flue gas, thereby reducing the combustion efficiency and environmental emission
quality of thermal power plants. By monitoring the changes in humidity in real-time through
micro-meteorological observation data, and combining the impact of humidity on combustion,
the operating parameters and control equipment of thermal power plants can be adjusted to
ensure complete combustion of fuel and reduce the emission of environmental pollutants.

In addition, wind speed observation and its impact are also one of the important
applications of micro-meteorology in the field of thermal power. The wind speed directly
affects the combustion process and flue gas emissions of thermal power plants. Severe
winds can disrupt the combustion stability of the thermal power plant’s boiler and al-
ter the direction of flue gas emissions, thereby impacting power generation efficiency
and environmental emission quality. Real-time monitoring of wind speed variations us-
ing micro-meteorological observation data, and integrating the effects of wind speed on
combustion and emissions, allows the adjustment of operating parameters and emission
equipment of thermal power plants to ensure combustion stability and reasonable emission
of environmental pollutants.

Furthermore, pressure observation and its impact are also one of the important appli-
cations of micro-meteorology in the field of thermal power. Pressure has a certain impact
on the combustion process of thermal power plant boilers and flue gas emissions. Changes
in pressure will affect the stability of combustion air volume, fuel supply, and flue gas emis-
sions. By monitoring the changes in pressure in real-time through micro-meteorological
observation data, and combining the impact of pressure on combustion and emissions, the
operating parameters and control equipment of thermal power plants can be adjusted to
ensure the stability of combustion and reasonable emission of environmental pollutants.

Through the collection and analysis of micro-meteorological observation data, temper-
ature, humidity, wind speed, and pressure parameters can be monitored and adjusted to
optimize the combustion process and environmental emissions of thermal power plants and
improve power generation efficiency and environmental protection levels. The application
of micro-meteorology can provide technical support and a decision-making basis for the
development of the thermal power industry and make an important contribution to the
sustainable development of the energy industry.
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3.1.5. Energy Storage

Micro-meteorology also has a direct impact on the operation and efficiency of energy
storage systems. Firstly, solar energy storage is a prevalent method of energy storage closely
linked to micro-meteorology. Micro-meteorological observation data can yield critical
information such as solar radiation, air temperature, and humidity, essential for the design
and operation of solar energy storage systems. Analysis of micro-meteorological data
enables the prediction of evolving trends in solar energy resources, facilitating adjustments
to the charging and discharging strategies of energy storage systems to maximize the
utilization of solar energy resources and enhance energy storage system efficiency.

Secondly, wind energy storage is also a common method of energy storage, and the
application of micro-meteorology to wind energy storage is equally important. Micro-
meteorological observation data can provide information such as wind speed, wind direc-
tion, and air temperature, which are of significant importance for the design and operation
of wind energy storage systems. Through the analysis of micro-meteorological data, the
changing trends of wind energy resources can be predicted, helping to adjust the charg-
ing and discharging strategies of energy storage systems to maximize the use of wind
energy resources and improve the efficiency of energy storage systems. Additionally, micro-
meteorological data can also be used to evaluate the feasibility and economic viability of
wind energy storage systems, providing a basis for project decision-making.

Furthermore, temperature observation and its influence are also one of the important
applications of micro-meteorology in the field of energy storage. Temperature has a direct
impact on the battery performance and energy efficiency of energy storage systems. High
temperatures can accelerate the aging and loss of batteries, reducing the lifespan and
efficiency of energy storage systems. Through micro-meteorological observation data,
the changing environmental temperature can be monitored in real time, and appropriate
measures can be taken to control the temperature, protect the batteries, and improve the
efficiency and reliability of energy storage systems.

Through the collection and analysis of micro-meteorological observation data, ef-
fective utilization of renewable energy resources such as solar and wind energy can be
achieved, optimizing the charging and discharging strategies of energy storage systems,
and improving the efficiency and reliability of energy storage.

3.1.6. Heating

Micro-meteorology also plays an important role in the field of heating and has a
direct impact on the operation and efficiency of heating systems. Firstly, temperature
observation and its influence are crucial applications of micro-meteorology in the heat-
ing field. Micro-meteorological observation data can provide real-time information on
environmental temperature changes. Based on this data, heating systems can adjust the
operating parameters of heating equipment to regulate the output of heat power according
to external temperature changes, meeting the heating demands in different seasons and
weather conditions. For example, during cold winters when the outdoor temperature is
low, the heating system can increase the supply of hot water or steam to ensure stable and
comfortable indoor temperatures.

Secondly, humidity observation and its influence are also important applications of
micro-meteorology in the heating field. Humidity has a certain impact on the regulation of
heating systems and indoor comfort. In dry environments, heating systems can increase
the humidity of indoor air to improve comfort. Through micro-meteorological observation
data, humidity changes can be monitored in real time, and in combination with the control
strategies of heating systems, the control devices for indoor humidity can be adjusted to
provide a comfortable heating environment indoors.

