
Citation: Syamsudin, M.; Chen, C.-I.;

Berutu, S.S.; Chen, Y.-C. Efficient

Framework to Manipulate Data

Compression and Classification of

Power Quality Disturbances for

Distributed Power System. Energies

2024, 17, 1396. https://doi.org/

10.3390/en17061396

Academic Editor: Ahmed Abu-Siada

Received: 7 January 2024

Revised: 20 February 2024

Accepted: 12 March 2024

Published: 14 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Efficient Framework to Manipulate Data Compression and
Classification of Power Quality Disturbances for Distributed
Power System
Mariana Syamsudin 1 , Cheng-I Chen 2,* , Sunneng Sandino Berutu 3,* and Yeong-Chin Chen 4

1 Department of Electrical Engineering, Politeknik Negeri Pontianak, Pontianak 78124, Indonesia;
mariana@polnep.ac.id

2 Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan
3 Department of Information and Technology, Immanuel Christian University, Yogyakarta 55571, Indonesia
4 Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan;

ycchenster@gmail.com
* Correspondence: cichen@ee.ncu.edu.tw (C.-I.C.); sandinoberutu@gmail.com (S.S.B.);

Tel.: +886-3-4227151 (ext. 34526) (C.-I.C.)

Abstract: There is some risk of power quality disturbances at many stages of production, transforma-
tion, distribution, and energy consumption. The cornerstone for dealing with power quality problems
is the characterization of power quality disturbances (PQDs). However, past research has focused
on a narrow topic: noise disruption, overfitting, and training time. A new strategy is suggested to
address this problem that combines efficient one-dimensional dataset compression with the convolu-
tional neural network (CNN) classification algorithm. First, three types of compression algorithms:
wavelet transform, autoencoder, and CNN, are proposed to be evaluated. According to the IEEE-1159
standard, the synthetic dataset was built with fourteen different PQD types. Furthermore, the PQD
classification procedure integrated compressed data with the CNN classification algorithm. Finally,
the suggested method demonstrates that combining CNN compression and classification methods
can efficiently recognize PQDs. Even in noisy environments, PQD signal processing achieved up to
98.25% accuracy and managed the overfitting.

Keywords: power quality disturbance; data compression; classification; convolutional neural network;
distributed power system

1. Introduction

Energy is a multidisciplinary topic that addresses not only technical but also social
and economic factors. The amazing beneficial effect of energy on the quality of life in all
nations provides optimism for the future [1]. The high dependence on sustainable energy
necessitates improved power quality (PQ) in electricity generation, power transmission,
and established distribution networks. The quality of power is becoming a more important
element, particularly as the concept of smart grids, for defining future electricity busi-
nesses, is on the horizon around the world. Customers and electric power utilities are
expected to achieve ideal electrical current and voltage waveforms at the recommended
power frequency [2]. Yet, one among the biggest contributors of problems related to PQ is
distributed energy generation [3]. To attain good PQ, it is essential to eradicate the source
of distractions, hence lowering consumer damages.

Power quality is strongly related to the energy usage of electrical equipment. This is
an essential problem, since electronic equipment’s life expectancy is occasionally falling [4].
The quality of electricity is characterized by electrical harmonics, low power factor, voltage
insufficiency, and disruptive power output, whereas the typical current or voltage behavior,
when it impairs the proper functioning of the power systems, is to be regarded as a power

Energies 2024, 17, 1396. https://doi.org/10.3390/en17061396 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17061396
https://doi.org/10.3390/en17061396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8313-501X
https://orcid.org/0000-0002-2968-2362
https://orcid.org/0000-0002-3607-2722
https://doi.org/10.3390/en17061396
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17061396?type=check_update&version=1

Energies 2024, 17, 1396 2 of 20

quality disturbance (PQD) [5]. A wide range of electromagnetic disturbances occur at
various places throughout the system, affecting the amount of energy delivered to various
demand sites. Some of the most frequent system disruptions in alphabetical order are
flickers, harmonics, interruptions, sags, swells, and transients [6].

These occurrences have technical consequences, involving machine heat damage
and insulation decline, among other things, that have a negative influence on electrical
and electronic devices, particularly harm to industrial utilities, software for computers,
and hardware [7]. Moreover, electrical devices can create chaotic behavior. However,
recent research has effectively showed how chaotic phenomena permits addressing energy
transmission in networks [8]. Based on the preceding, it is critical to recognize these types of
disturbances to determine which measures should be taken to minimize these occurrences.
Thus far, classification and detection of disturbances have been recognized as keyways to
maintain the quality of electricity. In terms of the smart electrical grid, it is viable to build
an Internet of Things (IoT)-based power quality system and place it throughout the line of
distribution, with the purpose of transmitting consumption and interruptions information
onto utilities over a two-way communications network [9]. A general smart grid structure
is presented in Figure 1.

Energies 2024, 17, x FOR PEER REVIEW 2 of 21

age behavior, when it impairs the proper functioning of the power systems, is to be re-
garded as a power quality disturbance (PQD) [5]. A wide range of electromagnetic dis-
turbances occur at various places throughout the system, affecting the amount of energy
delivered to various demand sites. Some of the most frequent system disruptions in al-
phabetical order are flickers, harmonics, interruptions, sags, swells, and transients [6].

These occurrences have technical consequences, involving machine heat damage
and insulation decline, among other things, that have a negative influence on electrical
and electronic devices, particularly harm to industrial utilities, software for computers,
and hardware [7]. Moreover, electrical devices can create chaotic behavior. However,
recent research has effectively showed how chaotic phenomena permits addressing en-
ergy transmission in networks [8]. Based on the preceding, it is critical to recognize these
types of disturbances to determine which measures should be taken to minimize these
occurrences. Thus far, classification and detection of disturbances have been recognized
as keyways to maintain the quality of electricity. In terms of the smart electrical grid, it is
viable to build an Internet of Things (IoT)-based power quality system and place it
throughout the line of distribution, with the purpose of transmitting consumption and
interruptions information onto utilities over a two-way communications network [9]. A
general smart grid structure is presented in Figure 1.

Figure 1. General smart grid system.

Under these conditions, the most essential factor to consider for achieving real-time
data transfer is the computing power of the method used for categorizing and detecting
disturbance; in a nutshell, the speed of computation has to match the data transfer speed
and bandwidth. The smart grid will be constructed of numerous components. Before the
system can be completely operational, all infrastructure, including technology, must be
perfected, and tested thoroughly. With government support, this development might
take around a decade.

Considering the problems mentioned earlier, the paper’s key contributions are as
follows:
1. To examine the most efficient compression approach for PQD datasets. Since a high

compression ratio for any technique does not guarantee the optimum solution for
all data kinds, several compression methods and algorithms are available for each
data format. Many variables affect which compression technique is suited for each
data type. Hence, the data compression algorithm selected will impact the catego-
rization model’s performance. Therefore, it is critical to determine the best dataset
compression method utilized as a benchmark to achieve high accuracy in the clas-
sification process.

Figure 1. General smart grid system.

Under these conditions, the most essential factor to consider for achieving real-time
data transfer is the computing power of the method used for categorizing and detecting
disturbance; in a nutshell, the speed of computation has to match the data transfer speed
and bandwidth. The smart grid will be constructed of numerous components. Before the
system can be completely operational, all infrastructure, including technology, must be
perfected, and tested thoroughly. With government support, this development might take
around a decade.

Considering the problems mentioned earlier, the paper’s key contributions are as follows:

1. To examine the most efficient compression approach for PQD datasets. Since a high
compression ratio for any technique does not guarantee the optimum solution for all
data kinds, several compression methods and algorithms are available for each data
format. Many variables affect which compression technique is suited for each data
type. Hence, the data compression algorithm selected will impact the categorization
model’s performance. Therefore, it is critical to determine the best dataset compression
method utilized as a benchmark to achieve high accuracy in the classification process.

2. There is no doubt that the effectiveness of characteristics retrieved by CNNs is far
superior to that of artificial classification techniques. CNNs, on the other hand, are

Energies 2024, 17, 1396 3 of 20

commonly employed for image categorization. This is one of the research gaps that
must be examined for appropriateness for 1D PQD applications.

Considering points 1 and 2, we assumed that combining appropriate compression and
classification algorithms can accurately identify PQDs.

3. Due to the tremendous learning capabilities of CNNs, there is a substantial risk of over-
fitting in PQD classification. This study proposes principles training methodologies,
such as improved optimizers and assessing methods, to overcome overfitting.

4. To validate the proposed CNN classification approach, this study performs a detailed
comparison of training time, accuracy, and model parameter utilizing three compres-
sion algorithms, including wavelet transform, autoencoder, and CNN algorithms.

The paper is structured as follows: Section 2 presents an analysis of the scientific
research to provide evidence for the suggested approach. Section 3 discusses the definition
of PQD classification, the method of creating the artificial PQD dataset, and the structure
of three dataset compression models. Section 4 presents and discusses the experimental
method and the outcomes. Section 5 created a conclusion for the optimum compression
model performance.

2. Review of Related Works

Statistical information, spatial-temporal factors, and the stationary and non-stationary
patterns of PQ signals are utilized to characterize areas with power quality problems [10].
Many articles have investigated the potential of deep learning approaches for defining
and categorizing various PQDs in smart grids [11]. Deep learning algorithms are currently
considered to have the inherent capacity to learn optimum features from raw input data,
therefore avoiding time-consuming feature engineering. Different designs such as convolu-
tional neural network (CNN) [12], recurrent neural network (RNN) [13], identity-recurrent
neural network (IRNN) [14], and long short-term memory (LSTM) have been explored in
deep power studies, to comprehend the efficacy of different deep learning processes [15].
Furthermore, power quality problems in smart grids have been reliably identified and
described by utilizing hybrid architectures that integrate CNN–LSTM [16].

The Hilbert–Huang transform technique was used to identify PQDs, then classified
using a multi-layer perceptron neural network (MLPNN) approach [17]. Other research
converted signal events into pictures and supplied them into a multi-layer CNN (MLCNN)
framework [18]. Simultaneously, some researchers used a 1D deep CNN (dCNN) to assess
variables that cause PQDs in microgrids [19].

The following paper proposes a novel technique for detecting and classifying PQDs
based on improved principal component analysis (IPCA) and 1-dimensional CNN (1D-
CNN). The authors presented a new approach for classifying PQDs by combining principal
component analysis (PCA) and the 1D-CNN method. This technique is used in the wind-
grid distribution network, which is a wind energy-based energy source technology created
and built to supply power to the network [20]. However, because of the enormous quantity
of data, the problem of training time is a restricted topic in prior research. Because of the
high sample rate and quantity of measuring endpoints in PQ tracking, massive files of data
are generated [21]. To address this matter, a data compression technique is necessary to
reduce calculation time within the stage of training [22]. Signal methods for compression
were proposed with the aim of limiting the quantity of data that must be kept.

