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Abstract: This paper addresses the critical role of supercapacitors as energy storage systems with a
specific focus on their modeling and identification. The lack of a standardized and efficient method for
identifying supercapacitor parameters has a definite effect on widespread adoption of supercapacitors,
especially in high-power density applications like electric vehicle regenerative braking. The study
focuses on parameterizing the Zubieta model for supercapacitors, which involves identifying seven
parameters using a hybrid metaheuristic gradient-based optimization (MGBO) approach. The
effectiveness of the MGBO method is compared to the existing particle swarm optimization (PSO)
and to the following algorithms proposed and developed in this work: ‘modified MGBO’ (M-
MGBO) and two PSO variations—one combining PSO and M-MGBO and the other incorporating a
local escaping operator (LCEO) with PSO. Metaheuristic- and gradient-based algorithms are both
affected by problems associated with locally optimal results and with issues related to enforcing
constraints/boundaries on solution values. This work develops the above-mentioned innovations to
the MGBO and PSO algorithms for addressing such issues. Rigorous experimentation considering
various types of input excitation provides results indicating that hybrid PSO-MGBO and PSO-LCEO
outperform traditional PSO, showing improvements of 51% and 94%, respectively, while remaining
comparable to M-MGBO. These hybrid approaches effectively estimate Zubieta model parameters.
The findings highlight the potential of hybrid optimization strategies in enhancing precision and
effectiveness in supercapacitor model parameterization.

Keywords: supercapacitor; Zubieta model; energy storage; particle swarm optimization; gradient-based
optimization; metaheuristic algorithms; local escaping operator; parameter identification

1. Introduction

Recently, there has been a noteworthy global upswing in the adoption of renewable
energy sources. This increased interest is a proactive response to economic, political, and
social factors, all directed toward diminishing dependence on conventional fossil fuels [1,2].
The efficiency of power systems that encompass a substantial share of renewable energy
sources is shaped by various factors. Challenges arise from the inherent unpredictability
associated with renewable energy sources. Consequently, the use of energy storage systems
plays a pivotal role in effectively bringing renewable energy systems into commercial
viability [3].

In recent years, there has been a marked uptick in interest surrounding supercapacitors
(SCs). They are being viewed as a viable supplementary power source owing to their
outstanding high power density and relatively high energy density [4]. The successful
incorporation of supercapacitors into energy storage systems has been observed across
diverse industrial applications, such as electric vehicles and solar energy systems [5,6]. The
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integration of SCs provides significant advantages in maintaining stability within electrical
power systems. This is achieved by augmenting the energy supply derived from batteries
and the unpredictable nature of renewable resources.

To optimize the integration of supercapacitors into energy storage systems, it is crucial
to establish a precise dynamic representation that effectively represents the static and
dynamic properties of supercapacitors. The precise definition and modeling of the system’s
characteristics is a vital step in enhancing and managing any energy storage system. SC
dynamic modeling is used to identify and characterize electrical and thermal performances,
condition diagnostics-monitoring and estimation of state of charge (SOC), state of power
(SOP), state of health (SOH), and control mechanism design [7–9]. Supercapacitors are
modeled based on the characteristics to be monitored, with five key models: equivalent
circuit models, electrochemical models, thermal models, fractional order models, and
intelligent models [7,10].

Different models have been developed to explain the behavior of supercapacitors;
however, the electrical equivalent circuit models are found to be a convenient and common
way to simulate the electrical behavior of SCs. To characterize and simulate the electrical
behavior of SC, equivalent circuit models utilize parameterized RC networks defined by
ODEs. Utilizing electrical models enables the assessment of supercapacitor capacitance,
considering its variations with bias voltage, voltage drop, as well as power loss attributed
to internal resistance, self-discharge, and leakage current effects. Additionally, these models
account for the electric dynamic behavior influenced by ion diffusion [11,12].

Modeling and characterization of supercapacitors have been extensively investigated
using electrochemical impedance spectroscopy (EIS) approaches [13–16] or time response
experiments and simulations [17–20]. Both techniques aim to provide a variety of equiva-
lent circuit representations that are required for characterizing the state of the SC cell in
the course of operation. Hence, when analyzing the time domain system, various circuit
models have been proposed. Classical models, multi-stage ladder models, and dynamic
models are the three categories of equivalent circuit models. In addition, a wide range
of nonlinear models have been formulated for supercapacitors, which include fractional
order models, as well as methodologies for determining parameters, thereby demonstrat-
ing the effectiveness of these models [21,22]. Nevertheless, the procedure of determining
parameters for these models sometimes entails multiple stages of linearization and extensive
experimental investigation.

Methods such as adaptive filter algorithms, metaheuristic optimization methods, and
intelligent artificial intelligence are being deployed in the literature to find the optimum
parameters for the different SC equivalent models. The recursive least squares (RLS) method
was used to identify the parameters of the classical equivalent circuit model in [23–25].
In [25], the authors used a voltage-dependent capacitor in the first branch instead of the
constant capacitance capacitor, making it simpler to identify the time-variant parameters.
Similarly, in [26], a nonlinear least square method was used to identify the parameters of a
supercapacitor model. The authors provided a framework for the branch number selection
criteria and order reduction. The total least-squares method was used in [27] to identify the
three parameters (C0, KV, and C2) of the reduced two-branch Zubieta model [28]. The first
branch resistor, R0, was assumed to be given by the manufacturer, and the second branch
resistor, R2, and the leakage resistor, Rlea, were found using the circuit analysis method. The
voltage response, input current, and their second- and first-order derivatives were used
to define the estimation problem. The derivatives of the electric variables were obtained
using filter differentiation.

Moreover, Kalman filters were used to identify supercapacitor dynamic model param-
eters online [29]. The authors used the extended Kalman filter to automate the estimation
of the error bound. The researchers proved that the proposed estimator model can be used
to accurately depict the voltage behavior of the SC under various scenarios.

Optimization is still a challenging computational task. Consequently, numerous algo-
rithms have been proposed to address this challenge. Two questions must be answered to
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ensure the best possible solution to this problem: how to identify global and local optimiza-
tion and how to preserve such optimization until the end of the search. Swarm intelligence,
which includes particle swarm optimization (PSO) [30], the grey wolf optimizer (GWO) [31],
whale optimizer [32], ant-lion optimizer (ALO) [33], genetic algorithm (GA) [34], artificial
ecosystem-based optimizer (AEO) [35], and many others, evolved as a result of these
questions over the last two decades. These metaheuristic algorithms are widely used to
solve and optimize various real-world problems. However, few researchers in the field of
energy storage have used metaheuristic optimization algorithms as an appealing tool for
identifying electrical circuit model parameters.

In 2022, a study by researchers [36] employed a straightforward and reliable method-
ology, using the bald eagle search (BES) optimization algorithm to identify the parameters
of the Zubieta model’s supercapacitor equivalent circuit [20]. The envisaged bald eagle
search algorithm mimics bald eagle hunting behavior to demonstrate the consequences of
each stage of hunting. The BES approach’s robustness was assessed in comparison to other
metaheuristic algorithms for two supercapacitors (SCs) with modules of 470 F and 1500 F.
The authors attained an MSSE of 1.32 × 10−8 for the 1500 F SC when employing the BES. In
contrast, the PSO, the most closely related optimizer based on the obtained results, yielded
a higher MSSE of 6.69 × 10−6.

In [37], a similar approach was used with the interior search optimizer (ISA), a notable
metaheuristic optimization algorithm proposed by Gandomi [38]. The mean square error
(MSE) for parameterization of a 470 F capacitor using the ISA was 0.004487% compared to
0.0310895 for GWO, 0.0045% for GA, and 0.03109% for WA. These findings suggest that the
ISA method can be used to optimize the parameters of the Zubieta model, and they are
comparable to the genetic algorithm approach.