Furthermore, wind speed observation and its influence are also important applications
of micro-meteorology in the heating field. Wind speed directly affects heat loss and
energy consumption in heating systems. Strong winds can increase heat dissipation from
building walls and windows, thereby increasing the load on heating systems and energy
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consumption. Through micro-meteorological observation data, wind speed changes can be
monitored in real time, and in combination with the control strategies of heating systems,
insulation measures for building walls and windows can be adjusted to reduce heat loss
and energy consumption.

In addition, air pressure observation and its influence are also important applications
of micro-meteorology in the heating field. Changes in air pressure can affect the delivery
and distribution of hot water or steam in heating systems. Through micro-meteorological
observation data, air pressure changes can be monitored in real time, and in combination
with the control strategies of heating systems, the operating parameters of heating pipelines
can be adjusted to ensure the normal operation and heating quality of the systems.

Through the collection and analysis of micro-meteorological observation data, moni-
toring and regulation of parameters such as temperature, humidity, wind speed, and air
pressure can be achieved, optimizing the operation and energy consumption of heating
systems, and improving heating efficiency and indoor comfort.

The impact of micro-meteorology on power generation is summarized in Table 2.

Table 2. A summary of the impact of micro-meteorology on different forms of power generation.

Forms of Power
Generation

Associated Micro-Meteorological
Elements Influence

Wind Power wind speed and direction,
temperature, humidity, etc.

(1) cause the flow of wind to generate vortices and turbulence;
(2) cause vibration and stress concentration on wind turbine
blades and thus reduce the lifespan and performance of the
turbines; (3) affect the transmission and conversion efficiency of
wind energy.

ine Photovoltaic
solar radiation, temperature, wind
speed and wind direction, humidity
and precipitation, etc.

(1) basic energy source; (2) affect the efficiency and performance
of photovoltaic cells; (3) affect the stability and safety of
photovoltaic components, leading to potential damage;
(4) negatively effect on the performance and lifespan of
photovoltaic components.

ine Hydropower rainfall, temperature, humidity,
wind speed, solar radiation, etc.

(1) determine the inflow volume and available water resources;
(2) lead to decreased efficiency and power generation capacity of
hydroelectric units; (3) affect the power generation efficiency and
equipment lifespan; (4) affect the fluctuation of the water surface
in reservoirs; (5) affect factors such as evaporation rates from the
water surface and water temperature.

ine Thermal Power temperature, humidity, wind speed,
pressure, etc.

(1) help predict the changing trend of atmospheric temperature,
thereby implementing a reasonable heating plan and thermal
power adjustment; (2) reduce the combustion efficiency and
environmental emission quality of thermal power plants;
(3) affect the combustion stability of the boiler and the direction
of flue gas emissions; (4) affect the stability of combustion air
volume, fuel supply, and flue gas emissions.

ine Energy Storage
solar radiation, air temperature,
humidity, wind speed, wind
direction, etc.

(1) help adjust the charging and discharging strategies of energy
storage systems; (2) help adjust the charging and discharging
strategies of energy storage systems; (3) take appropriate
measures to control the temperature, protect the batteries, and
improve the efficiency and reliability of energy storage systems.

ine Heating temperature, humidity, wind speed,
pressure, etc.

(1) regulate the output of heat power according to external
temperature changes, meeting the heating demands in different
seasons and weather conditions; (2) adjust the control devices for
indoor humidity to provide a comfortable heating environment
indoors; (3) increase heat dissipation from building walls and
windows, increasing the load on heating systems and energy
consumption; (4) affect the delivery and distribution of hot water
or steam in heating systems.
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3.2. The Impact of Micro-Meteorology on the Entire Lifecycle of New Energy Sources

New energy sources represented by wind and solar power are subject to the constraints
and challenges of changeable weather. Micro-meteorological technology plays an important
role throughout the entire lifecycle of new energy sources, from site selection in planning,
grid connection and operation, to post-evaluation and trading recovery (as shown in
Figure 4.

Figure 4. The impact of micro-meteorology on the entire lifecycle of new energy sources.

3.2.1. Survey and Design

In recent years, with the gradual increase in environmental awareness and the contin-
uous growth in energy demand, new energy generation projects have received widespread
attention and vigorous promotion. In the detailed survey and parameter design of these
projects, micro-meteorological data plays a crucial role.

Firstly, micro-meteorological data is indeed crucial for the site selection and construc-
tion of wind power projects. In the preliminary investigation of wind power projects, the
collection and analysis of historical meteorological data can identify regions abundant in
wind energy resources, laying a foundation for the construction of wind power projects.
During actual construction, micro-meteorological data can provide information such as
wind speed, wind direction, and wind energy density, helping to determine the layout of
wind turbines and the construction of wind farms. High-resolution meteorological data can
also provide a more detailed analysis of meteorological conditions, helping wind power
projects predict wind energy output, adjust wind turbine operation status, and improve
wind power generation efficiency.