Academics have previously performed research on PQD data compression with
wavelet transform (WT) [23]. Another study provided a classifier for the successful classi-
fication of PQ concerns using a MLPNN. The wavelet transform and sensitivity analysis
were utilized to extract features and minimize dimensionality. With 99.81% categorization
accuracy, the improved classifier accurately recognized the six fundamental PQ abnormali-
ties [24].

The following study used wavelet packet transform (WPT), in conjunction with thresh-
old modification, to compress transient disturbance data. Wavelet packet transform divided

Energies 2024, 17, 1396 4 of 20

a signal into multiple frequency bands, and it also selected frequency bands flexibly to
address the limitations of the WT. Data compressions for voltage sag and transient pulses
were generated, and the reduction results using WT demonstrated their feasibility and effi-
cacy. To improve the preceding technique, a method combining the supported orthogonal
wavelet db4 with the threshold estimation approach of the minimax theorem to compress
PQDs signals was applied. The suggested approach produced a decent compression result
through the correct selection of the decomposition layer [25].

In addition, combining the discrete wavelet transform (DWT) and WPT, a new com-
pression approach for PQDs data was proposed. The data compression paved the way for
remote power protection and PQ monitoring. The results of data compression obtained by
employing the appropriate wavelet filter revealed that the compression ratios were less
than 11% and decreased to over 50% of that percentage value by adopting extra lossless
compression [26].

Although the WT method achieved good results in detecting power disturbances, it
could also perform multi-resolution time–frequency analysis and successfully minimize
the size of the disruption dataset collection; however, it exhibited some drawbacks, such
as the reliance of its accuracy on the choice of mother wavelet, as well as the effectiveness
in classification being, likewise, highly dependent on choosing features and associated
classifiers [27]. Furthermore, the method was sensitive to noisy signal interference and had
a high computational cost [28]. As a result, a novel signal processing method with a wide
range of applications and anti-noise capabilities should be devised.

Deep learning (DL) and other data mining techniques have been used to compress
signals. Deep stacked autoencoders (DSAE) were employed to compress data from smart
meter. The nonlinear compressor achieved fewer data losses and elevated compression
rates [29]. CNN compression has also recently received some scientific attention. A
work [30] proposed replacing standard linear projecting on the fully connected layer with
circle projection, saving storage space and allowing fast Fourier transform to expedite
computation. Another study [31] aimed to minimize the overall quantity of parameters
and processes across the network. The pruning strategy described resulted in a significant
reduction in parameter size and computing workload.

Even with the reviewed compression algorithm above, there is still another problem
with PQD qualification. The quality of the classification results offers information about
the weights of the input characteristics but does not affect their extraction. Due to the lack
of extracted characteristics, recognizing distinct PQDs may not always be advantageous
and may even be detrimental, particularly when the sampling dataset shows noise. Instead
of using prior methods to classify PQD, a novel analytical framework should be employed,
to shorten the analytical process and improve accuracy.

Deep learning applied to power quality disturbance problems can increase the accu-
racy of classification, reduce time, and simplify operations. Ref. [32] contains a method
that can be used to convert the PQD data input into a 2-dimensional matrix, comparable to
visual data, and determine the PQD categories using a conventional 2-dimensional CNN.
The PQD data in this study, on the other hand, are a 1-dimensional time series, while the
2-dimensional CNN was developed for image analysis. As a result, it is not entirely appro-
priate for the PQD problem. Ref. [16] performed a useful comparison of various common
CNN models and recurrent neural networks in PQD classification. However, the research
did not discuss the training duration, variable number, model size, and characteristics
of such DNNs. Furthermore, previous studies did not consider the overfitting problem,
which could substantially impair DNN performance. Therefore, further data acquisition
verification is required to validate the efficacy of deep learning algorithms.

3. Proposed Framework
3.1. Generating the Dataset of Artificial Power Quality Disturbances

This study was designed using 14 types of PQD, which represent the IEEE Preferred
Procedure for Electric Power Quality Monitoring, namely transient, short duration root

Energies 2024, 17, 1396 5 of 20

mean square variation (i.e., sag), swell, long duration voltage variation (i.e., interruption),
unbalance, voltage fluctuation, and waveform distortion (i.e., harmonic and notch). It is
very representative in terms of ensuring the quality of electricity supply during regular
operation. These considerations are supported by earlier research findings indicating the
eight most prevalent PQ distortions are flicker, harmonics, interrupts, notch, oscillatory
transients, sags, spikes, and swells [33]. Using only eight PQD criteria, the implemented
approach achieved a precision percentage of 94.6. Based on these findings, this study
hypothesized that utilizing more criteria will better represent the primary types of power
quality problems while also investigating the effectiveness of classification algorithms in
mapping more patterns of PQDs.

The parameter descriptions are shown below.

■ The time (t1 and t2) and intensity (α) parameters for normal, sag, swell, interruption,
transient, notch, sag with harmonic, swell with harmonic, interruption with harmonic,
flicker with harmonic, and flicker with swell;

■ Intensity parameter (λ) for flicker and flicker with swell;
■ Intensity parameter (β) for transient oscillation;
■ The flicker frequency (ff) for flicker disturbance;
■ The harmonics intensity (α1, α3, α5, α7) at a waveform for harmonic disturbance;
■ T is the period of the fundamental wave.

The synthetic dataset was created using fourteen different forms of PQDs, all of
which are widely recognized in the literature, namely flicker (f), f-harmonic, f-sag, f-swell,
harmonic, interruption (i), i-harmonic, normal, notch, sag (sa), s-harmonic, swell (sw),
sw-harmonic, and transient oscillation. The kind of disturbances and their distinctive
mathematical models and typical parameters corresponded to the IEEE-1159 standard [34],
and the suggested characteristic formulas were utilized in other publications.

The sample frequency variable was set at 3200 Hz in the initial configuration. The
fundamental frequency was set to 60 Hz, and each set of samples consisted of ten repetitions
(533 points). Every disturbance included 10,000 data training samples, in order to attain
the learning dataset’s quality. As a consequence, 140,000 samples were employed for
data training, with 80% used for learning and 20% used for validation. In addition, every
category acquired 1000 testing data points, totalling 14,000 testing data points spread across
14 categories. In this study, data were gathered twice. The first collection utilized the
original synthetic dataset (no noise), while the second used a dataset corrupted by Gaussian
white noise (GWN) with variable signal–noise ratio (SNR) values of 40 dB and 20 dB [35].
As indicated in Table 1, datasets were generated by implementing the PQD mathematical
model in the MATLAB program (R2023a). The randn function in MATLAB was used
to generate GWN, which was a series of independent samples generated from the same
probability distribution that follows a Gaussian distribution.

Table 1. Mathematical models of PQD.

Categories Mathematical Formulas Parameters

Flicker y(t) = A
[
1 + λsin

(
ω f t

)]
sin(ωt) 8 ≤ f f ≤ 25 Hz, w f = 2π f f , 0.05 ≤ λ ≤ 0.1

Flicker with
Harmonics y(t) = A

[
1 + λsin

(
ω f t

)]
[α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt)]

0.05 ≤ λ ≤ 0.1, 8 ≤ f f ≤ 25 Hz,
0.05 ≤ α3, α5, α7 ≤ 0.15, ∑ α2

i = 1

Flicker with Sag y(t) = A
[
1 + λsin

(
ω f t

)
(1 − α(u(t − t1)− u(t − t2))

]
sin(ωt) 0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤ 9T,

0.05 ≤ λ ≤ 0.1, 8 ≤ f f ≤ 25 Hz

Flicker with Swell y(t) = A
[
1 + λsin

(
ω f t

)
(1 + α(u(t − t1)− u(t − t2))

]
sin(ωt) 0.1 ≤ α ≤ 0.8, T ≤ t2 − t1 ≤ 9T,

0.05 ≤ λ ≤ 0.1, 8 ≤ f f ≤ 25 Hz
Harmonics y(t) = A[α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt) + α7sin(7ωt)] 0.05 ≤ α3, α5, α7 ≤ 0.15, ∑ α2

i = 1
Interruption y(t) = A[1 − α(u(t − t1)− u(t − t2))]sin(ωt) 0.9 ≤ α ≤ 1, T ≤ t2 − t1 ≤ 9T
Interruption

with Harmonics y(t) = A[1 − α(u(t − t1)− u(t − t2))][α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt)] 0.9 ≤ α ≤ 1, T ≤ t2 − t1 ≤ 9T
0.05 ≤ α3, α5, α7 ≤ 0.15, ∑ α2

i = 1
Normal y(t) = A[1 ± α(u(t − t1)− u(t − t2))]sin(ωt) α ≤ 0.1, T ≤ t2 − t1 ≤ 9T, ω = 2π f

Periodic Notch y(t) = sin(ωt)− sign(sin(ωt))×
{

9
∑

n=0
k[u(t − (t 1 − sn)− u(t − (t2 − sn))]

} 0.01T ≤ t2 − t1 ≤ 0.05T,
t2 ≤ s, t1 ≥ 0 , 0.1 ≤ k ≤ 0.4, c={1, 2, 4, 6}, s = T

c

Energies 2024, 17, 1396 6 of 20

Table 1. Cont.

Categories Mathematical Formulas Parameters

Sag y(t) = A[1 − α(u(t − t1)− u(t − t2))]sin(ωt) 0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤ 9T

Sag with Harmonics y(t) = A[1 − α(u(t − t1)− u(t − t2))][α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt)] 0.1 ≤ α ≤ 0.9,
T ≤ t2 − t1 ≤ 9T, 0.05 ≤ α3, α5, α7 ≤ 0.15, ∑ α2

i = 1

Swell y(t) = A[1 − α(u(t − t1)− u(t − t2))][α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt)] 0.1 ≤ α ≤ 0.9,
T ≤ t2 − t1 ≤ 9T, 0.05 ≤ α3, α5, α7 ≤ 0.15, ∑ α2

i = 1

Swell with Harmonics y(t) = A[1 + α(u(t − t1)− u(t − t2))][α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt)] 0.1 ≤ α ≤ 0.8, T ≤ t2 − t1 ≤ 9T
0.05 ≤ α3, α5, α7 ≤ 0.15, ∑ α2

i = 1

Transient Oscillation y(t) = A
[
sin(ωt) + βe−(t−t1)/τ sin(ωn(t − t1))(u(t − t2)− u(t − t1))

] 300 ≤ fn ≤ 900, ωn = 2π fn , 0.5T ≤ t2 − t1 ≤ Nc
3.33 T,

8 ms ≤ τ ≤ 40 ms, 0.1 ≤ β ≤ 0.8

3.2. Proposed Dataset Compression Algorithm

Compression is a means of representing various types of data, which can include
numerical, written content, visual content, audio, or any kind of information, with a
minimum data size, as specified in a general data compression scheme, as shown in
Figure 2. There are two types of compression, namely lossy compression and lossless
compression. Lossy compression indicates that the decompressed data differ from the
original, whereas lossless compression implies that the original and decompressed data are
identical. The type of information that needs to be compressed will determine which of
the two compression techniques or algorithms is used. Lossy compression, for example,
is preferable for compressing video, audio, and image data, due to its high accuracy
and compression ratio. The original files are too huge to transmit otherwise. Because
decompression requires equivalent data, it is preferable to employ lossless compression for
written content and numerical or symbols. Since PQD data are exclusively in numeric and
text format, lossless data compression is the optimum solution for PQD data processing.