In [39], a real-time modeling approach based on the weighting bat algorithm (WBA)
was proposed. The model was used for parameter identification in the reduced Zubieta
model, enabling real-time power management in embedded systems powered by superca-
pacitors, as well as predicting supercapacitor behavior. The WBA convergence of the fitness
function in 50 iterations is comparable to the genetic algorithm with lower computational
time, 0.4328% and 0.43815%, respectively.

Furthermore, the study in [40] introduced an electrical model that is based on the
optimization of parameters for a passive electrical circuit model. There exist multiple
methodologies for the parameter identification of supercapacitor models. These include
the analytical method [20], Segmentation Optimization [41], the binary quadratic equa-
tion fitting method [42], Universal Adaptive Stabilization and Optimization [11], Particle
Swarm Algorithm (PSO) [43], the recursive least-squares method [44], and other alternative
techniques.

Over the past few years, there has been a notable influx of research focusing on
the development and application of advanced optimizers for parameter identification,
particularly in the field of energy storage systems. Metaheuristic algorithms have continued
to dominate the landscape of parameter estimation, offering innovative solutions to address
challenges associated with accuracy and convergence rates.

One prominent optimizer in recent literature is the Sine Cosine Algorithm (SCA),
introduced by Mirjalili et al. [45]. SCA has shown promise in optimizing complex and
nonlinear functions, making it suitable for parameter identification tasks. Studies have
applied SCA to various energy storage system models, demonstrating its effectiveness in
achieving accurate parameter estimates within a reduced computational time.

Another development, as mentioned earlier, is the grey wolf optimizer (GWO), pro-
posed by Mirjalili et al. [31]. GWO draws inspiration from the social hierarchy of grey
wolves and has been successfully applied to parameter identification tasks in renewable
energy systems. Its ability to strike a balance between exploitation and exploration makes
it well-suited for handling complex and high-dimensional optimization problems.

Other noteworthy contributions are the Dandelion Optimization Algorithm [46] used
for the parameter estimation of proton exchange membrane fuel cells (PEMFCs) and the
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Metaheuristic Mountain Gazelle Optimizer for parameter estimation of single- and double-
diode photovoltaic cell models [47]. These new optimization strategies demonstrated
improved performance compared with traditional algorithms, showcasing the potential
of metaheuristic optimization paradigms to address the complexities associated with
renewable energy system models.

Nevertheless, the existing literature points out limitations in the application of meta-
heuristic optimizers to identify variables in the SCs equivalent electrical circuit model.
Additionally, the currently employed algorithms have their own constraints and highlight
notable gaps that warrant further investigation. Existing studies often lack a standardized
approach, leading to inconsistencies in parameter estimation. Challenges include the
absence of a universally accepted model and the need for improved convergence rates
and accuracy in optimization algorithms. Moreover, there is a limited exploration of
hybrid optimization strategies that could potentially enhance the efficiency of parameter
identification for supercapacitors. Addressing these gaps is crucial to advancing the
reliability and performance of supercapacitors in energy storage systems, promoting a
more standardized and effective methodology for parameter identification. Consequently,
to build an accurate model for SCs, it is vital to use an efficient optimization technique that
effectively addresses the limitations of current optimizers.

In this study, the authors propose a more straightforward and reliable approach
by employing the metaheuristic gradient-based optimization (MGBO) algorithm [48,49]
to ascertain the parameters of the SCs electrical circuit model, specifically the Zubieta
model. Having a precise model is crucial for accurately characterizing the behavior of SCs,
thereby facilitating further research in the field. Moreover, to enhance the effectiveness
of PSO and address the underlying constraints, numerous variations of PSO have been
developed. Multiple implementations of PSO algorithm variants have been proposed in
the literature. These variants include adaptive inertia weight PSO, constriction PSO, and
hybrid PSO [50,51]. These changes encompass the incorporation of additional strategies,
such as the dynamic manipulation of the inertia weight, the self-adjustment of acceleration
constants, and integrating it with other optimization techniques [52].

Hence, this research develops a modified metaheuristic gradient-based optimization
(M-MGBO) algorithm and two versions of the particle swarm optimization (PSO) algorithm.
The motivation for doing this is as follows:

Gradient-based algorithms such as the MGBO can suffer from problems related to
computing/approximating the gradient. Particle swarm optimization (PSO)/metaheuristic
approaches have been used to circumvent issues related to the gradient.Both MGBO and
PSO approaches may be affected due to solutions being trapped in local optima. The litera-
ture has several randomized approaches to avoid such issues.However, such randomized
approaches often disregard/do not explicitly incorporate checking for parameter bounds
and also do not necessarily check if a randomized candidate solution actually helped
achieve the objective of not being trapped in a local optimum. Furthermore, it is possible
that due to the nature of the optimization problem or the algorithm or both, such issues
related to entrapment in local optima, and parameter-bound constraint violation happen
more frequently during a certain stage (early iterations/late iterations) of the iterative
optimization cycle. Moreover, encoding such information in the optimization algorithm
itself may help achieve better results.

In addition to improving parameter estimation accuracy, which requires a reduced
number of algorithm iterations, alleviating the above-mentioned issues is the objective of
this research. To alleviate the above issues, this work develops the M-MGBO algorithm,
which incorporates an appropriate local escaping operator (LCEO) algorithm, the details
of which are available in Section 3.3.1. Further, results exist in the literature showing the
benefits of generating hybrid versions of the PSO algorithm [53]. Therefore, this work
combines the MBGO algorithm with the PSO and also further combines the advanced
LCEO algorithm mentioned earlier with the PSO algorithm, using them for supercapacitor
parameter estimation. The relevant details are available in Sections 3.3.2 and 3.3.3.
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2. Supercapacitor (SC) Model and Experimental Setup
2.1. SC Model

Various models have been devised to describe the behavior of supercapacitors. Nev-
ertheless, electrical equivalent circuit models have emerged as a practical and prevalent
method for simulating the electrical characteristics of supercapacitors (SCs). In charac-
terizing and simulating the electrical behavior of an SC, equivalent circuit models use
parameterized RC networks. These electrical models serve to determine the SC capacitance
and its correlation with voltage drop, bias voltage, self-discharge, power loss due to inter-
nal resistance, leakage current effects, and the electric dynamic behavior induced by ion
diffusion [1,2].

Furthermore, the SC model can be conceptualized as an electrochemical double-layer
capacitor (DLC) [3]. An exemplary model proposed by [4] is the Zubieta model, which,
through a comprehensive consideration of the device’s behaviors under various operating
conditions and states, has demonstrated an accurate reflection of the physics of the SC. The
Zubieta model comprises three parallel RC branches with a leakage resistance (EPR), as
illustrated in Figure 1.
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Figure 1. Supercapacitor Zubieta model.

Each branch is characterized by a unique time constant indicative of SC behavior
across a specific frequency range. The Zubieta model includes three RC branches, namely
the immediate branch, the delayed branch, and the long-term branch. The immediate (first)
branch is characterized by a voltage-dependent differential capacitance with a constant
capacitor (C1) and a parallel voltage-dependent capacitor (Kv × V1). This first branch
significantly influences the supercapacitor’s behavior during the initial transient time of
operation. The second and third branches (delayed branch and long-term branch) represent
SC behavior over a longer period of time (minutes and hours, respectively). The equivalent
series resistance (EPR) is denoted by RL.