Secondly, micro-meteorological data also plays an important role in the site selection
and design of photovoltaic power generation projects. Photovoltaic power generation
relies on factors such as solar radiation intensity, duration of sunlight, and atmospheric
transparency. High-resolution meteorological data can provide more detailed meteorolog-
ical information. By comparing and analyzing micro-meteorological data from different
regions, areas abundant in solar energy resources can be identified, reducing errors in
the placement and tilt angle of photovoltaic panels, and improving photovoltaic power
generation efficiency.

In addition to its impact on project site selection and design, micro-meteorological
data are also crucial for project operation and maintenance. For example, in the actual
operation of wind power projects, micro-meteorological data can provide information
such as wind speed and direction for wind turbine adjustment and maintenance. In the
operation of photovoltaic power generation projects, micro-meteorological data can provide
weather forecasts and temperature information for system optimization and maintenance.
Furthermore, micro-meteorological data are also important for other power generation
projects such as hydroelectric power. For example, in the design of hydroelectric power
plants, micro-meteorological data can provide information on rainfall and runoff, helping
to design reservoir capacity and select hydroelectric generators.

In addition, accurate short-term weather forecasting is needed during engineering
construction and operation to take appropriate construction arrangements and emergency
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measures, ensuring safe and smooth project construction and operation. High-resolution mete-
orological data can provide more accurate data support for these predictions, helping to avoid
potential meteorological risks and safeguard the smooth progress of engineering projects.

The scientific application of micro-meteorological data is a necessary condition for
building more reliable, efficient, and environmentally friendly new energy generation
projects. With the continuous advancement of technology and the improvement of data
acquisition techniques, the acquisition and analysis of micro-meteorological data will
become more precise and comprehensive. In the future, with the continuous expansion
and popularization of renewable energy generation projects, the application of micro-
meteorological data will become more widespread and in-depth. With the help of micro-
meteorological data, more and more renewable energy generation projects will become an
important pillar for people’s survival and development.

3.2.2. Power Forecasting

Although new energy generation has become relatively mature and widely applied,
compared to traditional thermal power plants, it still exhibits strong randomness and
volatility. When large-scale integration into the power grid occurs, it will have a significant
impact on grid stability. Ensuring the stability of the grid requires the ability to predict
power and generation in advance and adjust generation and grid load accordingly.

Compared to traditional power generation methods, renewable energy, mainly wind
power and photovoltaic power, is more susceptible to environmental factors such as wind
speed, wind direction, sunshine duration, temperature, and atmospheric pressure during
the generation process. It has higher randomness, volatility, and uncontrollability. The
large-scale integration of renewable energy into the grid poses significant challenges to the
stable operation and power dispatch of the system [110].

Therefore, accurate prediction of new energy power is one of the effective methods to
solve the aforementioned difficulties. Meteorological data play a vital role in new energy
power prediction. Taking wind power prediction as an example, one commonly used
method is to establish a wind power prediction model based on historical meteorological
and power output data of wind farms, and use numerical weather forecast results as input
to predict the power output of wind farms. The precision of weather forecasts significantly
impacts the accuracy of power predictions.

The core of new energy power prediction technology lies in exploring the relationship
between numerical weather forecasts representing weather changes and the power varia-
tions in new energy power stations. If the weather forecasts for the location of the power
station are inaccurate, it will result in significant errors in new energy power predictions.

The commonly available meteorological forecasts in the market mainly provide city-
level meteorological data at the ground level. The data do not match the spatial distribution
of new energy power stations, and the vertical distribution does not match wind power
generation. In addition, the current general meteorological forecasts have low resolution
and cannot provide high-resolution and more detailed forecasts at the location of the
power station [111]. Therefore, conducting power predictions usually requires purchasing
commercial numerical weather forecast data, mainly in two types: grid-based data with
a spatial resolution of about 3km*3km and specified latitude and longitude points, often
located at wind measurement towers or specific points within wind farms.

Therefore, the importance of constructing a micro-meteorological forecast system
for new energy generation is becoming increasingly evident. High-resolution micro-
meteorological forecast data can support the fine modeling of new energy power pre-
diction at the single-machine level and equipment level, improving the accuracy of power
predictions at new energy power stations.

3.2.3. China Electricity Spot Market Trading

In China’s spot market environment, accurate micro-meteorological data forecasting is
of great significance in new energy power forecasting, network-wide load forecasting, and
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inter-provincial transactions. It can ultimately effectively guide electricity sales companies
and wholesale users to formulate reasonable trading strategies.

Meteorological analysis and prediction are the basis for various load predictions and
new energy predictions in the electricity market, with the main goal of preparing for spot
market price prediction through the prediction of various loads as well as photovoltaic and
wind power output.