Energies 2024, 17, x FOR PEER REVIEW 6 of 21

0.05 ≤ 𝜆 ≤ 0.1, 8 ≤ 𝑓 ≤ 25 Hz
Harmonics 𝑦(𝑡) = 𝐴 𝛼 𝑠𝑖𝑛(𝜔𝑡) + 𝛼 𝑠𝑖𝑛(3𝜔𝑡) + 𝛼 𝑠𝑖𝑛(5𝜔𝑡) + 𝛼 𝑠𝑖𝑛(7𝜔𝑡) 0.05 ≤ 𝛼 , 𝛼 , 𝛼 ≤ 0.15, ∑ 𝛼 = 1

Interruption 𝑦(𝑡) = 𝐴 1 − 𝛼 𝑢(𝑡 − 𝑡) − 𝑢(𝑡 − 𝑡) 𝑠𝑖𝑛(𝜔𝑡) 0.9 ≤ 𝛼 ≤ 1, 𝑇 ≤ 𝑡 − 𝑡 ≤ 9𝑇
Interruption with

Harmonics
𝑦(𝑡) = 𝐴 1 − 𝛼 𝑢(𝑡 − 𝑡) − 𝑢(𝑡 − 𝑡) 𝛼 𝑠𝑖𝑛(𝜔𝑡) + 𝛼 𝑠𝑖𝑛(3𝜔𝑡)+ 𝛼 𝑠𝑖𝑛(5𝜔𝑡)

0.9 ≤ 𝛼 ≤ 1, 𝑇 ≤ 𝑡 − 𝑡 ≤ 9𝑇 0.05 ≤ 𝛼 , 𝛼 , 𝛼 ≤ 0.15, ∑ 𝛼 = 1
Normal 𝑦(𝑡) = 𝐴 1 𝛼 𝑢(𝑡 − 𝑡) − 𝑢(𝑡 − 𝑡) 𝑠𝑖𝑛(𝜔𝑡) 𝛼 ≤ 0.1, 𝑇 ≤ 𝑡 − 𝑡 ≤ 9𝑇, 𝜔 = 2𝜋𝑓

Periodic Notch 𝑦(𝑡) = 𝑠𝑖𝑛(𝜔𝑡) − 𝑠𝑖𝑔𝑛(𝑠𝑖𝑛(𝜔𝑡)) × 𝑘 𝑢(𝑡 − (𝑡 − 𝑠𝑛) − 𝑢(𝑡 − (𝑡 − 𝑠𝑛))
0.01𝑇 ≤ 𝑡 − 𝑡 ≤ 0.05𝑇, 𝑡 ≤ 𝑠, 𝑡 0 , 0.1 ≤ 𝑘 ≤ 0.4, c= 1,2,4,6 , 𝑠 =

Sag 𝑦(𝑡) = 𝐴 1 − 𝛼 𝑢(𝑡 − 𝑡) − 𝑢(𝑡 − 𝑡) 𝑠𝑖𝑛(𝜔𝑡) 0.1 ≤ 𝛼 ≤ 0.9, 𝑇 ≤ 𝑡 − 𝑡 ≤ 9𝑇
Sag with Har-

monics
𝑦(𝑡) = 𝐴 1 − 𝛼 𝑢(𝑡 − 𝑡) − 𝑢(𝑡 − 𝑡) 𝛼 𝑠𝑖𝑛(𝜔𝑡) + 𝛼 𝑠𝑖𝑛(3𝜔𝑡)+ 𝛼 𝑠𝑖𝑛(5𝜔𝑡)

0.1 ≤ 𝛼 ≤ 0.9, 𝑇 ≤ 𝑡 − 𝑡 ≤ 9𝑇, 0.05 ≤ 𝛼 , 𝛼 , 𝛼 ≤0.15, ∑ 𝛼 = 1

Swell 𝑦(𝑡) = 𝐴 1 − 𝛼 𝑢(𝑡 − 𝑡) − 𝑢(𝑡 − 𝑡) 𝛼 𝑠𝑖𝑛(𝜔𝑡) + 𝛼 𝑠𝑖𝑛(3𝜔𝑡)+ 𝛼 𝑠𝑖𝑛(5𝜔𝑡)
0.1 ≤ 𝛼 ≤ 0.9, 𝑇 ≤ 𝑡 − 𝑡 ≤ 9𝑇, 0.05 ≤ 𝛼 , 𝛼 , 𝛼 ≤0.15, ∑ 𝛼 = 1

Swell with Har-
monics

𝑦(𝑡) = 𝐴 1 + 𝛼 𝑢(𝑡 − 𝑡) − 𝑢(𝑡 − 𝑡) 𝛼 𝑠𝑖𝑛(𝜔𝑡) + 𝛼 𝑠𝑖𝑛(3𝜔𝑡)+ 𝛼 𝑠𝑖𝑛(5𝜔𝑡)
0.1 ≤ 𝛼 ≤ 0.8, 𝑇 ≤ 𝑡 − 𝑡 ≤ 9𝑇 0.05 ≤ 𝛼 , 𝛼 , 𝛼 ≤ 0.15, ∑ 𝛼 = 1

Transient
Oscillation

𝑦(𝑡) = 𝐴 𝑠𝑖𝑛(𝜔𝑡) + 𝛽𝑒 ()/ 𝑠𝑖𝑛(𝜔 (𝑡 − 𝑡)) 𝑢(𝑡 − 𝑡) − 𝑢(𝑡 − 𝑡)
300 ≤ 𝑓 ≤ 900, 𝜔 = 2𝜋𝑓 , 0.5𝑇 ≤ 𝑡 − 𝑡 ≤ . 𝑇, 8 𝑚𝑠 ≤ 𝜏 ≤ 40 𝑚𝑠, 0.1 ≤ 𝛽 ≤ 0.8

3.2. Proposed Dataset Compression Algorithm
Compression is a means of representing various types of data, which can include

numerical, written content, visual content, audio, or any kind of information, with a
minimum data size, as specified in a general data compression scheme, as shown in Fig-
ure 2. There are two types of compression, namely lossy compression and lossless com-
pression. Lossy compression indicates that the decompressed data differ from the origi-
nal, whereas lossless compression implies that the original and decompressed data are
identical. The type of information that needs to be compressed will determine which of
the two compression techniques or algorithms is used. Lossy compression, for example,
is preferable for compressing video, audio, and image data, due to its high accuracy and
compression ratio. The original files are too huge to transmit otherwise. Because decom-
pression requires equivalent data, it is preferable to employ lossless compression for
written content and numerical or symbols. Since PQD data are exclusively in numeric
and text format, lossless data compression is the optimum solution for PQD data pro-
cessing.

Figure 2. General data compression scheme.

This study will provide insight into three data compression algorithms, namely
wavelet transform, CNN, and autoencoder, to provide reliable data compression algo-
rithm performance testing statistics, as each of the aforementioned algorithms has its
own set of advantages for analyzing one-dimensional time series data. The wavelet
transform is able to evaluate rapid changes in frequency, whereas autoencoders are able
to acquire complex nonlinear transform functions. CNNs can analyze vast volumes of
data and make extremely accurate predictions.

3.2.1. Wavelet Transform
The WT was used to compress the disturbance signal in this study, as it was in the

approach of [36]. The wavelet decomposition approach was selected to identify and lo-
cate the signal disruption. To stretch and shift the waveform, the mother wavelet 𝜓(𝑡)
in (1) was initially used, as follows:

Figure 2. General data compression scheme.

This study will provide insight into three data compression algorithms, namely
wavelet transform, CNN, and autoencoder, to provide reliable data compression algo-
rithm performance testing statistics, as each of the aforementioned algorithms has its own
set of advantages for analyzing one-dimensional time series data. The wavelet transform
is able to evaluate rapid changes in frequency, whereas autoencoders are able to acquire
complex nonlinear transform functions. CNNs can analyze vast volumes of data and make
extremely accurate predictions.

3.2.1. Wavelet Transform

The WT was used to compress the disturbance signal in this study, as it was in the
approach of [36]. The wavelet decomposition approach was selected to identify and locate
the signal disruption. To stretch and shift the waveform, the mother wavelet ψ(t) in (1)
was initially used, as follows:

ψj,k(t) =
1√
a

ψ

(
t − b

b

)
(1)

Energies 2024, 17, 1396 7 of 20

where a and b represent scale and shift parameters. To implement the WT in the digital
system, the discrete wavelet transform (DWT) shown in (2) is utilized, as follows:

DWTψx(m, n) = 2− m/2
∫ ∞

−∞
x(t)ψ

(
t − n2m

2m

)
dt (2)

where m represents the scale and n represents the time-shift. The mother Daubechies
wavelet (Db4) was used in this experiment. The decomposition level was set to four, and
the threshold value was fixed to 62.91 [37]. The data compression process contained the
following steps to achieve efficient compression outcomes, as illustrated in Figure 3.

Energies 2024, 17, x FOR PEER REVIEW 7 of 21

𝜓 , (𝑡) = √ 𝜓 (1)

where a and b represent scale and shift parameters. To implement the WT in the digital
system, the discrete wavelet transform (DWT) shown in (2) is utilized, as follows: 𝐷𝑊𝑇 𝑥(𝑚, 𝑛) = 2 𝑥(𝑡)𝜓 𝑑𝑡 (2)

where 𝑚 represents the scale and 𝑛 represents the time-shift. The mother Daubechies
wavelet (Db4) was used in this experiment. The decomposition level was set to four, and
the threshold value was fixed to 62.91 [37]. The data compression process contained the
following steps to achieve efficient compression outcomes, as illustrated in Figure 3.

Figure 3. Stages of data compression, utilizing the wavelet transform algorithm.

3.2.2. Basic Autoencoder
An autoencoder (AE) is essentially a feed-forward artificial neural network (ANN)

that attempts to reproduce the input data layer onto its output layer. The linkage of the
two networks, as illustrated in Figure 4, determined the structure of the autoencoder. The
encoder oversees the transformation of a high-dimensional spatial characteristic to
low-dimensional spatial information. The decoder reassembles the initial signal from the
code. Using this design, the two networks underwent training concurrently by modifying
the decoder weights first, followed by the encoder weights. The primary goal of this de-
sign is to minimize the gap between reconstruction (the output) and original signal (the
input). Alternatively, the number of nodes in the hidden layer was substantially smaller
than the number of nodes in the input layer, allowing the encoder to effectively represent
the input data.