The incorporation of three RC branches allows the model to capture SC characteristics
on distinct timescales, with the immediate branch providing a nonlinear response emulating
the effects of the internal porous double-layer electrode structure of the supercapacitor.
The model parameters are determined using voltage–current measurements, ensuring an
accurate representation of SC behavior. This model is a valuable tool for optimizing SC
performance and improving energy storage systems.

Referring to Figure 1, the total capacitance of the first branch can be calculated as
follows:

C0 = C1 +
Kv

2
× V1(t), (1)

where C1 represents the electrostatic capacitance of the capacitor and Kv represents the
effects of the diffused layer of the SC, and it is the slope of the capacitance as a function of
voltage in F/V.
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The dynamics of the immediate branch can be found as follows

dV1

dt
=

Vt(t)− V1(t)(
C1 +

Kv
2 ·V1(t)

)
·R1

(2)

Similarly, the dynamic of the second and third branches (delayed branch and long-term
branch) are given by the following:

dV2

dt
=

Vt(t)− V2(t)
C2·R2

(3)

dV3

dt
=

Vt(t)− V3(t)
C3·R3

(4)

The current resulting from self-discharge can be represented using the following
equation:

ileak =
Vt

RL
(5)

Hence, the current input to the supercapacitor can be expressed as the summation
of all currents passing through all four branches in the Zubieta model representation,
It = i1 + i2 + i3 + ileak. Computing the currents in terms of the voltages, further allows the
development of a mathematical relation that expresses the SC’s terminal voltage concerning
all branches as follows:

Vt ×
(

1 +
R1

R2
+

R1

R3
+

R1

RL

)
= V1 +

(
R1

R2

)
V2 +

(
R1

R3

)
V3 + ItR1 (6)

By rearranging (6), the following relation is obtained for the SC terminal voltage:

Vt =
(

R2R3RL
R2R3RL+R2R1RL+R1R3RL+R1R2R3

)(
V1 +

(
R1
R2

)
V2 +

(
R1
R3

)
V3 + ItR1

)
(7)

Hence, employing the derived dynamics for the three branches and having knowledge
of the input/total current, the Simulink representation depicted in Figure 2 is employed.
This approach enables the calculation of the estimated terminal voltage once the electrical
parameters of the supercapacitor (SC) are identified. Subsequently, the computed terminal
voltage is cross-referenced with the measured terminal voltage, acting as a validation step
to verify the accuracy of the obtained model.
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2.2. Experimental Setup

The experimental setup configuration comprises a supercapacitor bank, a controlled
current source, current and voltage sensors, and a dSPACE controller, as illustrated in
Figure 3. The controlled current source was modulated using an analog signal through
dSPACE. A voltage signal ranging from 0 V to 5 V governed the remote control of the
power supply. The interface of the power supply with the dSPACE controller is depicted in
Figure 3. The dSPACE controller monitord the terminal voltage of the supercapacitor bank,
and the charging current was measured using the LA25-NP current transducer. To ensure
that the analog signal read by the dSPACE controller remains below 10 V (1 after scaling), a
voltage divider was employed.
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The current source was programmed to generate three distinct charging profiles: Pro-
file 1: a 10 A step input; Profile 2: a 4 A step input; and Profile 3: a variable frequency input,
as illustrated in Figure 4, respectively. For each of these input scenarios, the supercapacitor
bank undergoes charging until it reaches its rated voltage of 15 V. At this point, the relay
between the current source and the supercapacitor bank is deactivated, allowing the SC
bank to settle for a duration of 30 min. Throughout both the charging and settling processes,
the terminal voltage of the SC bank is continuously monitored by the dSPACE controller.

Following the 30 min settling period, the SC bank was discharged to a load. In
this analytical study, particular emphasis was placed on the voltage response of the SC
bank during the charging process as a key element in the optimization problem. The
model generated was designed to emulate the behavior of the supercapacitor during the
charging process.
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2.3. SC Model Validation

The determination of equivalent circuit model parameters is a crucial aspect of the
optimization of SC operation, and various approaches have been proposed in the literature
for this purpose. One such approach is the circuit analysis/analytical method, which estab-
lishes relationships between different circuit components, allowing for the straightforward
identification of the equivalent circuit model parameters. This method has the advan-
tage of having a clear physical interpretation and not requiring extensive experimental
equipment [5].

In the case of the three-branch Zubieta model, a procedure was proposed by Zubieta
et al. [4] to determine the parameters of the SC model. This method involves charging a
fully discharged SC with a high constant current. The immediate branch parameters are
identified by measuring the voltage response at a short time constant, as it is assumed that
this branch has a smaller time constant compared with the other two branches. This results
in all of the charges being initially stored in the immediate branch. Once the capacitor
reaches its rated voltage, the charging current is set to zero, and the parameters of the
delayed branch and long-term branch are then estimated using the voltage response at the
appropriate time constants of each branch.

The parameterization procedure for the Zubieta model is summarized in Table 1. By
employing this method, it is possible to reliably determine the parameters of each branch
of the equivalent circuit model using the SC voltage response at the appropriate time
constants.



Energies 2024, 17, 1500 10 of 31

Table 1. Zubieta model analytical parameterization procedure.

Parameter Relation Comments

R1 R1 = V1
isc

The SC is assumed to start charging at
zero initial conditions. V1 is the voltage

at t1 where 20 ms < t1 < 50 ms

C1 C1 =
isc(t2−t1)

∆V
Where t2 is the time when

∆V = V2 − V1 = 50 mV

Kv Kv = 2
V4

(
Qt
V4

− Co

) Where the amount of charge stored
Qt = isc(t4 − t1), and t4 = t3 + 20 ms.

Where t3 is when Vsc = Vrated

R2 Rd =

(
V4− ∆V2

2

)
(t5−t4)(

Co+k
(

V4− ∆V2
2

))
∆V2

Where t5 is at V5 = V4 − ∆V2. Where
∆V2 = 50 mV

C2 C2 = Qt
V6

−
(

Co +
kV6
2

)
V6 is the voltage at t6 = t5 + 300 s

R3 R3 =

(
V7− ∆V2

2

)
(t7−t6)(

Co+k
(

V6− ∆V2
2

))
∆V2

Where t7 is at V7 = V6 − ∆V2. Where
∆V2 = 50 mV

C3 C3 = Qt
V7

−
(

Co +
kV7
2

)
− C_2 Where V8 is at t8 = 30 min

Accordingly, the procedure in Table 1 is used to find the parameters of the Zubieta
model for a 384 F SC bank rated at 15 V using Profile 1 (Figure 4a). The identified parameters
are presented in Table 2, and the corresponding voltage response is graphically represented
in Figure 5.

Table 2. Identified SC parameters using Zubieta model analytical parameterization procedure.

Parameter Value

Kv

(
F
V

)
53.4472

R1(Ω) 0.0041
C1(F) 0.8516
R2(Ω) 0.0024
C2(F) 69.7146
R3(Ω) 4.9780
C3(F) 126.8252

T1 0.00349156
T2 0.167315
T3 631.4593
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Despite its simplicity, the analytical method is not suitable for real-life applications,
as it does not provide accurate parameter estimates for the Zubieta model with inputs
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other than a step input. However, the parameters obtained using this method can serve
as an initial estimate for parameterization. A study by researchers in [6] compared the
Zubieta model’s behavior to that of a real supercapacitor. The research found that there
is a discrepancy between the simulated and actual behavior due to the model’s inability
to account for self-discharge phenomena. Additionally, the quality of data and charging
current amplitude significantly affect the parameterization process.