Meteorological fluctuations and randomness are key factors influencing the power
output variability of new energy stations in the context of predicting new energy power.
Wind power generation is strongly related to meteorological factors such as wind speed and
air density, while photovoltaic power generation is strongly related to meteorological factors
such as solar radiation intensity (solar incidence angle, cloud cover, etc.) and temperature.
Accurate meteorological information prediction is crucial for new energy power prediction.
The power of new energy stations is often negatively correlated with spot prices. The
real-time balance of supply and demand in the power system. With the construction of a
new type of power system dominated by new energy sources, the impact of new energy
station power on spot prices becomes more prominent. If micro-meteorological forecasting
can be achieved one week or even longer in advance and converted into new energy power
prediction, market entities can formulate trading strategies proactively and flexibly.

In terms of load, the overall load of the power grid is affected by meteorological factors.
Temperature is the most significant meteorological factor affecting the overall load of the
power grid, and the load level and temperature are positively correlated in summer and
negatively correlated in winter. Under the distributed photovoltaic “self-use, surplus to the
grid” mechanism, when the temperature is constant, the distributed photovoltaic greatly
reduces the user’s demand for grid power supply, and even the distributed photovoltaic
sends power back to the grid, leading to a decrease in the grid’s coordinated load level.
The grid load level directly affects the power generation capacity supply and demand of
thermal power enterprises, thereby affecting the spot market price level. High-precision
micro-meteorological forecasting is crucial for predicting load levels and spot market
price levels.

During the period of inter-provincial market opening, larger-scale high-precision
micro-meteorological forecasting is critical for predicting spot market prices in the province.
When the temperature in the receiving province is higher in summer or lower in winter,
the inter-provincial price has an advantage, and the power generation enterprises sending
power to the province raise the provincial spot market quotation level, pulling up the
clearing price of the provincial spot market through quotation, obtain settlement income
from the provincial spot market, and participate in the inter-provincial market space
with maximum power generation capacity to obtain high inter-provincial market income.
However, when there is no need for external power to meet the balance of provincial
electricity consumption, the inter-provincial market price lacks advantages, and power
generation enterprises sending power out of the province often lower the provincial spot
market quotation to fully participate in the provincial market.

With the continuous implementation of the further deepening of the electricity trad-
ing marketization reform, the impact of meteorological factors on the market supply and
demand ends and even spot prices will become more apparent, becoming the core data
that affect the quality of trading decisions. Therefore, strengthening the production, op-
timization, collection, and application of micro-meteorological forecasting data will also
become the necessary path for all kinds of market entities to build core trading capabilities.

3.3. Integrated Energy System

Zeng et al. [112] argued that building a comprehensive energy system promotes the
integrated development of power generation, transmission, distribution, storage, and
multiple energy complementary development. Micro-meteorology provides basic data
support for the integrated operation and optimization of comprehensive energy systems.
The basic connotation of a comprehensive energy system can be summarized as “multiple
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energy complementary and coordinated optimization”, covering multiple energy resources
such as electricity, coal, oil, natural gas, and renewable energy. Micro-meteorology data
supports the centralized and distributed energy types to achieve a full complementary
supply of multiple energy sources. Based on the smart grid, it can achieve interconnection
with various types of networks such as heating networks, natural gas networks, and
transportation networks. With micro-meteorology data as one of the main bases, it can
play the regulatory capacity of flexible storage resources such as energy storage, which
can effectively mobilize the response potential of demand-side resources. It can realize
the horizontal multiple energy complementarity and vertical coordinated development
between multiple energy systems, thereby constructing a diversified energy supply system
and promoting an energy supply revolution.

Micro-meteorology data will provide effective help for the dispatching and optimiza-
tion of integrated energy systems. Through scientifically dispatching multiple energy
sources within the system, a comprehensive energy system can achieve efficient con-
sumption of renewable energy, efficient utilization of comprehensive energy, and safe and
economic energy use by users. At the same time, the organic coordination of multiple
energy systems also helps to eliminate the supply bottleneck of different energy systems,
delay the construction of energy supply systems, and improve the utilization efficiency
of various energy equipment. In addition, in the application of virtual power plants,
micro-meteorology data aggregate and optimize distributed energy resources (including
distributed power generation, energy storage systems, controllable loads, etc.), providing
basic data support for power markets and grid operations, and providing management
and auxiliary services for distribution and transmission networks.

Therefore, micro-meteorology has a profound impact on the integrated scheduling
and multi-energy complementary of comprehensive energy systems. For example, it can
be specifically reflected in the following aspects:

(1) Wind and solar power output fluctuations: With the increase in the proportion
of new energy, wind and solar power are important components of a comprehensive
energy system, and their output fluctuations have an important impact on the integrated
scheduling and operation of the power system. Therefore, improving the accuracy of wind
and solar power output prediction based on micro-meteorology data is one of the key tasks
of the integrated scheduling of comprehensive energy systems.

(2) Extreme weather events: Extreme weather events such as typhoons, heavy rain, and
snow may have a serious impact on the operation of the power system, including equipment
damage and power interruption. Therefore, based on micro-meteorology observations, risk
assessment of extreme weather events and the formulation of corresponding emergency
plans are important measures to ensure that the energy system can respond and recover
quickly in the face of meteorological risks.