For an input vector 𝑥, the encoder provides a nonlinear representation of the input
information for calculating the encoded features 𝑒 , as follows:

Figure 3. Stages of data compression, utilizing the wavelet transform algorithm.

3.2.2. Basic Autoencoder

An autoencoder (AE) is essentially a feed-forward artificial neural network (ANN)
that attempts to reproduce the input data layer onto its output layer. The linkage of the
two networks, as illustrated in Figure 4, determined the structure of the autoencoder. The
encoder oversees the transformation of a high-dimensional spatial characteristic to low-
dimensional spatial information. The decoder reassembles the initial signal from the code.
Using this design, the two networks underwent training concurrently by modifying the
decoder weights first, followed by the encoder weights. The primary goal of this design is
to minimize the gap between reconstruction (the output) and original signal (the input).
Alternatively, the number of nodes in the hidden layer was substantially smaller than
the number of nodes in the input layer, allowing the encoder to effectively represent the
input data.

Energies 2024, 17, 1396 8 of 20

Energies 2024, 17, x FOR PEER REVIEW 8 of 21

𝑒 = 𝜎(𝑊𝑥 + 𝑏) (3)

where 𝑊 and 𝑏 signify the weights and biases, respectively, and denote the chosen ac-
tivation function. The encoded values are then decoded in order to recreate the initial
input data 𝑥 using the following: 𝑥′ = 𝜎 𝑊𝑥 + 𝑏 (4)

Where 𝑊 and 𝑏 denote the decoder’s weight and bias values. The error function is re-
duced during the training stage by altering 𝑊, 𝑊, 𝑏, 𝑏, as follows: 𝑎𝑟𝑔 , , , 𝑓(𝑥, 𝑥) (5)

In this scenario, 𝑓(.) represents the cost function, which can be specified as the
squared of error or the cross-entropy functional, amongst other things [38]. Implementa-
tion of the autoencoders in Keras will employ a vector of 586 numbers between [0, 1],
400 nodes in the hidden layer, and a code-size of 300.

Figure 4. Representation of a fundamental autoencoder.

3.2.3. Convolutional Neural Network
Compressing data using the CNN compression technique requires two CNNs, one

for encoding and one for decoding. Figure 5 depicts a high-level overview of CNN ar-
chitecture. The sequential model type will be used to build the CNN compression model
in Keras. The first two layers are Conv1D layers. These convolutional layers will deal
with the input, seen as 1-dimensional metrices. In the first and second layers, (16, 4) are
the number of nodes in each layer. ReLU is the activation function used for the first two
layers. The first layer also takes in an input shape for 586 numbers. Between the Conv1D
layers and the dense layer, there are MaxPooling and Flatten layers. MaxPooling is used
to down-sample an input representation, lowering its dimensionality and allowing as-
sumptions about features included in the binned sub-regions. Flatten layers transform
the shape of the data from a vector of 1D matrices (or nD matrices, actually) into the right
structure for a dense layer to comprehend. Dense is the standard layer type used for the
output layer, and the activation is ReLU. There are 300 nodes in the output layer.

Figure 4. Representation of a fundamental autoencoder.

For an input vector x, the encoder provides a nonlinear representation of the input
information for calculating the encoded features ei, as follows:

ei = σ(Wxi + b) (3)

where W and b signify the weights and biases, respectively, and denote the chosen activation
function. The encoded values are then decoded in order to recreate the initial input data x
using the following:

x′i = σ

(∼
Wxi +

∼
b
)

(4)

Where
∼
W and

∼
b denote the decoder’s weight and bias values. The error function is

reduced during the training stage by altering W,
∼
W, b,

∼
b , as follows:

arg min
W,b,

∼
W,

∼
b

f (x, x̂) (5)

In this scenario, f (.) represents the cost function, which can be specified as the squared
of error or the cross-entropy functional, amongst other things [38]. Implementation of the
autoencoders in Keras will employ a vector of 586 numbers between [0, 1], 400 nodes in the
hidden layer, and a code-size of 300.

3.2.3. Convolutional Neural Network

Compressing data using the CNN compression technique requires two CNNs, one for
encoding and one for decoding. Figure 5 depicts a high-level overview of CNN architecture.
The sequential model type will be used to build the CNN compression model in Keras. The
first two layers are Conv1D layers. These convolutional layers will deal with the input, seen
as 1-dimensional metrices. In the first and second layers, (16, 4) are the number of nodes
in each layer. ReLU is the activation function used for the first two layers. The first layer
also takes in an input shape for 586 numbers. Between the Conv1D layers and the dense
layer, there are MaxPooling and Flatten layers. MaxPooling is used to down-sample an
input representation, lowering its dimensionality and allowing assumptions about features

Energies 2024, 17, 1396 9 of 20

included in the binned sub-regions. Flatten layers transform the shape of the data from a
vector of 1D matrices (or nD matrices, actually) into the right structure for a dense layer to
comprehend. Dense is the standard layer type used for the output layer, and the activation
is ReLU. There are 300 nodes in the output layer.

Energies 2024, 17, x FOR PEER REVIEW 9 of 21

Figure 5. Architecture of the CNN compression algorithm.

3.3. Structure of Classification Model
This section discusses the benefits and usefulness of employing a deep CNN to solve

PQD problems. The deep CNN classification model algorithm will be presented indi-
vidually in this section. Finally, some efficient overfitting reduction approaches will be
described. The deep CNN network is designed with three PQD variables in mind: the
beginning, when PQDs occur, and, last, at random. As a result, deep CNN should be
capable of monitoring during the input period. Second, PQD characteristics are variable;
particularly, disruptions of the identical type differ greatly. As a result, the trained net-
work should be capable of robust generalization. Noise resistance is crucial, since noise is
constantly relevant to real signals. Finally, some disturbances present a significant num-
ber of detail characteristics at short sample periods, necessitating the capacity of the
network to concentrate on both localized and general features.

Details of the proposed framework of 1D deep CNN classification architecture are
illustrated in Figure 6. This model is similar to the one provided in [39]. However, the
improved technique includes a data compression stage that compresses the dataset using
wavelet transform, autoencoder, and CNN algorithm before transferring it to the CNN
classification model through the network layer, whereas the previous model directly
passed the original dataset.

Figure 5. Architecture of the CNN compression algorithm.

3.3. Structure of Classification Model

This section discusses the benefits and usefulness of employing a deep CNN to
solve PQD problems. The deep CNN classification model algorithm will be presented
individually in this section. Finally, some efficient overfitting reduction approaches will
be described. The deep CNN network is designed with three PQD variables in mind: the
beginning, when PQDs occur, and, last, at random. As a result, deep CNN should be
capable of monitoring during the input period. Second, PQD characteristics are variable;
particularly, disruptions of the identical type differ greatly. As a result, the trained network
should be capable of robust generalization. Noise resistance is crucial, since noise is
constantly relevant to real signals. Finally, some disturbances present a significant number
of detail characteristics at short sample periods, necessitating the capacity of the network
to concentrate on both localized and general features.

Details of the proposed framework of 1D deep CNN classification architecture are
illustrated in Figure 6. This model is similar to the one provided in [39]. However, the
improved technique includes a data compression stage that compresses the dataset using
wavelet transform, autoencoder, and CNN algorithm before transferring it to the CNN
classification model through the network layer, whereas the previous model directly passed
the original dataset.

Energies 2024, 17, 1396 10 of 20Energies 2024, 17, x FOR PEER REVIEW 10 of 21

Figure 6. Reprinted from Ref. [40]: proposed framework. Full Connected Layer—FCL.

The network structure is divided into two main parts: the feature extraction layers
and the classification layers [41].
 Feature Extraction

This section presents the important properties of the training data set and is divided
into the following three types of layers: input layers, including the pre-processing data
layer, convolutional layers, and pooling layers. Each layer is defined in detail below. The
model’s input is handled in the first layer by the input layer. This starts with the input
layer receiving the one-dimensional signal data. The data consist of the original 14 types
of PQD data and PQD noise-contaminated data. Both data are compressed by three
compression algorithms, as mentioned above. As a result, there are six categories of da-
tasets in total. If all the training sets are in the appropriate format, it will be delivered
directly to the convolutional layers of the feature learning phase; otherwise, it will be
prepared at the pre-processing data layer. This layer converts several data formats to
make our system more versatile and capable of handling data from multiple sources. A
common square matrix format represents tensors in the convolution parts. If the supplied
data are not in an appropriate square form with dimensions, padding will change it to the
common form as needed.

The convolutional layers control feature learning and apply convolution to the in-
coming data. There are four numbers of convolutional layers. Each layer consists of ten
filter numbers, three Kernel sizes, and one stride, and is equipped by ReLU as an activa-
tor. In this model, the pooling layer adopts maximum pooling, five Kernel sizes, one
stride, and includes ReLU as an activator to highlight classifier information.
 Classification

This section indicates class labels from the training data, using feature learning in
the earlier part of convolutional layers. It is divided into three sections: the reshape layer,
the class prediction layer, and the output layer. Before being sent into the prediction
phase, the input must be in the form of a vector required by the next layer. This task is
executed in the reshape layer. The primary function of this layer is to predict the class.
The fully connected layer, consisting of a dense layer with ReLU activation, a dense layer
with softmax activation, and a flatten layer, is used in this section. During the training

Figure 6. Reprinted from Ref. [40]: proposed framework. Full Connected Layer—FCL.

The network structure is divided into two main parts: the feature extraction layers
and the classification layers [41].

■ Feature Extraction

This section presents the important properties of the training data set and is divided
into the following three types of layers: input layers, including the pre-processing data
layer, convolutional layers, and pooling layers. Each layer is defined in detail below. The
model’s input is handled in the first layer by the input layer. This starts with the input layer
receiving the one-dimensional signal data. The data consist of the original 14 types of PQD
data and PQD noise-contaminated data. Both data are compressed by three compression
algorithms, as mentioned above. As a result, there are six categories of datasets in total.
If all the training sets are in the appropriate format, it will be delivered directly to the
convolutional layers of the feature learning phase; otherwise, it will be prepared at the
pre-processing data layer. This layer converts several data formats to make our system
more versatile and capable of handling data from multiple sources. A common square
matrix format represents tensors in the convolution parts. If the supplied data are not in
an appropriate square form with dimensions, padding will change it to the common form
as needed.

The convolutional layers control feature learning and apply convolution to the incom-
ing data. There are four numbers of convolutional layers. Each layer consists of ten filter
numbers, three Kernel sizes, and one stride, and is equipped by ReLU as an activator. In
this model, the pooling layer adopts maximum pooling, five Kernel sizes, one stride, and
includes ReLU as an activator to highlight classifier information.