3. Proposed Identification Methods

This section introduces our proposed procedure for identifying the SC Zubieta model
parameters. Each phase of this process is explained in the subsequent subsections.

3.1. Metaheuristic Gradient-Based Optimization (MGBO)

The metaheuristic gradient-based optimization (MGBO) algorithm was first intro-
duced in [7]. This method was further applied for the parameter identification of single
and two-diode models of solar cells [8]. The MGBO method incorporates both gradient
and population-based techniques to determine the search direction via Newton’s method
(Given by (8)). MGBO uses a set of vectors and two key operators, the gradient search rule
and local escaping operators, to traverse the search domain and minimize the objective
function in optimization problems.

xn+1 = xn −
f (xn)

f ′(xn)
= xn −

2∆x × f (xn)

f (xn + ∆x)− f (xn − ∆x)
(8)

The MGBO algorithm applied a variant of the Newton’s method in its formation
proposed by [9]. The methodology followed by this variant improves the iterative process
of the method by approximating the indefinite integral by a trapezoid instead of a rectangle.
This reduces the error in the approximation and uses the average vector of zn+1 and xn,
instead of using xn only. The enhanced representation is given by the following:

xn+1 = xn −
f (xn)

f ′
(

[zn+1+x n ]
2

) where, (9)

zn+1 = xn −
f (xn)

( f ′)
(10)

3.1.1. Gradient Search Rule (GSR) and Algorithm Formulation

The formulation of the gradient search rule (GSR) is based on an approach that
incorporates the use of Newton’s gradient. The use of this methodology entails regulating
the exploration of the solution vector within the search space with the aim of augmenting
the rate at which the metaheuristic GBO achieves convergence. The GSR, using (8), is
formulated as follows:

GSR = 2∆x·µ1·rn
Xit

i
xworse − xbest + ε

, (11)

where in (11), rn is a normal distributed random number, Xit
i is the current approximation

(xn), ∆x is the derivative incrementation value, and xworse and xbest are the worst and best
positions neighboring Xit

i in the optimization process. The search capabilities of the MGBO
algorithm are enhanced by adding a random parameter µ1 to the GSR, where it is given by
the following relation:

µ1 = 2·r·α − α, (12)

where r is a random number between 0 and 1 and

α =

∣∣∣∣βsin
(

3π

2
+ sin

(
β3π

2

))∣∣∣∣, (13)
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β = βmin + (βmax − βmin)

(
1 −

( m
M

)3
)2

, (14)

where βmax and βmin are 0.2 and 1.2, respectively, m is the number of the current iteration,
and M is the total number of iterations. The optimization process involves searching for
the optimal solution in the given search space. The parameter α is introduced to enhance
the algorithm’s balance between local and global search.

In contrast, ∆x is defined as the difference between the best position and a randomly
selected position from the population of the current iteration.

∆x = rand(1 : N)×|S|, (15)

S =

(
xbest − xm

r1
)
+ γ

2
, (16)

γ = 2·r
(∣∣∣∣∣∑4

n=1xm
rn

4
− xm

n

∣∣∣∣∣
)

, (17)

where ra and rb are random variables in the range [0, 1].

3.1.2. Direction of Movement

The direction of movement (DM) in (18) is introduced into the algorithm to enhance
the exploitation of the area near the solution Xit

i , moving the current solution vector in the
direction of

(
xbest − Xit

i
)
.

DM = rand × µ2

(
xbest − Xit

i

)
(18)

Hence, the GSR and DM are used to update the current position vector (X it
i

)
and the

following relation is derived:

X1m
n = Xit

i − randn·µ1

((
2∆x·Xit

i
(ypm

n − yqm
n + ε)

))
+ rand·µ2

(
xbest − Xit

i

)
(19)

Moreover, by replacing the position vector of the best solution with the current solution
vector

(
Xit

i
)
, a newly generated vector can be generated as follows:

X2m
n = xbest − randn·µ1

((
2∆x·Xit

i
ypm

n − yqm
n + ε

))
+ rand·µ2(xm

r1 − xm
r2), (20)

where, in the given context, the variables ypm
n and yqm

n are two positions centered/averaged
with respect to zn+1 and Xit

i and are given by the following:

ypm
n = rand·

((
zn+1 + Xit

i
)

2
+ rand·∆x

)
(21)

yqm
n = rand·

((
zn+1 + Xit

i
)

2
− rand·∆x

)
(22)

Moreover, DM for X2m
n is given as follows:

DMX2 = rand·µ2(xm
r1 − xm

r2) (23)

Hence, the GSR can be expressed as follows:

GSRX1 = GSRX2 = rand ×
µ1
(
2∆x × Xit

i
)

(y p − yq + ε
) (24)
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The solution X2m
n is defined as a local search direction, where although it is good

for local search, it is limited to global search. Moreover, the solution X1m
n is defined for

global search (exploration), but it is limited to local search. Hence, the MGBO algorithm is
developed to take advantage of both solutions (X1m

n and X2m
n ), as well as take advantage

of both exploitation and exploration. The combination of both solutions results in the
following updated solution

(
Xit+1

i

)
, derived from the current solution Xit

i :

Xit+1
i = ra(rbX1m

n + (1 − rb)X2m
n ) + (1 − ra)X3m

n , (25)

where
X3m

n = Xit
i − µ1(X2m

n − X1m
n ) (26)

and ra and rb are two random numbers between 0 and 1.

3.1.3. Local Escaping Operator LCEO

The MGBO algorithm can be susceptible to getting stuck in local optima, which can
limit its ability to find the global optimum. To address this issue, the local escaping operator
(LCEO) has been proposed as a way to significantly change the position of the solution
xn, leading to improved search capability. The LCEO operator generates a new solution,
XLCEO, by combining several solutions, including the best position ( xbest), the solutions
X1m

n and X2m
n , two randomly selected solutions from the population, xr1 and xr2, and a new

randomly generated solution, Xz. This approach effectively enables the MGBO algorithm
to break away from local optima, exploring new regions within the solution space, thereby
enhancing the likelihood of discovering a global optimum. Hence, the LCEO is defined via
the following scheme (Algorithm 1) [8]:

Algorithm 1 Local ESCAPING OPERATOR (LCEO)
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In Algorithm 1, nP is the number of members in the population, LC is a changing
variable, xr1 and xr2 are two random members from the population, and Xit

i is the ith

member current solution in iteration ′it′.

3.1.4. MGBO Algorithm

To start the optimization process, the first crucial step is to initialize the population.
This step involves randomly generating a set of individuals that can be used to represent
potential solutions to the optimization problem. Within the framework of the MGBO
algorithm, N vectors are used as the population in a d-dimensional search space. In
practice, the initial population is generated by selecting N points within the search space at
random, as presented in the following equation:

Xi = Xmin + r × (Xmax − Xmin) (27)
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In (27), Xmax and Xmin are the upper and lower bounds, and r is a random number
between 0 and 1.

The full algorithm flow proposed by [7] is presented in Algorithm 2, which provides
a detailed overview of the steps involved in the optimization process. It is worth noting
that the optimization process may require multiple iterations before the best solution is
found. Each iteration involves updating the positions of the population in the search space
based on their individual and collective behavior. Through this process, the algorithm
can systematically navigate the search space, facilitating more effective exploration and
convergence towards the optimal solution.

Algorithm 2 Metaheuristic gradient-based optimization
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neighbors, with the goal of moving toward the best solution found so far by the entire 
population [11]. The PSO algorithm starts with a population of particles, each represent-
ing a set of parameter values. Each particle has a position in the parameter space and a 

In Algorithm 2, ε is a small number (0 ≤ ε ≤ 0.1), nj is the number of parameters,
Xmin, and Xmax are the parameters upper and lower bounds, and MaxIt is the maximum
number of iterations.