(3) Flexible scheduling of power generation resources: Under the influence of mete-
orological changes, the energy system needs to flexibly schedule various types of power
generation resources. For example, when the output fluctuations of wind and solar power
are large, the input of adjustable power generation resources such as thermal power and
hydropower can be increased to balance the system load. In addition, by establishing
regional power markets, cross-regional power scheduling can be achieved, which can
alleviate the pressure caused by meteorological effects to a certain extent. In these solutions,
accurate decision-making and scheduling based on micro-meteorology forecasts are crucial.

(4) Application of energy storage technology: The comprehensive energy system needs
to balance the impact of meteorological conditions on the stability of energy output, and
energy storage technology plays an important role in this process. By applying energy
storage technologies such as batteries and pumped storage, it is possible to smooth the
load curve of the system during wind and solar power output fluctuations and improve
system stability. At the same time, energy storage technology can also provide additional
support during peak periods of electricity demand and reduce the pressure on the power
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system. Micro-meteorology data have important significance for optimizing and allocating
energy storage systems and achieving peak shaving and valley filling.

Therefore, in the integrated scheduling and multi-energy complementary of compre-
hensive energy systems, it is necessary to fully consider the impact of micro-meteorology
factors, take corresponding measures, and improve the ability and stability of comprehen-
sive energy systems.

In summary, the core characteristics of a comprehensive energy system are reflected in
interconnection, comprehensive utilization, and optimized sharing. Micro-meteorology
plays a very important role in internal optimization and scheduling, power generation
planning, event warning, emergency response, and other important links to comprehensive
energy systems. It is also among the basic data for the refined planning, allocation, and
scheduling of comprehensive energy systems. With the increase in the proportion of
new energy, micro-meteorology will become increasingly important in comprehensive
energy systems.

3.4. Disaster Prevention and Reduction

In the context of global warming, the frequency and intensity of extreme weather
events are continuously increasing [113]. The Intergovernmental Panel on Climate Change
(IPCC) Sixth Assessment Report by the Working Group I states unequivocally that human
influence has undoubtedly caused the warming of the atmosphere, ocean, and land, leading
to widespread and rapid changes in the atmosphere, ocean, cryosphere, and biosphere. The
scale and multi-faceted nature of the overall climate system changes are unprecedented
over centuries or even thousands of years. Human-induced climate change has already
affected the weather and extreme climates in every region worldwide.

Extreme weather and climate events often involve abnormal changes in meteorological
elements [114]. For instance, during heatwaves and static stability in the atmosphere,
widespread calm wind conditions can render wind turbines virtually ineffective for periods
of time. Similarly, in extremely cold and overcast conditions, solar photovoltaic components
may not receive sufficient solar radiation for conversion. In times of drought, river flow
may decrease, leading to reduced power generation at hydroelectric plants; insufficient
reservoir water levels could result in their inability to function normally. During floods,
riverbed erosion and dam damage may occur, impacting water turbine generators and
power facilities, potentially causing reservoir overflow and disrupting power generation
at hydroelectric plants. As renewable energy becomes a dominant component of the new
energy structure, heightened attention must be given to the new risks posed by climate
change. A micro-meteorological observation network will provide essential foundational
data for predicting extreme weather conditions.

The response to extreme weather events, particularly extreme temperature events such
as heatwaves and extreme cold, often requires substantial energy reserves and distribution
support. Climate change-induced extreme weather events will present an unusually
complex situation for future energy supply needs. The extreme snowstorm in Texas in
early 2021 [115] resulted in widespread power and water system failures, leaving residents
without water and electricity for several days, and some even perished from freezing
and starvation at home [116]. Texas faced a shortage of reliable electricity during the
cold snap. Report [117] indicated that half of the state’s wind turbines froze, causing
the proportion of wind power in the electricity mix to drop from 42 percent to 8 percent.
In such circumstances, relying on more precise micro-meteorological forecasts to issue
early warnings for extreme weather and prevent natural disasters such as geological
hazards could greatly enhance disaster prevention and reduction efforts, effectively serving
safety, operations, power generation, and market trading, playing a crucial role in energy
preparedness, dispatch, and stable grid operation.
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4. Case Study

This section provides a case study to illustrate how data and technique of micro-
meteorolgy can help to improve the efficiency of the new power system.

China is planning to optimize its energy mix by building massive wind and solar
power facilities in the country’s Gobi and other desert areas to support the objective of
reaching more than 1200 gigawatts of installed solar and wind capacity by 2030. Meteoro-
logical data and services are becoming more crucial for renewable energy development
and operation. This is clearly reflected in the memorandum of understanding between the
International Renewable Energy Agency (IRENA) and the World Meteorological Organiza-
tion (WMO) on working together to support the transition to renewable energy through
tailored weather, water and climate services that was recently signed at the COP27. While
China’s Gobi desert area has enormous potential for harvesting solar and wind energy,
this is also an area where in situ observations and forecasting skills of numerical weather
predictions are more limited. In addition, high-influence weather phenomena such as gust,
strong wind and sandstorms are more frequent. Thus, power prediction skills for wind
and photovoltaic generation are very challenging in this area.