■ Classification

This section indicates class labels from the training data, using feature learning in the
earlier part of convolutional layers. It is divided into three sections: the reshape layer, the
class prediction layer, and the output layer. Before being sent into the prediction phase,
the input must be in the form of a vector required by the next layer. This task is executed

Energies 2024, 17, 1396 11 of 20

in the reshape layer. The primary function of this layer is to predict the class. The fully
connected layer, consisting of a dense layer with ReLU activation, a dense layer with
softmax activation, and a flatten layer, is used in this section. During the training step, the
layer parameters are modified to produce the best fitting model. Figure 7 summarizes the
details of each layer.

Energies 2024, 17, x FOR PEER REVIEW 11 of 21

step, the layer parameters are modified to produce the best fitting model. Figure 7 sum-
marizes the details of each layer.

Figure 7. Parameter specifications for each layer.

3.4. Deep Convolutional Neural Network Layer Descriptions
This part comprises a comprehensive layer description of the proposed deep learn-

ing CNN architecture for 1-D PQD classification.
1. Convolutional layers in one dimension: Local connectivity and weight sharing are

the fundamental concepts of the convolutional layer [42]. Convolutional layers are
used to build filters using shared weights and a limited receptive field. The layer of
l-th contains Fl filters, and Xi is the input of the 1-dimensional matrix (n x1). K (k x1)

Figure 7. Parameter specifications for each layer.

Energies 2024, 17, 1396 12 of 20

3.4. Deep Convolutional Neural Network Layer Descriptions

This part comprises a comprehensive layer description of the proposed deep learning
CNN architecture for 1-D PQD classification.

1. Convolutional layers in one dimension: Local connectivity and weight sharing are
the fundamental concepts of the convolutional layer [42]. Convolutional layers are
used to build filters using shared weights and a limited receptive field. The layer of
l-th contains Fl filters, and Xi is the input of the 1-dimensional matrix (n x1). K (k x1)
denotes the filter kernel. The output of the convolutional layer by the fl-th filter is
stated as follows:

Xl
0, f l = f

(
∑i∈m Xl−1

i × K
l
i0, f l + Bl

)
(6)

The activation function is denoted by the symbol f (x), whereas m = n − k + 1. It
simulates the action of a neuron from input to output. In deep learning, the rectified linear
unit (ReLU) is used in the convolutional layer, which is speedier than the tanh function.
As follows:

fRelu(x) = max(0, x) (7)

2. A pooling layer: After convolution, the pooling layer scales and maps the data to
minimize the data dimension and emphasize classifier information. The pooling layer
serves the same function as a fuzzy filtration system; average pooling and maximum
pooling provide the average and maximum value of activations, respectively. In the
PQD waveform, average pooling is more vulnerable to noise. In this scenario, maxi-
mum pooling outperforms average pooling. As a result, the pooling layer employs
maximum pooling:

Xl
0 = f

[
max

(
∑i∈m Xl−1

i

)
+ Bl

]
(8)

3. Dropout layers: Dropout is an approach for simulating the parallel training of multiple
neural networks with diverse topology. Several layer outputs are removed while train-
ing. A new hyperparameter is provided for calculating the probability of dropping
the gradient outputs or the inverse probability of retaining the gradient outputs. A
common number for keeping the output of each node in a hidden layer is 0.5, and a
value close to 1.0, such as 0.8, for maintaining inputs from the visible layer.

4. Dense layer or a fully connected layer: D is a parameter of the l-th dense layer that
can be learned. The output value can be represented as follows:

Xl
0 = f

(
Xl−1

i × Dl
i0 + Bl

)
(9)

5. Softmax activation function: The softmax value represents the possibility of a sample
from the associated class being input. Therefore, the neurons in the hidden layer
should be the same as the category set and output the group with the greatest proba-
bility ratio. The length of an array Z is given by j. i represents the array index; i = 1, 2,
. . ., j. The following is the softmax value of Si:

Si = eZi/∑j
1 eZj (10)

3.5. Resolvation of Overfitting

Overfitting is an irreversible problem in supervised learning. It occurs when a model
fails to extrapolate from a visible dataset to an invisible dataset. Overfitting causes the
model to perform flawlessly on the training set while fitting badly on the test set. This is
due to the difficulty overfitting models have in dealing with information in the test set
that differs from that in the training set. Over-fitted models, on the other hand, prefer
to memorize all the data, including the inevitable noise on the training set, rather than
learning the discipline concealed behind the data [43]. Overfitting is a major concern with

Energies 2024, 17, 1396 13 of 20

this study, especially in experimental research using noised dataset. An advanced structure
of network and training techniques are used to minimize overfitting, as follows.

1. Dropout: Configurations of neural networks with varied model configurations have
been shown to prevent overfitting. However, it typically suffers the added compu-
tational cost of training and maintaining numerous models. These include halting
training as soon as performance on a validation set begins to deteriorate, introducing
weight penalties of various types, such as L1 and L2 regularization, and gentle weight
sharing [44]. A single model is utilized in this paper to simulate having a massive
number of distinct network designs by removing nodes at random during training,
known as a dropout. It provides a computationally cheap and highly effective regular-
ization strategy for reducing overfitting and adaptation errors in DNNs of all types.
Furthermore, dropout enhanced neural network performance on supervised learning
tasks in vision, voice recognition, document classification, bioinformatics, and various
benchmark data sets.

2. Powerful optimizer: In the training period, the weight of every single layer is modified
using a feature known as an optimizer, which can be stochastic gradient descent
(SGD) [45], Adagrad, Adadelta, RMSProp, Adam, or NAdam. Although recent re-
search indicates that the NAdam can collaborate with the early stop classification
during the training phase to minimize overfitting significantly [46], the Adam opti-
mizer outperforms the NAdam optimizer in computing efficiency in this work.

4. Results and Discussion
4.1. Data Pre-Processing Stage

Two criteria datasets were supplied into the model, as shown in Figure 8. The first
dataset contained the original synthetic PQD signals, while the second dataset comprised
noise-corrupted synthetic PQD signals. A synthetic PQD was initially built by applying
the PQD mathematical model in the MATLAB application to obtain both criteria for the
dataset. Since the original synthetic or noise-free data were generated using mathematical
procedures, the collected data were very similar to the ideal conditions for the features of
each PQD category. Data that had been distorted by noise were generated to produce data
that resembled the actual conditions of the power distribution and transmission network,
which were defined as sag, swell, interruption, harmonics, flicker, notch, and transient.
Sag is a voltage or current magnitude variance of 0.1 to 0.9 pu at the power frequency for
the time interval T to 9T seconds. Swell is defined as an increase in voltage or current
magnitude between 0.1 and 0.8 pu at the power frequency across the time period T to 9T
seconds. Interruption is defined as a voltage or current magnitude deviation ranging from
0.9 to 1 pu at the power frequency for a time period of T to 9T seconds. Harmonics are
the frequencies in a sinusoid of currents or voltage that occur in integer multiples. Flicker
is a voltage magnitude variation over time that causes an unstable impression in visual
sensations induced by light impulses. Notch is described as shifting interference of a pure
power voltage sinusoidal frequency happens less than half a cycle. A transient is a problem
that varies between two successive steady states in a short time period, compared to the
time scale of relevance.

Each synthetic signal sample was then compressed separately using the wavelet
transform, CNN, and autoencoder algorithms. The compression operation generated six
types of compressed data, which were subsequently employed in the classification model.

The dataset was then used to assess the model performance for 14 different categories
of PQD classification. The following rules determined the distribution of data in this study
to avoid overlapping data. The model learning procedure utilized 140,000 samples, with
80% for learning and 20% for validation. This process provided the value of loss and
accuracy validation, implying how poorly or well a model behaved after each optimization
iteration. In addition, each category received 1000 testing data points, for 14,000 testing data
points spread throughout 14 categories. The total number of data samples was 154,000 for
each type of data. Table 2 provides a summary of the synthetic data.

Energies 2024, 17, 1396 14 of 20Energies 2024, 17, x FOR PEER REVIEW 14 of 21

Figure 8. Framework for generating compressed data.

The dataset was then used to assess the model performance for 14 different catego-
ries of PQD classification. The following rules determined the distribution of data in this
study to avoid overlapping data. The model learning procedure utilized 140,000 sam-
ples, with 80% for learning and 20% for validation. This process provided the value of
loss and accuracy validation, implying how poorly or well a model behaved after each
optimization iteration. In addition, each category received 1000 testing data points, for
14,000 testing data points spread throughout 14 categories. The total number of data
samples was 154,000 for each type of data. Table 2 provides a summary of the synthetic
data.

Table 2. Datasets utilized during the examination.

Categories Number of Samples Level of Noise
Validation Set 140,000 × 0.2 = 28,000

No Noise, SNR 40 dB, SNR 20 dB Learning Set 140,000 × 0.8 = 112,000
Testing Set 1000 × 14 = 14,000

Total 154,000

In emulation, the epoch numbers were set from 100 to 500 to obtain the lowest pos-
sible inaccuracy. The batch size was set to 500, and the learning rate was set at 0.02. The
Adam method was used to optimize the model, and the argmax function in the testing
model was utilized to determine the class with the greatest prediction. The learning
technique and model testing were performed using Google Collab, with GPU (Graphics
Processing Unit) acceleration and an internet connection through an 802.11ax Wi-Fi 6
wireless network. At the same time, the CNN architecture in 1-D was constructed using
the Keras framework. The hardware used is a MacBook Air with the following technical
specifications: 8 GB of RAM, an M1 chip including an 8-core CPU with four performance
cores and four efficiency cores, a 7-core GPU, and a 16-core Neural Engine. The M1 CPU
is reported to be 3.5 times faster than the previous Intel processor, with up to five times
higher graphics processing capabilities [47]. Furthermore, when compared to using
Google Collab with an accelerated CPU, in this study, the training time was eight times
faster using the GPU, with an average of 36 s every epoch. In contrast, the CPU con-
sumed 303 s per epoch. Experimental studies for PQD classification in datasets were car-
ried out separately using CNNs in 1-D models. In the CNN model, the process was re-
peated many times, depending on two dataset criteria and three data compression tech-
niques.

Figure 8. Framework for generating compressed data.

Table 2. Datasets utilized during the examination.

Categories Number of Samples Level of Noise

Validation Set 140,000 × 0.2 = 28,000
No Noise, SNR 40 dB, SNR 20 dBLearning Set 140,000 × 0.8 = 112,000

Testing Set 1000 × 14 = 14,000
Total 154,000

In emulation, the epoch numbers were set from 100 to 500 to obtain the lowest possible
inaccuracy. The batch size was set to 500, and the learning rate was set at 0.02. The Adam
method was used to optimize the model, and the argmax function in the testing model was
utilized to determine the class with the greatest prediction. The learning technique and
model testing were performed using Google Collab, with GPU (Graphics Processing Unit)
acceleration and an internet connection through an 802.11ax Wi-Fi 6 wireless network. At
the same time, the CNN architecture in 1-D was constructed using the Keras framework.
The hardware used is a MacBook Air with the following technical specifications: 8 GB of
RAM, an M1 chip including an 8-core CPU with four performance cores and four efficiency
cores, a 7-core GPU, and a 16-core Neural Engine. The M1 CPU is reported to be 3.5 times
faster than the previous Intel processor, with up to five times higher graphics processing
capabilities [47]. Furthermore, when compared to using Google Collab with an accelerated
CPU, in this study, the training time was eight times faster using the GPU, with an average
of 36 s every epoch. In contrast, the CPU consumed 303 s per epoch. Experimental studies
for PQD classification in datasets were carried out separately using CNNs in 1-D models. In
the CNN model, the process was repeated many times, depending on two dataset criteria
and three data compression techniques.