3.2. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) (Figure 6) is a metaheuristic computational method
that emulates the social behavior of birds flocking or fish schooling. It is a population-based
optimization algorithm that was first introduced by Kennedy and Eberhart in 1995 [10].
The algorithm starts with a population of particles, each representing a potential solution
to the optimization problem. Each particle has a position in the search space and a velocity
that determines how it moves through the space. The particles update their positions and
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velocities based on their own experience and the experience of their neighbors, with the
goal of moving toward the best solution found so far by the entire population [11]. The
PSO algorithm starts with a population of particles, each representing a set of parameter
values. Each particle has a position in the parameter space and a velocity that determines
how it moves through the space. The particles update their positions and velocities based
on their own experience and the experience of their neighbors, intending to move towards
the best set of parameters found so far by the entire population [10].
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The movement of a particle is determined by its current velocity, which is updated
based on its personal best and global best positions, as well as a random value called the
“inertia weight”. The velocity update rule is given by the following:

V(t + 1) = W × V(t) + c1 × r × (Pbest − P(t)) + c2 × r × (Gbest − P(t)), (28)

where t is the current iteration, r is a random number between 0 and 1, W is the inertia
weight, Pbest is the best set of parameters (position values) a particle has encountered so
far, Gbest is the best set of parameters (position values) encountered by any particle in the
population, and c1 and c2 are constants that control the relative importance of the personal
best and global best positions. The position of the particle is updated based on its current
velocity using the following equation:

Position(t + 1) = Position(t) + Velocity(t + 1) (29)

3.3. Proposed Algorithms Varients
3.3.1. Modified Metaheuristic Gradient-Based Optimization Algorithm (M-MGBO)
Application for SC Parameterization

The original MGBO algorithm, as described in [7], has been augmented with certain
modifications. A noteworthy addition has been the introduction of a cross-over operator
that assesses the adherence of the solution generated by (25) to the upper and lower
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bounds. In the MGBO algorithm, should a solution exceed these bounds, a novel solution
that remains within these confines is produced for the respective population member.
This approach mirrors the methodology used during the initial population generation, as
presented in (27). The modified cross-over operator functions by contrasting the solution
Xit

i of the current iteration with the upper and lower bounds. If any parameter of the
solution breaches these bounds, it is substituted with its previous value from the previous
iteration, Xit−1

i .
An additional noteworthy constraint of the original MGBO algorithm becomes appar-

ent during its transition into the LCEO phase. In this phase, the solution obtained by the
MGBO approach, marked as Xit

i , is replaced with the solution obtained through the LCEO
(Xi

LCEO). The basis for this change is grounded in the belief that the LCEO procedure often
produces superior solutions, thereby enabling an escape from local minima. However, this
advantage is mostly evident in the initial stages of the optimization process. The MGBO
algorithm has an inherent tendency to guide the whole population towards the globally
optimum solution as long as the gradient is not too small. The aforementioned tendency
ultimately limits the effectiveness of the LCEO when the number of iterations increases.

Moreover, the incorporation of randomness by the LCEO algorithm serves the purpose
of aiding the MGBO in converging toward the optimal solution. However, it is important
to note that this randomness might also restrict the algorithm’s capacity to escape from
a local minimum. To tackle these concerns, several alterations have been suggested for
the LCEO. The modified approach includes a comparator to evaluate and compare the
responses produced by the LCEO and MGBO methods. This allows the algorithm to select
the superior solution based on the fitness function. The comparator serves the additional
purpose of mitigating the algorithm’s tendency to become trapped in a local minimum.
This is achieved by identifying instances in which the LCEO solution surpasses the MGBO
solution in terms of cost function.

Secondly, the LCEO has been modified to reduce randomness and control the direction
of the generated solution. The LCEO now moves towards the second and third best
solutions, in addition to the best solution. This modification aims to increase population
diversity and accuracy while also improving the ability of the algorithm to escape from a
local minimum. By moving towards other good solutions, the LCEO is less likely to get
stuck at a local minimum and more likely to find the global minimum. Moreover, to further
facilitate the investigation of the LCEO technique, an additional variable denoted as C is
introduced.

The value of C is used to replace α in (12). The parameter α is employed to determine
the equilibrium between exploration and exploitation, while the variable C is incorporated
to augment this dynamic within the LCEO and to increase the weight of the best solution
movement. As depicted in Figure 7, the C value exhibits an increase with the decrease
of α (initially). In the event that the algorithm gets confined to a local minimum within
the initial 100 iterations, the incorporation of the C value amplifies the LCEO’s capacity to
provide a diverse solution, hence augmenting its exploitative potential. As a result, a new
variable is defined (µ3):

µ3 = 2·r·C − C (30)

Hence, the modifications to the LCEO aim to improve the performance of the MGBO
by addressing some of the limitations of the original LCEO method. By introducing a
comparator and modifying the LCEO to reduce randomness and control the direction of the
generated solution, the algorithm is enhanced in its ability to locate the global minimum
and avoid being trapped in a local minimum.

The comprehensive pseudocode detailing the modified MGBO (M-MGBO) algorithm,
inclusive of the model’s constraints and the modifications, is provided in Algorithm 3.
Corresponding functions associated with this algorithm can be found in Algorithm 4 and
Algorithm 5.
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The LCEO modifications have the potential to significantly enhance the performance
of optimization algorithms and lead to better solutions across a broad spectrum of problems.
The updated LCEO algorithm is given in Algorithm 6.
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3.3.2. Hybrid PSO-MGBO

The hybrid PSOGBO algorithm leverages the strengths of both the PSO and M-MGBO
algorithms to achieve a better performance. The PSO algorithm is the primary algorithm
used for solving the optimization problem, while the M-MGBO algorithm is used to direct
the population toward the optimal solution. Initially, at the start of the iteration, the PSO
algorithm updates the velocity and position of each particle in the population. Next, the
ratio of the cost (MSE) of the current solution to the global best solution cost is compared to a
threshold. If this ratio exceeds the threshold, the particle is recorded and saved into a vector.
This process is repeated for each particle in the population, and the newly generated vector
is used as the initial population for the M-MGBO algorithm. The M-MGBO algorithm
is then executed for a specified number of iterations, generating new members of the
population that are compared to the original members to determine if the newly generated
positions are improvements. Following this step, the global and personal best solutions are
updated for the hybrid algorithm.

By combining the PSO algorithm’s efficiency in exploring the search space with the
M-MGBO algorithm’s ability to guide the search towards the optimal solution, the hybrid
approach achieves a better performance than either algorithm on its own. The algorithm
flow chart is shown in Figure 8.

Energies 2024, 17, x FOR PEER REVIEW 21 of 34 
 

 

 
Figure 8. Flow chart hybrid PSO-MGBO method developed in this work. 푃푏푒푠푡 is the personal best 
solution, and 퐺퐵푒푠푡 is the global best solution. Text in red indicates the related steps to the M-
MGBO algorithm. 

3.3.3. Adding the Local Escaping Operator to the PSO  
Another variant of the PSO algorithm introduced in this research involves the incor-

poration of the local escaping operator (LCEO) into the standard PSO algorithm. The 
LCEO generates a superior particle that is guided by the global best solution (푥 ), 푥 , 
and 푥 , hence enhancing the diversity of the population. Similar to the MGBO and M-
MGBO algorithms, the LCEO is used to overcome the problem of particles ge ing stuck 
in local optima by allowing the particle to escape from its current local optima and move 
toward the global optima.  