This section shows how high-resolution data that captures the local micro-meteorology
conditions of a wind farm well in the Gobi desert area can help improve the accuracy of
power prediction.

4.1. Data Description

Firstly, the mesoscale numerical model WRF-ARW4.5 is used to conduct numerical
simulation experiments, so as to obtain a micro-meteorology reanalysis dataset in the Gobi
desert area. During the experiment, the Grid Nudging is used for data assimilation, and the
open source reanalysis dataset-ERA5 is used as the background field. The ERA5 reanalysis
data come from a global meteorological dataset provided by ECMWF. The time resolution
of the dataset is 1 h and the spatial resolution is 0.25° × 0.25°.

The micro-meteorology reanalysis dataset was collected from March 2022 to February
2023 with a time resolution of 15 min and a spatial resolution of 0.01° × 0.01°. The spatial
range covered by the dataset is 40.30° N–41.25° N, 95.60° E–96.62° E. The dataset includes
upper-air variables and surface variables. In this section, the temperature, relative humidity,
pressure, wind direction, wind speed at different heights and precipitation of grid points
adjacent to a wind farm in Jiuquan, China are selected for data analysis and wind power
prediction. The details of meteorological variables are shown in Table 3. The first 70% of
the data points are used as training samples, and the remaining data points are used as
test data.

Table 3. The details of meteorological variables.

Variable Unit Heights (m)

Temperature ◦C 2/30/50/70/90/110/130/150
Relative humidity % 2/30/50/70/90/110/130/150

Pressure kPa surface/30/50/70/90/110/130/150
Wind direction ◦ 10/30/50/70/90/110/130/150

Wind speed m/s 10/30/50/70/90/110/130/150
Precipitation m -

4.2. Key Variable Analysis

First, the 90 m wind speed of 144 grid points covering the wind farm at different times
is shown in Figure 5. The spatial range covered by 144 grid points is 40.80° N–40.97° N,
96.37° E–6.44° E, so the spatial span of 144 grid points is 0.17° × 0.07°, which is significantly
smaller than t9he spatial resolution of ERA5 dataset. It can be seen from Figure 5 that the
90 m wind speed at each grid point changes significantly at the same time. For example,
at 6:00 on 1 March 2022, the maximum wind speed in all grid points is 8.68 m/s, and
the minimum wind speed is 5.13 m/s. The difference between them reaches 3.55 m/s.
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This shows that the wind farm located in the Gobi desert area has local meteorological
characteristics, which can be displayed by the micro-meteorology reanalysis dataset, but
can not be reflected by the data with low spatial–temporal resolution, such as ERA5 dataset.

Figure 5. The 90 m wind speed of grid points at different times.

Next, the correlation between 90 m wind speed at different grid points and wind
power is analyzed, and the results are shown in Figure 6. It can be seen that the correlation
between wind power and 90 m wind speed at most grid points is strong, which is not
less than 0.7. In addition, the spatial span of grid points covering the wind farm is also
0.17° × 0.07°, which is significantly smaller than the spatial resolution of the ERA5 dataset.
The correlation coefficient between wind power and 90 m wind speed at each grid point is
different, which indicates that the wind speed at 90 m height is variable within the spatial
span and has local micro-meteorological characteristics, which can not be captured by the
ERA5 dataset. It is proved that the micro-meteorology reanalysis dataset can capture the
local micro-meteorology conditions of a wind farm in the Gobi desert area well.

4.3. Wind Power Prediction

In this section, the wind power prediction based on the micro-meteorology reanalysis
dataset and the ERA5 reanalysis data is compared.

4.3.1. Experimental Setting

The ERA5 dataset also includes pressure, temperature, humidity, wind speed, wind
direction and other variables in the upper air and surface. But the temporal resolution and
spatial resolution of the dataset are lower than those of the micro-meteorology reanalysis
dataset. In this section, the ERA5 dataset was also collected from March 2022 to February
2023. The temperature, pressure, wind direction and wind speed at different heights and
precipitation of grid points adjacent to the wind farm in Jiuquan were selected for wind
power prediction. In addition, the data used for wind power prediction are shown in
Table 4. It can be seen that the time resolution of ERA5 does not match the wind power
data, so linear interpolation was performed on the ERA5 dataset to make its time resolution
15 min. The training set and the test set were also divided according to the ratio of 7:3.
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Figure 6. The correlation matrix between 90 m wind speed at different grid points and wind power.

Table 4. Data used for wind power prediction.