4.2. Comparison of Three Compression Algorithms

As indicated in Table 3, this section compares the compression algorithm and its
performance in the CNN classification model for PQDs using the free-noise dataset in
model learning. The first experiment demonstrated that the CNN compression classification
process achieved 99.74% accuracy in just three epochs, or one minute and forty-three
seconds. Using a wavelet transform approach, the model achieved 99.52% accuracy after
twenty-six episodes in fifteen minutes and six seconds. Meanwhile, the model could only
attain 99.03 percent accuracy in the 24th minute at the 59th epoch when applying the
autoencoder compression approach.

Energies 2024, 17, 1396 15 of 20

Table 3. Model learning performance of CNN classification.

Type of
Compression Algorithm Validation Loss Validation

Accuracy Testing Accuracy Epoch
of Time

Time Consumes
for Each Epoch Training Time

Wavelet Transform 0.0158 0.9946 0.9952 26 36 s 15 min 6 s
Autoencoder 0.0295 0.9909 0.9903 59 25 s 24 min 58 s

CNN 0.0109 0.9975 0.9974 3 31 s 1 min 43 s

Furthermore, the time spent testing for the categorization of one disturbance pattern
revealed that the autoencoder was superior by an average of 6.9 ms per step, followed
by CNN at 7.7 ms per step and wavelet transform at 9.4 ms per step. However, the CNN
compression algorithm showed faster data robustness during the learning process.

Among the three compression techniques, CNN, as a compression algorithm, is ex-
tremely suitable to be used in conjunction with the CNN classification model. The ex-
perimental findings demonstrated that the combination of compression and classification
algorithms significantly reduced training times, being 15 to 24 times faster than using
wavelet transform and autoencoder as compression algorithms on the CNN classification
algorithm network.

Figure 9 compares the training processes of the three algorithms on the CNN classifi-
cation model. In contrast, loss and accuracy are determined for each epoch in the training
set and validation.

Energies 2024, 17, x FOR PEER REVIEW 15 of 21

4.2. Comparison of Three Compression Algorithms
As indicated in Table 3, this section compares the compression algorithm and its

performance in the CNN classification model for PQDs using the free-noise dataset in
model learning. The first experiment demonstrated that the CNN compression classifi-
cation process achieved 99.74% accuracy in just three epochs, or one minute and for-
ty-three seconds. Using a wavelet transform approach, the model achieved 99.52% accu-
racy after twenty-six episodes in fifteen minutes and six seconds. Meanwhile, the model
could only attain 99.03 percent accuracy in the 24th minute at the 59th epoch when ap-
plying the autoencoder compression approach.

Furthermore, the time spent testing for the categorization of one disturbance
pattern revealed that the autoencoder was superior by an average of 6.9 ms per step,
followed by CNN at 7.7 ms per step and wavelet transform at 9.4 ms per step. However,
the CNN compression algorithm showed faster data robustness during the learning
process.

Table 3. Model learning performance of CNN classification.

Type of
Compression

Algorithm
Validation Loss Validation

Accuracy

Testing
Accurac

y

Epoch of
Time

Time
Consumes

for Each
Epoch

Training
Time

Wavelet Transform 0.0158 0.9946 0.9952 26 36 s 15 min 6 s
Autoencoder 0.0295 0.9909 0.9903 59 25 s 24 min 58 s

CNN 0.0109 0.9975 0.9974 3 31 s 1 min 43 s

Among the three compression techniques, CNN, as a compression algorithm, is ex-
tremely suitable to be used in conjunction with the CNN classification model. The ex-
perimental findings demonstrated that the combination of compression and classifica-
tion algorithms significantly reduced training times, being 15 to 24 times faster than us-
ing wavelet transform and autoencoder as compression algorithms on the CNN classifi-
cation algorithm network.

Figure 9 compares the training processes of the three algorithms on the CNN clas-
sification model. In contrast, loss and accuracy are determined for each epoch in the
training set and validation.

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

AU_Loss AU_ACC WT_Loss WT_ACC CNN_Loss CNN_ACC

Figure 9. Training process of three compression algorithms.

This demonstrates that CNN reached high accuracy in less time and thrive in these con-
ditions. The wavelet transform produced nearly the same training model, but it took longer
to achieve the highest accuracy value. This confirms that the CNN model compression
method included simplifying the structure of deep learning algorithms by employing fewer
model parameters, which reduced computation and boosted inference time in deep learning
architectures. Meanwhile, wavelet transform required several processes, including filtering,
sampling, and convolution, that were time- and space-consuming. Autoencoder, on the
other hand, exhibited unstable or fluctuating performances during the learning process.

4.3. Performance Comparison before and after Adding the Dropout Layer

In a variety of conditions, the PQDs in the field may be subjected to noise pollution.
The noise effect is critical to PQD compressions, as they may result in the overfitting of the

Energies 2024, 17, 1396 16 of 20

model, because the algorithm conceptualized noise or random disturbances in the training
dataset. The learning curve in Figure 10a depicts the overfit model of the PQD dataset,
specifically a stage during which training losses continue to diminish with experience,
while validation losses have decreased to a minimal level and will rise. Since overfit cannot
be removed, Figure 10b indicates that overfitting is corrected after applying methodological
training approaches, such as optimizer enhancement and hyperparameter set-up, in the
model system.

Energies 2024, 17, x FOR PEER REVIEW 16 of 21

Figure 9. Training process of three compression algorithms.

This demonstrates that CNN reached high accuracy in less time and thrive in these
conditions. The wavelet transform produced nearly the same training model, but it took
longer to achieve the highest accuracy value. This confirms that the CNN model com-
pression method included simplifying the structure of deep learning algorithms by em-
ploying fewer model parameters, which reduced computation and boosted inference
time in deep learning architectures. Meanwhile, wavelet transform required several
processes, including filtering, sampling, and convolution, that were time- and
space-consuming. Autoencoder, on the other hand, exhibited unstable or fluctuating
performances during the learning process.

4.3. Performance Comparison before and after Adding the Dropout Layer
In a variety of conditions, the PQDs in the field may be subjected to noise pollution.

The noise effect is critical to PQD compressions, as they may result in the overfitting of
the model, because the algorithm conceptualized noise or random disturbances in the
training dataset. The learning curve in Figure 10a depicts the overfit model of the PQD
dataset, specifically a stage during which training losses continue to diminish with expe-
rience, while validation losses have decreased to a minimal level and will rise. Since
overfit cannot be removed, Figure 10b indicates that overfitting is corrected after apply-
ing methodological training approaches, such as optimizer enhancement and hyperpa-
rameter set-up, in the model system.

This study presents experimental results of relevant strategies to consider when
employing dropout, to prevent overfitting in neural networks in practice. The appropri-
ate dropout rate in this experiment was set to 0.5 for the hidden layer and close to 1.0 for
the input layer, as recommended in the original dropout paper [48]. However, this study
began with a small dropout value of 20% to 50% neurons, with 20% giving a reasonable
beginning point. Generally, a low probability had little effect, whereas a large value
caused the network to under-learn. By randomly removing units, the neural network
was forced to develop a more robust representation of the data and was prevented from
making predictions based on a single neuron. This regularization strategy increased the
neural network’s ability to generalize and perform effectively on data, enhancing its ac-
curacy.

(a)

Energies 2024, 17, x FOR PEER REVIEW 17 of 21

(b)

Figure 10. (a) PQD dataset with a SNR of 40 dB: overfitting dataset. (b) PQD dataset with a SNR of
40 dB: reducing overfitting dataset.

4.4. Accuracy-Based Comparison
Some frequently used metrics were performed, to evaluate the model on test data

comprehensively. These were accuracy, recall, precision, and F1-score criteria. Accuracy
is commonly regarded as the primary way of evaluating PQDs. In the experiment, three
compression algorithms were applied to six datasets using a CNN classifier. The accu-
racy of the classifiers for each data compression strategy is shown in Table 4. In terms of
the free-noised dataset, CNN achieved the highest accuracy of 99.96%, followed by WT
and autoencoder at 99.93% and 99.91%, respectively. In comparison to the noised data
with a SNR of 40 dB and a SNR of 20 dB, CNN performed exceptionally well, achieving a
value of 98.67% and 98.25%, respectively.

Table 4. Detail performance of compression algorithms.

Method ACC Recall Precision F1
CNN_Free-noised 0.999633 0.997429 0.997444 0.997428
AU_Free-noised 0.999165 0.994143 0.994218 0.994146
WT_Free-noised 0.999317 0.995215 0.995223 0.995215

CNN_40dB 0.986713 0.905071 0.906757 0.904584
AU_40dB 0.984328 0.887438 0.898208 0.887319
WT_40dB 0.984584 0.889143 0.891114 0.889639

CNN_20dB 0.982500 0.982142 0.982857 0.982857
AU_20dB 0.971357 0.971428 0.971428 0.970000
WT_20dB 0.957210 0.958571 0.956428 0.957142

4.5. Recall-Based Comparison
Recall is an important quality matrix because it is necessary to correctly classify 14

different types of PQDs. Regarding free noised signal, autoencoder had the lowest recall
score of 99.41%, while CNN had the greatest recall score of 99.74%. Using the CNN
compression method, the noised data classifier obtained a maximum recall score of
90.50%. WT and autoencoder both had recall rates of 88.91% and 88.74%, respectively.

4.6. Precision-Based Comparison
Precision is another performance evaluation matrix that assesses the performance of

categorization models. For noised data, the WT compression, in conjunction with the
CNN classifier, had the lowest precision score of 89.11%, while the CNN had the best

Figure 10. (a) PQD dataset with a SNR of 40 dB: overfitting dataset. (b) PQD dataset with a SNR of
40 dB: reducing overfitting dataset.

This study presents experimental results of relevant strategies to consider when
employing dropout, to prevent overfitting in neural networks in practice. The appropriate
dropout rate in this experiment was set to 0.5 for the hidden layer and close to 1.0 for
the input layer, as recommended in the original dropout paper [48]. However, this study
began with a small dropout value of 20% to 50% neurons, with 20% giving a reasonable
beginning point. Generally, a low probability had little effect, whereas a large value caused
the network to under-learn. By randomly removing units, the neural network was forced
to develop a more robust representation of the data and was prevented from making
predictions based on a single neuron. This regularization strategy increased the neural
network’s ability to generalize and perform effectively on data, enhancing its accuracy.