After generating the LCEO solution 푋  (Algorithm 6), it is compared to the PSO-
generated solution, the global best solution, and the personal best solution. If the perfor-
mance of the 푋  solution in terms of MSE is be er than the PSO-generated solution, 
the particle’s current position is changed to the 푋  position, and the particle’s velocity 
is computed again. Otherwise, the 푋  solution is discarded, and the particle’s current 
position remains unchanged. This process is repeated until the optimal solution is found. 
Algorithm 7 provides the pseudocode of the algorithm applied for SC parameterization. 
The use of LCEO in the PSO algorithm has exhibited a promising performance in tackling 
optimization problems, particularly in scenarios where the search space is complex or 
where particles tend to get trapped in local optima. 

  

Figure 8. Flow chart hybrid PSO-MGBO method developed in this work. Pbest is the personal
best solution, and GBest is the global best solution. Text in red indicates the related steps to the
M-MGBO algorithm.

3.3.3. Adding the Local Escaping Operator to the PSO

Another variant of the PSO algorithm introduced in this research involves the incorpo-
ration of the local escaping operator (LCEO) into the standard PSO algorithm. The LCEO
generates a superior particle that is guided by the global best solution (xbest), xbest2, and
xbest3, hence enhancing the diversity of the population. Similar to the MGBO and M-MGBO
algorithms, the LCEO is used to overcome the problem of particles getting stuck in local
optima by allowing the particle to escape from its current local optima and move toward
the global optima.
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After generating the LCEO solution XLCEO (Algorithm 6), it is compared to the PSO-
generated solution, the global best solution, and the personal best solution. If the perfor-
mance of the XLCEO solution in terms of MSE is better than the PSO-generated solution,
the particle’s current position is changed to the XLCEO position, and the particle’s velocity
is computed again. Otherwise, the XLCEO solution is discarded, and the particle’s current
position remains unchanged. This process is repeated until the optimal solution is found.
Algorithm 7 provides the pseudocode of the algorithm applied for SC parameterization.
The use of LCEO in the PSO algorithm has exhibited a promising performance in tackling
optimization problems, particularly in scenarios where the search space is complex or
where particles tend to get trapped in local optima.

Algorithm 7 PSO-LCEO
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4. Results and Discussion

In this study, the Zubieta model parameters were determined for an SC bank compris-
ing six capacitors in series, each with a rating of 2300 F, resulting in a total bank capacitance
of 383.33 F. The estimation process involved using three different input signals: a step input
with amplitudes of 10 A (Figure 4a) and 4 A (Figure 4b), along with a variable frequency
input (Figure 4c), corresponding to profiles 1, 2, and 3 respectively. For each input, four
distinct algorithms (M-MGBO, PSO, PSOLCEO, and PSO-MGBO) were executed in three
separate runs. The Zubieta model, characterized by three branches, requires the estima-
tion of a total of eight parameters, namely R1, R2, R3, C1, C2, C3, Kv, and RL. Each
of the algorithms (M-MGBO, PSO, PSOLCEO, and PSO-MGBO) requires initial guesses,
which are formed using the analytical Zubieta model parameters and also using any initial
guess selection rules the algorithms may have. These are detailed in the listings of each
algorithm—for example, certain algorithms use the random initialization of the parameters’
values in the given bounds. The bounds themselves are derived using the parameters’ val-
ues derived using Zubieta’s analytical method. In each iteration of the respective algorithm,
the parameters are estimated following the respective algorithmic procedures as outlined
in Section 3. These estimated parameters are then used to estimate the supercapacitor
terminal voltage at the given value of current, following Zubieta’s model equations. The
mean square error between the measured and estimated supercapacitor terminal voltage,
which is obtained using the estimated parameters, is used as the cost/fitness function to
evaluate the fitness of the estimated parameters.

It is worth noting that the existence of a voltage-dependent capacitance in one of the
Zubieta model’s branches makes this a nonlinear model. It is this nonlinear model that
is used to evaluate the fitness of the estimated model parameters. Moreover, the MGBO
algorithm used incorporates both gradient and population-based techniques to determine
the search direction using Newton’s method. This search direction is based on a linear
estimation of the gradient of the cost/fitness function. However, such approximation
can make the algorithm prone to being stuck in a local optimum. To avoid this, the local
escaping operator (LCEO)-based routine is used to augment the MGBO algorithm into the
M-MGBO algorithm.

4.1. Parameters Estimation Results

The evaluation of the algorithms’ performance considered various criteria, includ-
ing MSE and the computation time. Optimization took place on a personal computer
equipped with an Intel(R) Xeon(R) E-2124 central processing unit operating at a frequency
of 3.30 gigahertz and 16 gigabytes of random-access memory.

The cost function for the optimization problem was set to minimize the difference
between the simulated SC voltage from the derived model and the actual measured voltage.

Minimize SSE = ∑T
t=1 [Vt(t)− Vm(t)]

2, (31)

where Vt(t) is the capacitor terminal voltage given by Equation (7) obtained using estimated
model parameters, and Vm(t) is the measured supercapacitor voltage.

The M-MGBO algorithm demonstrated superior performance compared with the
other algorithms. In the case of Profile 1 (Table 3), M-MGBO and PSO-LCEO exhibited
MSE values of 0.003927 and 0.003493, respectively. Notably, M-MGBO boasted the shortest
computational time at 20,141.028 s, outperforming PSO-LCEO (26,782.93 s) and the hybrid
PSO-MGBO (77,735.494 s). Additionally, parameters obtained by the M-MGBO algorithm
were closer to analytically derived parameters (Table 2). For instance, the first branch
capacitor C1 had a value of 0.7723 F with M-MGBO compared with 14.607195 F with
PSO-LCEO.
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Table 3. Experimental results for the parameters estimated using current Profile 1 with 150 iterations
(T1, T2, and T3 are the respective branches’ time constants).

Parameter M-MGBO PSO PSO-LCEO PSO-MGBO

Kv

(
F
V

)
38.45929984 14.07398 33.22398 33.266903

R1(Ω) 0.013163046 0.127028 0.014034 0.04586
C1(F) 0.77232877 48.13062 14.60719 0.95056
R2(Ω) 0.487789546 5.190033 0.4396 1.61732
C2(F) 224.0938314 154.1119 168.6782 175.7074
R3(Ω) 36.734606504 21.07912 4.807739 42.54308
C3(F) 394.158958 331.8499 214.2253 243.417
Rl(Ω) 25.70462833 68.13273 62.47676 37.94408
MSE 0.003927391 0.057314 0.003494 0.025034

Elapsed Time 20141.028 16564.040 26782.930 77735.494
T1 0.010166 6.113936 0.204997 0.043593
T2 109.3106 799.8458 74.15094 284.1751
T3 14479.27 6995.104 1029.939 10355.71

Average MSE 0.006813 0.07581693 0.008789473 0.03842393

The convergence curve plays a vital role in assessing optimization algorithms, offering
insights into the speed and efficiency of their convergence to the optimal solution. Notably,
the convergence curve for the M-MGBO algorithm stands out for its swift and stable
convergence with minimal oscillation. While the PSO-LCEO algorithm also showed stable
convergence, it did so at a slower pace compared with the M-MGBO algorithm. For
Profile 1, Figure 9a illustrates the convergence curve of the best run for all four algorithms,
showcasing the M-MGBO algorithm’s rapid convergence. Simultaneously, Figure 10a
presents the voltage response for the same input.