Data Time Frame Temporal Resolution Spatial Resolution

Micro-meteorology reanalysis dataset 2022.3–2023.2 15 min 0.01° × 0.01°
ERA5 2022.3–2023.2 1 h 0.25° × 0.25°

Wind power 2022.3–2023.2 15 min a wind farm

The models uesd in this section are eXtreme Gradient Boosting (XGBoost), Light
Gradient Boosting Machine (LightGBM), long short-term memory (LSTM) and gated
recurrent unit (GRU). XGBoost and LightGBM are traditional machine learning models
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and tree-based models, which have been applied to tackle the problem of wind power
prediction (WPP). XGBoost is a supervised ensemble learning algorithm, which can be used
to solve regression problems. XGBoost uses the decision tree as the base learner to construct
multiple weak learners. In the iterative learning process, it continuously trains along the
direction of reducing the gradient, and uses the second-order Taylor series to expand
the loss function. In order to find the global optimal solution, regularization is added
to the objective function to control the accuracy and complexity of the model. XGBoost
can process in parallel, prevent overfitting, and has fast speed. LightGBM is an ensemble
learning algorithm based on a gradient lifting tree. By adding gradient-based one-side
sampling and exclusive feature bundling, LightGBM solves the time-consuming problem
caused by the traditional gradient lifting tree which needs to traverse all data at the feature
splitting point to calculate the information gain. In summary, traditional machine learning
models can adaptively learn the characteristics of data and predict nonlinear WP data
accurately. Compared with physical models and traditional statistical models, they have
a better prediction performance. However, these models have limitations in expressing
complex data and fully reflecting the characteristics of data [118].

Over the past few years, deep learning models have become the most popularly used
machine learning models, owing to their intricate structures and potent nonlinear mapping
capabilities. They are increasingly being employed in a variety of applications, including
WPP. In deep learning models, RNN-based models are widely used in WPP; due to their
structure, they are prone to the problem of gradient disappearance or explosion. LSTM and
GRU are commonly used RNN-based models, and LSTM introduces a gating mechanism
on the basis of RNN, replacing common neuron modules with special memory neuron
modules, so it can well solve the long-term dependence problem of sequences [119], and
various studies [120] have shown that compared to other prediction methods, LSTM has
a higher accuracy in WPP. GRU is a variant of LSTM, which also can solve the problem
of gradient disappearance and explosion. Compared with LSTM, GRU does not have a
dedicated memory cell, so GRU has a simpler structure, making it be trained faster than
LSTM. But LSTM has a better performance for the dataset with longer sequences. In this
section, the LSTM and GRU were implemented in PyTorch with a “mean square error
(MSE)” loss function and an “Adaptive Moment Estimation (Adam)” optimizer.

In order to measure the prediction performance of the different datasets, three pre-
diction error indicators were used: mean absolute error (MAE), root mean square error
(RMSE) and CR. The equations for these indicators are given in Equations (1)–(4).

MAE =
1
n

Σn
i=1|yi − ŷi| (1)

where n is the number of test samples, and yi and ŷi are the ith actual value and the
corresponding estimated value, respectively.

RMSE =

√
1
n

Σn
i=1(yi − ŷi)2 (2)

ERMSE =

√
1
n

Σn
i=1(

yi − ŷi
Ci

)2 (3)

CR = 1 − ERMSE (4)

where Ci is the ith startup capacity of the wind farm.

4.3.2. Results

The wind power prediction results of different models applied to the two datasets
are presented in Table 5. In the table, Dataset 1 refers to the micro-meteorology reanalysis
dataset, and Dataset 2 refers to the ERA5 dataset. It can be seen that compared with
the prediction results using the ERA5 dataset, the wind power prediction results of all
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models based on the micro-meteorology reanalysis dataset have high accuracy. Moreover,
compared to shallow machine learning models LightGBM and XGBoost, deep learning
models LSTM and GRU have better prediction performance. In addition, according to
RMSE and CR, LSTM has the highest accuracy among all the models. Therefore, LSTM is
chosen as the best prediction model, and the wind power prediction results of LSTM based
on the two data sets and the absolute value of the error between the prediction results and
the actual values over a period of time are shown in Figure 7. It can be seen that at most
times, the absolute value of the error is smaller and the prediction accuracy is higher when
using the micro-meteorology reanalysis dataset.

The analysis shows that the meteorological observation stations in the desert, Gobi
and desertification land are sparse, and the basic meteorological data resources in these
areas are seriously insufficient. In addition, due to the influence of the natural geographical
environment, the obvious local micro-meteorology is prone to occur in the wind farm
area. Therefore, the micro-meteorology reanalysis dataset can capture the local micro-
meteorology conditions of the wind farm in the Gobi desert area well, and using the
micro-meteorology reanalysis dataset with high spatial–temporal resolution for wind
power prediction can effectively improve the prediction accuracy.

Table 5. Prediction results of different models for two datasets.

Method MAE (MW) RMSE (MW) CR
Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

LSTM 38.0658 40.4811 53.2572 54.5717 86.6857% 86.3570%
GRU 38.4487 40.1762 54.0846 54.8024 86.4789% 86.2994%

LightGBM 41.1604 42.0596 54.0357 54.6014 86.4911% 86.3497%
XGBoost 41.0750 44.0245 54.4686 56.7056 86.3829% 85.8237%

Figure 7. The wind power prediction results of LSTM. (a) The prediction results based on the two
data sets. (b) The absolute error between the prediction results and the actual values.
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5. Discussion

Despite its clear benefits analyzed before, the integration of micro-meteorology into the
power system faces challenges. This section discusses several challenges from observations,
data, techniques, uncertainty, and cooperation.