Energies 2024, 17, 1396 17 of 20

4.4. Accuracy-Based Comparison

Some frequently used metrics were performed, to evaluate the model on test data
comprehensively. These were accuracy, recall, precision, and F1-score criteria. Accuracy
is commonly regarded as the primary way of evaluating PQDs. In the experiment, three
compression algorithms were applied to six datasets using a CNN classifier. The accuracy
of the classifiers for each data compression strategy is shown in Table 4. In terms of the
free-noised dataset, CNN achieved the highest accuracy of 99.96%, followed by WT and
autoencoder at 99.93% and 99.91%, respectively. In comparison to the noised data with a
SNR of 40 dB and a SNR of 20 dB, CNN performed exceptionally well, achieving a value of
98.67% and 98.25%, respectively.

Table 4. Detail performance of compression algorithms.

Method ACC Recall Precision F1

CNN_Free-noised 0.999633 0.997429 0.997444 0.997428
AU_Free-noised 0.999165 0.994143 0.994218 0.994146
WT_Free-noised 0.999317 0.995215 0.995223 0.995215

CNN_40dB 0.986713 0.905071 0.906757 0.904584
AU_40dB 0.984328 0.887438 0.898208 0.887319
WT_40dB 0.984584 0.889143 0.891114 0.889639

CNN_20dB 0.982500 0.982142 0.982857 0.982857
AU_20dB 0.971357 0.971428 0.971428 0.970000
WT_20dB 0.957210 0.958571 0.956428 0.957142

4.5. Recall-Based Comparison

Recall is an important quality matrix because it is necessary to correctly classify
14 different types of PQDs. Regarding free noised signal, autoencoder had the lowest
recall score of 99.41%, while CNN had the greatest recall score of 99.74%. Using the CNN
compression method, the noised data classifier obtained a maximum recall score of 90.50%.
WT and autoencoder both had recall rates of 88.91% and 88.74%, respectively.

4.6. Precision-Based Comparison

Precision is another performance evaluation matrix that assesses the performance of
categorization models. For noised data, the WT compression, in conjunction with the CNN
classifier, had the lowest precision score of 89.11%, while the CNN had the best precision
score of 90.67%. When employing a free noised dataset, CNN compression outperformed
WT and autoencoder. The CNN compression produced a maximum precision of 99.74%,
while the autoencoder compression reached a minimum precision of 99.42%.

4.7. F1 Score-Based Comparison

The F1-score is the harmonic mean of precision and recall. In the free noised dataset,
the autoencoder compression method achieved a very low F1-score of 99.41%, while CNN
achieved the best F1-score of 99.74% and the WT algorithm obtained an F1-score of 99.52%.
The autoencoder compression achieved the lowest F1-score of 88.73% for noised datasets,
whereas CNN compression achieved the greatest F1-score of 90.45%.

4.8. Classification Error Comparison

Although each method performed admirably in general, the amount of incorrectly
classified instances also determined the efficiency of the classification process. Figure 11
demonstrates in considerable detail, using a bar chart, that wavelet transform had the
highest number of classification errors, particularly in seven class labels from fourteen PQD
classification categories. This is due to the WT method’s reliance on the appropriate mother
wavelet for accuracy, and classification performance depended highly on feature selection
and the connected classifier. Furthermore, autoencoder had the most significant number of
misclassifications in the following classes: flicker, flicker sag, and flicker swell. Primarily,

Energies 2024, 17, 1396 18 of 20

this is because autoencoder is an unsupervised technique that learns from its data rather
than from labels applied by humans. As a result, the autoencoder frequently required
a huge amount of clean data to obtain relevant findings. It could produce contradictory
answers if the dataset was insufficiently large, unclean, or noisy. CNN, on the other hand,
had the fewest incorrectly classified instances. However, some classes, like interruption,
normal, sag, and swell had a slightly higher error count than both algorithms.

Energies 2024, 17, x FOR PEER REVIEW 18 of 21

precision score of 90.67%. When employing a free noised dataset, CNN compression
outperformed WT and autoencoder. The CNN compression produced a maximum pre-
cision of 99.74%, while the autoencoder compression reached a minimum precision of
99.42%.

4.7. F1 Score-Based Comparison
The F1-score is the harmonic mean of precision and recall. In the free noised dataset,

the autoencoder compression method achieved a very low F1-score of 99.41%, while
CNN achieved the best F1-score of 99.74% and the WT algorithm obtained an F1-score of
99.52%. The autoencoder compression achieved the lowest F1-score of 88.73% for noised
datasets, whereas CNN compression achieved the greatest F1-score of 90.45%.

4.8. Classification Error Comparison
Although each method performed admirably in general, the amount of incorrectly

classified instances also determined the efficiency of the classification process. Figure 11
demonstrates in considerable detail, using a bar chart, that wavelet transform had the
highest number of classification errors, particularly in seven class labels from fourteen
PQD classification categories. This is due to the WT method’s reliance on the appropriate
mother wavelet for accuracy, and classification performance depended highly on feature
selection and the connected classifier. Furthermore, autoencoder had the most significant
number of misclassifications in the following classes: flicker, flicker sag, and flicker swell.
Primarily, this is because autoencoder is an unsupervised technique that learns from its
data rather than from labels applied by humans. As a result, the autoencoder frequently
required a huge amount of clean data to obtain relevant findings. It could produce con-
tradictory answers if the dataset was insufficiently large, unclean, or noisy. CNN, on the
other hand, had the fewest incorrectly classified instances. However, some classes, like
interruption, normal, sag, and swell had a slightly higher error count than both algo-
rithms.

Figure 11. Mapping of incorrect instances.

5. Conclusions
This paper proposed a framework for combining 1-dimensional dataset compres-

sion with the CNN classification. After evaluating three types of compression algorithms,
namely wavelet transform, autoencoder, and CNN, the CNN classification model with
the CNN compression algorithm outperformed the other two compression algorithms
tested on the 1-dimensional PQDs, in terms of accuracy, recall, precision, and F1 score,
with the following values: 98.25%, 98.21%, 98.28%, and 98.28% for data with noise and
more than 99% for the original data. The model also had the shortest test time and the
fewest error-classified instances.

F FH FS FS
W H I IH N NO S SH SW SW

H T

AE 117 7 287 339 0 8 11 157 144 119 66 57 6 258
WT 66 72 55 77 37 27 40 234 279 116 76 67 80 326
CNN 35 2 122 116 1 36 34 267 82 174 60 183 5 212

0
50

100
150
200
250
300
350
400

Nu
m

be
r o

f D
at

a

Figure 11. Mapping of incorrect instances.

5. Conclusions

This paper proposed a framework for combining 1-dimensional dataset compression
with the CNN classification. After evaluating three types of compression algorithms,
namely wavelet transform, autoencoder, and CNN, the CNN classification model with
the CNN compression algorithm outperformed the other two compression algorithms
tested on the 1-dimensional PQDs, in terms of accuracy, recall, precision, and F1 score, with
the following values: 98.25%, 98.21%, 98.28%, and 98.28% for data with noise and more
than 99% for the original data. The model also had the shortest test time and the fewest
error-classified instances.

Compared to the classification model before adding the dropout layer, using the
dropout layer in the DCNN reduced overfitting and effectively sped up training, especially
when dealing with noise-contaminated data. This finding supports the initial hypothesis of
this study that the CNN compression algorithm is appropriate for the PQDs dataset and is
highly recommended to be used in conjunction with the 1D-CNN classification model to
achieve satisfactory performance on system requirements.

The authors recommend that future studies be conducted utilizing actual data acquired
from installed power sources and predictive algorithms, for instance time series analysis,
to ensure the application can forecast the PQDs that will occur based on disrupting the
proper functioning of the power systems on the smart grid network.

Author Contributions: Conceptualization, Y.-C.C., M.S. and S.S.B.; data curation, S.S.B. and M.S.;
methodology, Y.-C.C., M.S. and C.-I.C.; software, M.S. and S.S.B.; validation, Y.-C.C. and C.-I.C.;
formal analysis, Y.-C.C. and M.S.; resources, M.S. and S.S.B.; writing—original draft preparation,
M.S. and C.-I.C.; writing—review and editing, M.S. and C.-I.C.; supervision, Y.-C.C. and C.-I.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan, grant
number MOST 111-2628-E-008-004-MY3, and the National Science and Technology Council of Taiwan,
grant number NSTC 112-2218-E-008-011.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The authors gratefully acknowledge the helpful comments and suggestions of
the reviewers for improving the manuscript.

Energies 2024, 17, 1396 19 of 20

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Fortuna, L.; Buscarino, A. Sustainable Energy Systems. Energies 2022, 15, 9227. [CrossRef]
2. Elbasuony, G.S.; Aleem, S.H.A.; Ibrahim, A.M.; Sharaf, A.M. A unified index for power quality evaluation in distributed

generation systems. Energy 2018, 149, 607–622. [CrossRef]
3. Khokhar, S.; Zin, A.A.B.M.; Mokhtar, A.S.B.; Pesaran, M. A comprehensive overview on signal processing and artificial intelligence

techniques applications in classification of power quality disturbances. Renew. Sustain. Energy Rev. 2015, 51, 1650–1663. [CrossRef]
4. Andrei, H.; Cepisca, C.; Grigorescu, S. Power quality and electrical arc furnaces. In Power Quality; IntechOpen: London, UK, 2011;

pp. 77–100.
5. Singh, R.; Mohanty, S.R.; Kishor, N.; Thakur, A. Real-time implementation of signal processing techniques for disturbances

detection. IEEE Trans. Ind. Electron. 2018, 66, 3550–3560. [CrossRef]
6. Berutu, S.S.; Chen, Y.-C. Power Quality Disturbances Classification Based on Wavelet Compression and Deep Convolutional

Neural Network. In Proceedings of the 2020 International Symposium on Computer, Consumer and Control (IS3C), Taichung
City, Taiwan, 13–16 November 2020; pp. 327–330.

7. Schael, M.; Sourkounis, C. Influences of power supply quality on electric equipment in production processes. In Proceedings of
the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013;
pp. 2081–2086.