1 
 

 
(a) (b) 

 
(c) 

 
Figure 9. (a) Convergence curve for Profile 1, (b) Convergence curve for Profile 2, and (c) Convergence
curve for Profile 3.
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Table 4 demonstrates the performance of the four optimization algorithms in esti-
mating the parameters of a Zubieta supercapacitor model using Profile 2 as input. The
M-MGBO algorithm exhibited the lowest MSE of 0.001001 and a significantly shortened
computational time of 31,320.07 s. In contrast, the PSO-LCEO algorithm yielded a very
similar MSE of 0.001017 compared with the M-MGBO algorithm. However, it exhibited a
longer execution time of 36,297.98 s.

Table 4. Experimental results for the parameters estimated using current Profile 2 with 150 iterations
(T1, T2, and T3 are the respective branches’ time constants).

Parameter M-MGBO PSO PSO-LCEO PSO-MGBO

Kv

(
F
V

)
37.2805859 27.8131 36.4359 36.86813

R1(Ω) 0.05835297 0.07556 0.056184 0.149894
C1(F) 0.03307588 17.957 0.627231 0.105358
R2(Ω) 0.69575519 0.5943 0.701702 5.188335
C2(F) 228.197898 163.674 226.8816 198.3325
R3(Ω) 24.4703793 31.6255 18.62833 37.35831
C3(F) 394.767419 330.281 273.4351 251.036
Rl(Ω) 52.358648 56.0493 94.7854 63.34033
MSE 0.0010013 0.01342 0.001017 0.009034

Elapsed Time 31320.07 109260 36297.98 22324.22
T1 0.00193 1.356831 0.03524 0.015793
T2 158.7699 97.27146 159.2033 1029.015
T3 9660.108 10445.3 5093.639 9378.281

Average MSE 0.001001 0.103347 0.0031693 0.107982
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The hybrid PSO-MGBO and standard PSO algorithms exhibited higher MSE values
of 0.01342 and 0.009034, respectively. In terms of average MSE, the M-MGBO algorithm
outperformed others with a value of 0.001001, followed by the PSOL-CEO algorithm at
0.003169. The hybrid PSO-MGBO and regular PSO algorithms had higher average MSE
values at 0.103347 and 0.107982, respectively. It is noteworthy that the LCEO operator,
which is employed in the PSO-LCEO algorithm, serves as a method for escaping local
optima during the optimization process. Despite this feature, the PSO-LCEO algorithm
could not provide superior parameter estimates compared with the M-MGBO algorithm
in this study. For the convergence curve of the best run for the four algorithms, refer to
Figure 9b, while Figure 10b presents the corresponding voltage response.

The parameters obtained using Profile 3 input are presented in Table 5. The M-MGBO
algorithm exhibited an MSE of 0.0042315, while the PSO-LCEO showed a comparable per-
formance with an MSE of 0.004231. The hybrid PSO-MGBO had a similar MSE of 0.004231
but still outperformed the PSO-LCEO in terms of computational time, completing the task
in only 32,206 s compared with 39,252 s. Notably, the M-MGBO algorithm showcased the
best performance in terms of simulation time, with a runtime of 28,622 s.

Table 5. Experimental results for the parameters estimated using a variable frequency current profile
with 150 iterations (T1, T2, and T3 are the respective branches’ time constants).

Parameter M-MGBO PSO PSO-LCEO PSO-MGBO

Kv

(
F
V

)
51.74533692 125.415 51.72809 51.74644

R1(Ω) 0.080265842 0.1346 0.080451 0.015515
C1(F) 0.012783609 71.44 0.002166 0.572341
R2(Ω) 0.572682701 8.90377 0.571799 0.080359
C2(F) 223.6858074 186.193 223.5703 223.6356
R3(Ω) 49.99947713 24.526 50 49.99997
C3(F) 399.9692153 292.147 400 400
Rl(Ω) 20.90658189 31.4604 20.86642 20.90162
MSE 0.004231544 0.30036 0.004231 0.004231

Elapsed Time 28622.51195 19408.00527 39252.59362 32206.02127
T1 0.001026 9.615824 0.000174 0.00888
T2 128.101 1657.82 127.8373 17.97113
T3 19998.25 7165.197 20000 19999.99

Average MSE 0.004233505 0.226921781 0.010902 0.004257128

It can be noted from the results that the M-MGBO and PSO-LCEO algorithms showed
the best performance in terms of MSE, while the PSO-MGBO algorithm had a good balance
between performance and simulation time. The PSO algorithm had the lowest computa-
tional time, but it had a significantly worse performance in terms of MSE. The convergence
curve for the best run of the four algorithms is presented in Figure 9c, and the voltage
response is presented in Figure 10c.

4.2. M-MGBO Results Validation

The results of 30 iterations of the M-MGBO method used to estimate the parameters
of the Zubieta model of supercapacitors using a variable frequency input are presented
in Table 6. The primary objective of this analysis is to assess the algorithm’s performance
in terms of the consistency of parameter estimations, the accuracy of results pertaining to
resistance and capacitance values, and any other noteworthy observations obtained from
the table.
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Table 6. Experimental results for the parameters using M-MGBO and variable frequency with 30 runs
(T1, T2, and T3 are the respective branches’ time constants).

Parameter Standard Deviation Average

Kv

(
F
V

)
0.346049 51.95607

R1(Ω) 0.000967 0.079637
C1(F) 0.005086 0.01552
R2(Ω) 0.02133 0.555367
C2(F) 0.129872 223.7431
R3(Ω) 0.070908 49.96596
C3(F) 0.912619 399.2558
Rl(Ω) 0.405767 21.18428

T1 0.000393 0.001233
T2 4.766871 124.2593
T3 72.75695 19949.26

It is also important to consider the parameters’ standard deviation while analyzing the
algorithm’s performance, as it provides a measure of the algorithm’s consistency. The stan-
dard deviation is a statistical measure used to assess the variability in parameter estimations
across the 30 runs. Lower values of standard deviation indicate a higher level of consistency
in the estimations. It is worth mentioning that certain parameters, including R1 (Ω) and
R2 (Ω), exhibit remarkably low standard deviation values, specifically 0.0009 and 0.02,
respectively. The observed low values of standard deviation suggest that the M-MGBO
algorithm exhibits a consistent pattern of convergence, yielding parameter estimations that
are highly similar across every iteration. The level of consistency demonstrated in this
context is of the utmost importance for practical applications, as it ensures the reliability
and predictability of outcomes.

4.3. MGBO and M-MGBO Comparsion

To verify the reliability and assess the effectiveness of the modifications applied to
the original MGBO algorithm, three separate runs were executed using the unaltered
MGBO algorithm but with varying frequency inputs. The MGBO algorithm produced an
average MSE of 0.0064, with a standard deviation of 5.7735 × 10−7 over the course of these
three runs. Table 7 provides a comparative analysis between the M-MGBO and MGBO.
Additionally, Figure 11 illustrates the convergence curve for the best-performing runs.

Table 7. Comparison of M-MGBO and M-MGBO best run 150 iterations (T1, T2, and T3 are the
respective branches’ time constants).

Parameter MGBO M-MGBO

Kv

(
F
V

)
53.00867 51.74533692

R1(Ω) 0.229319 0.080265842
C1(F) 0.0488278 0.012783609
R2(Ω) 0.872346 0.572682701
C2(F) 223.6373 223.6858074
R3(Ω) 50 49.99947713
C3(F) 399.9993 399.9692153
Rl(Ω) 20.90988 20.90658189

T1 127.9978 17.9543
T2 19999.97 19998.2516
T3 53.00867 51.74533692

MSE 0.0063571 0.004231544
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For Kv the MGBO yielded a value of 53.0087 F/V, while the M-MGBO resulted in
51.7453 F/V. Despite the standard M-MGBO exhibiting a greater MSE when compared to
the M-MGBO, it demonstrated a lower standard deviation for Kv. Specifically, the standard
deviation for Kv was 0.0702 for the standard MGBO and 0.2311 for M-MGBO. This pattern
is consistent for both R3 and RL.