5.1. Observation System

Due to the spatial heterogeneity of micro-meteorological phenomena, an extensive and
dense observation network is required to capture meteorological changes at various spatial
locations. This requires reasonable planning of the layout of the observation network to
ensure that it covers a sufficient spatial range. It also requires timely collection, transmission
and processing of observation data to ensure the accuracy and reliability of the data.
However, because new energy development is often located in remote areas, meteorological
observation equipment is seriously insufficient. At the same time, because these devices
are usually high-precision, high-sensitivity instruments, they require regular calibration
and maintenance to maintain their performance and accuracy.

In addition, the establishment and maintenance of a micro-meteorological observation
system requires a large amount of financial and technical support. Due to insufficient
financial and technical support, the micro-meteorological observation system may have
problems such as aging equipment and backward technology, resulting in a decline in the
quality of observation data or an inability to meet demand. Therefore, it is necessary to
strengthen investment in financial and technical support to ensure the normal operation
and development of the micro-meteorological observation system.

5.2. Data

In order for micro-meteorology to play a better role in the new power system, the
requirements for real-time data are relatively high, which brings great challenges to data
collection and transmission. Micro-meteorological data usually contain a large amount
of information, such as wind speed, wind direction, temperature, humidity, air pressure,
etc. These data require complex processing and analysis to extract useful information and
transform it into understandable prediction results. In this process, professional technical
personnel and advanced data analysis tools are needed.

In addition, data quality assurance is also an important challenge. The accuracy
and reliability of micro-meteorological data have an important impact on subsequent
meteorological prediction and decision-making. Therefore, data calibration and quality
assurance are an indispensable part. This requires establishing strict data quality standards
and calibration processes to ensure data accuracy and reliability.

Furthermore, because micro-meteorological data have the characteristics of high di-
mensionality, high frequency, and high spatial correlation, efficient data storage and pro-
cessing technologies need to be developed to meet real-time and accuracy requirements.

5.3. Reliable Predictive Models

The prediction model based on micro-meteorological data is one of the key technolo-
gies to realize the incorporation of micro-meteorology into new power systems. However,
due to the high complexity and uncertainty of micro-meteorological phenomena, establish-
ing accurate and reliable prediction models is a challenging task. Currently, commonly
used methods include statistical models, physical models, neural networks, etc. These
methods each have their own advantages and disadvantages when dealing with specific
problems, so they need to be selected and optimized based on actual application scenarios.
In addition, the interpretability and generalization ability of the model also needs to be
considered to ensure the reliability and stability of the prediction results.

5.4. Uncertainty

Micro-meteorological phenomena are affected by many factors, such as climate change,
topography, atmospheric composition, etc., and these factors may bring uncertainty. There-
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fore, it is necessary to consider these uncertain factors when establishing a forecast model
and use probability theory and statistical methods to evaluate and revise the forecast re-
sults. An early warning mechanism needs to be established to provide timely warnings
of possible meteorological disasters and take effective response measures to reduce their
impact on the power system.

5.5. Cooperation and Support

In order to better play the role of micro-meteorology in new power systems, more
comprehensive exchanges and cooperation and integration of data, technology and person-
nel between the two fields are needed. In addition, it is also necessary to actively promote
policy and financial support, strengthen the development of interdisciplinary technologies,
and promote the building of researchers and teams.

However, these challenges also bring opportunities for innovation and growth. As the
energy sector transitions towards more distributed and flexible systems, micro-meteorology
can play a more pivotal role. Furthermore, advances in big data and artificial intelligence
technology will provide more possibilities for the application of micro-meteorology in
power systems.

6. Conclusions

Meteorological conditions affect all aspects of new power systems. The production
and operation of the power system are closely related to the atmospheric environment.
Especially as the proportion of renewable energy in power systems continues to rise, micro-
meteorology is becoming one of the core technologies to ensure the safety and stability of
power systems.

In the entire power generation process of the regional power system, including survey
and design, wind power, solar power, hydrothermal power generation, energy storage,
heating, power prediction, electricity market transactions, etc., micro-meteorology plays an
important role. Micro-meteorology provides basic data and technical support systems for
the power system, making contributions to dispatch optimization, disaster prevention and
early warning, management and control, transaction operation scenarios, etc.

In the future, targeted micro-meteorological technological innovation work will be
considered and carried out in various aspects, such as improving the utilization rate of
meteorological data resources, enriching meteorological data development and utilization
methods and tools, and promoting the transformation of meteorological data resources
into data elements. These works will be conducive to the establishment and application of
micro-meteorological services for more efficient management and overall optimization of
multiple energy forms, improving overall energy efficiency, reducing costs, and achieving
accurate predictions of power market trends through the development and utilization of
multi-scale meteorological data.
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