8. Bucolo, M.; Buscarino, A.; Famoso, C.; Fortuna, L. Chaos addresses energy in networks of electrical oscillators. IEEE Access 2021,
9, 153258–153265. [CrossRef]

9. Chen, Y.-C.; Syamsudin, M.; Berutu, S.S. Pretrained Configuration of Power-Quality Grayscale-Image Dataset for Sensor
Improvement in Smart-Grid Transmission. Electronics 2022, 11, 3060. [CrossRef]

10. Pérez-Ortiz, M.; Jiménez-Fernández, S.; Gutiérrez, P.A.; Alexandre, E.; Hervás-Martínez, C.; Salcedo-Sanz, S. A review of
classification problems and algorithms in renewable energy applications. Energies 2016, 9, 607. [CrossRef]

11. Elbouchikhi, E.; Zia, M.F.; Benbouzid, M.; El Hani, S. Overview of Signal Processing and Machine Learning for Smart Grid
Condition Monitoring. Electronics 2021, 10, 2725. [CrossRef]

12. Binsha, P.; Kumar, S.S.; Soman, K. Power quality signal classification using convolutional neural network. Int. J. Comput. Technol.
Appl. 2016, 9, 8033–8042.

13. Gal, Y.; Ghahramani, Z. A theoretically grounded application of dropout in recurrent neural networks. In Proceedings of the
Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 1027–1035.

14. Le, Q.V.; Jaitly, N.; Hinton, G.E. A simple way to initialize recurrent networks of rectified linear units. arXiv 2015, arXiv:1504.00941.
15. Van Houdt, G.; Mosquera, C.; Nápoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955.

[CrossRef]
16. Mohan, N.; Soman, K.; Vinayakumar, R. Deep power: Deep learning architectures for power quality disturbances classification.

In Proceedings of the 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam,
India, 21–23 December 2017; pp. 1–6.

17. Rodriguez, M.A.; Sotomonte, J.F.; Cifuentes, J.; Bueno-López, M. Classification of power quality disturbances using hilbert huang
transform and a multilayer perceptron neural network model. In Proceedings of the 2019 International Conference on Smart
Energy Systems and Technologies (SEST), Porto, Portugal, 9–11 September 2019; pp. 1–6.

18. Sindi, H.; Nour, M.; Rawa, M.; Öztürk, Ş.; Polat, K. A novel hybrid deep learning approach including combination of 1D power
signals and 2D signal images for power quality disturbance classification. Expert Syst. Appl. 2021, 174, 114785. [CrossRef]

19. Dash, P.; Prasad, E.N.; Jalli, R.K.; Mishra, S. Multiple power quality disturbances analysis in photovoltaic integrated direct current
microgrid using adaptive morphological filter with deep learning algorithm. Appl. Energy 2022, 309, 118454. [CrossRef]

20. Mengi, O.O.; Altas, I.H. A new energy management technique for PV/wind/grid renewable energy system. Int. J. Photoenergy
2015, 2015, 356930. [CrossRef]

21. He, S.; Tian, W.; Zhang, J.; Li, K.; Zhang, M.; Zhu, R. A high efficient approach for power disturbance waveform compression in
the view of heisenberg uncertainty. IEEE Trans. Ind. Inform. 2018, 15, 2580–2591. [CrossRef]

22. Shen, Y.; Abubakar, M.; Liu, H.; Hussain, F. Power quality disturbance monitoring and classification based on improved PCA and
convolution neural network for wind-grid distribution systems. Energies 2019, 12, 1280. [CrossRef]

23. Eristi, B.; Yildirim, O.; Eristi, H.; Demir, Y. A new embedded power quality event classification system based on the wavelet
transform. Int. Trans. Electr. Energy Syst. 2018, 28, e2597. [CrossRef]

24. Chen, S.; Zhu, H.Y. Wavelet transform for processing power quality disturbances. EURASIP J. Adv. Signal Process. 2007,
2007, 47695. [CrossRef]

25. Gao, R.X.; Yan, R. Wavelet packet transform. In Wavelets; Springer: Berlin/Heidelberg, Germany, 2011; pp. 69–81.
26. Dekhandji, F.Z. Detection of power quality disturbances using discrete wavelet transform. In Proceedings of the 2017 5th

International Conference on Electrical Engineering-Boumerdes (ICEE-B), Boumerdes, Algeria, 29–31 October 2017; pp. 1–5.
27. Wang, J.; Xu, Z.; Che, Y. Power quality disturbance classification based on DWT and multilayer perceptron extreme learning

machine. Appl. Sci. 2019, 9, 2315. [CrossRef]

https://doi.org/10.3390/en15239227
https://doi.org/10.1016/j.energy.2018.02.088
https://doi.org/10.1016/j.rser.2015.07.068
https://doi.org/10.1109/TIE.2018.2851968
https://doi.org/10.1109/ACCESS.2021.3127319
https://doi.org/10.3390/electronics11193060
https://doi.org/10.3390/en9080607
https://doi.org/10.3390/electronics10212725
https://doi.org/10.1007/s10462-020-09838-1
https://doi.org/10.1016/j.eswa.2021.114785
https://doi.org/10.1016/j.apenergy.2021.118454
https://doi.org/10.1155/2015/356930
https://doi.org/10.1109/TII.2018.2868732
https://doi.org/10.3390/en12071280
https://doi.org/10.1002/etep.2597
https://doi.org/10.1155/2007/47695
https://doi.org/10.3390/app9112315

Energies 2024, 17, 1396 20 of 20

28. Weeks, M.; Bayoumi, M. Discrete wavelet transform: Architectures, design and performance issues. J. VLSI Signal Process. Syst.
Signal Image Video Technol. 2003, 35, 155–178. [CrossRef]

29. Huang, X.; Hu, T.; Ye, C.; Xu, G.; Wang, X.; Chen, L. Electric load data compression and classification based on deep stacked
auto-encoders. Energies 2019, 12, 653. [CrossRef]

30. Lu, Y.; Kumar, A.; Zhai, S.; Cheng, Y.; Javidi, T.; Feris, R. Fully-adaptive feature sharing in multi-task networks with applications
in person attribute classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 5334–5343.

31. Yang, T.-J.; Chen, Y.-H.; Sze, V. Designing energy-efficient convolutional neural networks using energy-aware pruning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5687–5695.

32. Balouji, E.; Salor, O. Classification of power quality events using deep learning on event images. In Proceedings of the 2017 3rd
International Conference on Pattern Recognition and Image Analysis (IPRIA), Shahrekord, Iran, 19–20 April 2017; pp. 216–221.

33. Igual, R.; Medrano, C. Research challenges in real-time classification of power quality disturbances applicable to microgrids: A
systematic review. Renew. Sustain. Energy Rev. 2020, 132, 110050. [CrossRef]

34. Chattopadhyay, S.; Mitra, M.; Sengupta, S. Electric power quality. In Electric Power Quality; Springer: Berlin/Heidelberg, Germany,
2011; pp. 5–12.

35. Chen, Y. Improved energy detector for random signals in Gaussian noise. IEEE Trans. Wirel. Commun. 2010, 9, 558–563. [CrossRef]
36. Ning, J.; Wang, J.; Gao, W.; Liu, C. A wavelet-based data compression technique for smart grid. IEEE Trans. Smart Grid 2010, 2,

212–218. [CrossRef]
37. Chen, C.-I.; Berutu, S.S.; Chen, Y.-C.; Yang, H.-C.; Chen, C.-H. Regulated Two-Dimensional Deep Convolutional Neural Network-

Based Power Quality Classifier for Microgrid. Energies 2022, 15, 2532. [CrossRef]
38. Wang, S.; Chen, H.; Wu, L.; Wang, J. A novel smart meter data compression method via stacked convolutional sparse auto-encoder.

Int. J. Electr. Power Energy Syst. 2020, 118, 105761. [CrossRef]
39. Baloglu, U.B.; Talo, M.; Yildirim, O.; San Tan, R.; Acharya, U.R. Classification of myocardial infarction with multi-lead ECG

signals and deep CNN. Pattern Recognit. Lett. 2019, 122, 23–30. [CrossRef]
40. Syamsudin, M. Implementasi Algoritma Kompresi Data untuk Meningkatkan Kinerja Pendeteksian Gangguan Kualitas Daya

Listrik. Med. Tek. J. Tek. Elektromedik Indones. 2023, 5, 30–38. [CrossRef]
41. Chen, Y.-C.; Syamsudin, M.; Berutu, S. Regulated 2D Grayscale Image for Finding Power Quality Abnormalities in Actual Data.

J. Phys. Conf. Ser. 2022, 2347, 012018. [CrossRef]
42. Huang, C.; Ni, S.; Chen, G. A layer-based structured design of CNN on FPGA. In Proceedings of the 2017 IEEE 12th International

Conference on ASIC (ASICON), Guiyang, China, 25–28 October 2017; pp. 1037–1040.
43. Ying, X. An overview of overfitting and its solutions. Proc. J. Phys. Conf. Ser. 2019, 1168, 022022. [CrossRef]
44. Hinton, G.E.; Nowlan, S. Preface to “Simplifying Neural Networks by Soft Weight Sharing”. In The Mathematics of Generalization;

CRC Press: Boca Raton, FL, USA, 2018; pp. 369–371.
45. Gueorguieva, N.; Valova, I.; Klusek, D. Solving Large Scale Classification Problems with Stochastic Based Optimization. Procedia

Comput. Sci. 2020, 168, 26–33. [CrossRef]
46. Dozat, T. Incorporating Nesterov Momentum into Adam. 2016. Available online: https://openreview.net/forum?id=OM0jvwB8

jIp57ZJjtNEZ (accessed on 6 January 2024).
47. Fojtik, R. New Processor Architecture and Its Use in Mobile Application Development. In Proceedings of the 2018 International

Conference on Digital Science, Budva, Montenegro, 19–21 October 2018; pp. 545–556.
48. Ha, C.; Tran, V.-D.; Van, L.N.; Than, K. Eliminating overfitting of probabilistic topic models on short and noisy text: The role of

dropout. Int. J. Approx. Reason. 2019, 112, 85–104. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1023/A:1023648531542
https://doi.org/10.3390/en12040653
https://doi.org/10.1016/j.rser.2020.110050
https://doi.org/10.1109/TWC.2010.5403535
https://doi.org/10.1109/TSG.2010.2091291
https://doi.org/10.3390/en15072532
https://doi.org/10.1016/j.ijepes.2019.105761
https://doi.org/10.1016/j.patrec.2019.02.016
https://doi.org/10.18196/mt.v5i1.18386
https://doi.org/10.1088/1742-6596/2347/1/012018
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1016/j.procs.2020.02.247
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://doi.org/10.1016/j.ijar.2019.05.010

	Introduction
	Review of Related Works
	Proposed Framework
	Generating the Dataset of Artificial Power Quality Disturbances
	Proposed Dataset Compression Algorithm
	Wavelet Transform
	Basic Autoencoder
	Convolutional Neural Network

	Structure of Classification Model
	Deep Convolutional Neural Network Layer Descriptions
	Resolvation of Overfitting

	Results and Discussion
	Data Pre-Processing Stage
	Comparison of Three Compression Algorithms
	Performance Comparison before and after Adding the Dropout Layer
	Accuracy-Based Comparison
	Recall-Based Comparison
	Precision-Based Comparison
	F1 Score-Based Comparison
	Classification Error Comparison

	Conclusions
	References