4.4. Parameters Testing

As demonstrated earlier, the M-MGBO method provides a more precise estimation of
parameters concerning accuracy and MSE. To conduct additional testing on parameters
from the four distinct methods, the optimal parameters acquired from the three runs (as
presented in Tables 4–6) undergo further evaluation by interchanging and applying them
to the remaining inputs. For example, parameters obtained using Profile 1 input are tested
using Profile 2 and Profile 3 as inputs, and their mean squared error (MSE) is recorded.

Table 8 presents a scenario where parameters, initially estimated via Profile 1, were
subsequently evaluated with Profile 2 and Profile 3 inputs. In the experiment with Profile
2, it is evident that the parameters of the M-MGBO algorithm yield the lowest MSE value
of 1.4291. Furthermore, the PSO, PSO-MGBO, and PSO-LCEO had similar MSE values.
Specifically, the PSO-LCEO algorithm demonstrated the second lowest MSE of 1.6312,
followed by the PSO-MGBO method, with an MSE of 1.6396, and the PSO algorithm, with
an MSE of 1.6442. When considering the use of parameters with Profile 3, it was seen that
the M-MGBO algorithm exhibited the lowest MSE of 0.1195. Subsequently, the PSO-LCEO
program showed an MSE of 0.1469, while the PSOGBO algorithm yielded an MSE of 0.1482.
The PSO method demonstrated the most significant MSE value, measuring 0.4614.

Table 8. MSE for Profile 1 parameters tested with Profiles 2 and 3 as inputs.

Algorithm Profile 2 (4A Input) Profile 3 (Variable Frequency Input)

MGBO ---- 0.1489
PSO-GBO 1.6396 0.1482
M-MGBO 1.4291 0.1195
PSO-LCEO 1.6312 0.1469
PSO 1.6442 0.4614

Table 9 presents the results of the parameter testing conducted using parameters
estimated using Profile 3 but tested with Profile 1 and Profile 2. The M-MGBO parameters
yielded the lowest MSE in all tests. Specifically, the MSE was found to be 0.7448 for
the Profile 2 input and 0.1754 for the Profile 1 input. The parameters of the PSO-LCEO
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algorithm exhibited the second-lowest MSE for both tests. Specifically, the MSE was found
to be 0.7464 for the 4 A step input and 0.2001 for the 10 A step input.

Table 9. MSE for Profile 3 parameters tested with Profiles 1 and 2 as inputs.

Algorithm Profile 2 (4 A Input) Profile 1 (10 A Input)

MGBO ---- ----
PSO-MGBO 0.8144 0.5252
M-MGBO 0.7448 0.1754
PSOL-CEO 0.7464 0.2001
PSO 0.8645 0.5794

The PSO-MGBO algorithm parameters have been determined to be the third-best
performing algorithm, whereas the PSO algorithm exhibited the greatest mean MSE for
both test cases. In a similar manner, while employing parameters estimated using Profile 2
tested with Profile 1 as input (Table 10), the same pattern emerged. The M-MGBO algorithm
parameters yielded the lowest MSE value of 1.4149, followed by the PSO-LCEO and the
PSO-MGBO, with MSE values of 1.5438 and 1.5349, respectively. In the instance of the
Profile 3 input, the PSOL-CEO parameters yielded the lowest MSE of 0.9877, while the
M-MGBO resulted in a slightly higher MSE of 0.9902. Furthermore, the particle swarm
optimization (PSO) method yielded the highest MSE for both test scenarios.

Table 10. M-MGBO variable frequency 30 runs parameters standard deviation and average.

Algorithm Profile 1 (10 A Input) Profile 3 (Variable Frequency Input)

MGBO ---- 1.2619
PSO-MGBO 1.5349 0.9896
M-MGBO 1.4149 0.9902
PSO-LCEO 1.5438 0.9877
PSO 1.6930 1.2362

To perform a more exhaustive evaluation of the algorithm’s parameters, two sup-
plementary tests were conducted. These tests involved using a step input of 8 A (See
Figure 12a) and a controlled current sequence as inputs. The optimal run parameters
derived from prior experiments were used in both tests. Additionally, the performance is
also assessed by comparing it to the analytical technique in order to validate the suitability
of the parameters derived from the four algorithms.
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As evident from Table 11, concerning the Profile 2 parameters, the M-MGBO algorithm
demonstrates the lowest MSE at 0.9619, followed by the PSOLCEO with the second lowest
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MSE of 0.9793, and subsequently, the PSO-MGBO algorithm. In the case of the Profile 1
parameters, the PSO-LCEO showcased the lowest MSE of 0.1418, followed by the PSO-
MGBO algorithm, while the M-MGBO ranked third, with an MSE of 0.2699. Profile 3
parameters exhibited a closely aligned response among M-MGBO, PSO-LCEO, and PSO-
MGBO, displaying minimal deviation in MSE values. Conversely, the PSO algorithm,
across various inputs, performed the least favorably, indicating higher MSE values and
implying lower accuracy and reliability in the estimated parameter.

Table 11. Terminal voltage MSE for test using 8A profile, with parameters estimated using profiles 1,
2, and 3 and the analytical approach parameters.

Algorithm Profile 2 (4 A
Parameters)

Profile 1 (10 A
Parameters)

Profile 3 (Variable
Frequency Parameters)

PSO-MGBO 0.9848 0.1617 0.0942
M-MGBO 0.9619 0.2699 0.0943
PSO-LCEO 0.9793 0.1418 0.0945
PSO 1.1325 0.2824 0.3063
Analytical 7.7745

The controlled current sequence profile used for the following tests is illustrated in
Figure 12b. According to the data presented in Table 12, it can be observed that the M-
MGBO algorithm exhibited superior performance compared with the other algorithms
and the analytical approach in terms of Profile 2 parameters. Specifically, the M-MGBO
algorithm achieved an MSE value of 1.5037.

Table 12. Terminal voltage MSE for test using controlled current sequence profile, with parameters
estimated using profiles 1, 2, and 3 and the analytical approach parameters.

Algorithm Profile 2 (4 A
Parameters)

Profile 1 (10 A
Parameters)

Profile 3 (Variable
Frequency Parameters)

PSO-MGBO 2.1681 0.5573 0.0571
M-MGBO 1.5037 0.0562 0.0483
PSO-LCEO 1.5778 0.2005 0.05765
PSO 2.1251 0.3547 0.0570
Analytical 7.364942

In the case of the Profile 1 parameters, it is evident that the M-MGBO algorithm
exhibited superior performance compared with the other algorithms. The M-MGBO
algorithm achieved an MSE of 0.0562, while the PSO-LCEO algorithm achieved an MSE of
0.2005, and the PSO-MGBO algorithm achieved an MSE of 0.5573. Nevertheless, the PSO-
MGBO algorithm had the lowest performance in this particular test, as the PSO algorithm
outperformed it, with an MSE value of 0.3547. Moreover, using Profile 3 parameters
with the controlled current sequence profile, it was observed that the M-MGBO algorithm
demonstrated superior performance in comparison to the other algorithms, achieving
an MSE of 0.0483. On the other hand, the PSO, PSO-LCEO, and PSO-MGBO algorithms
demonstrated a similar performance, with minimal deviation in MSE values.

5. Conclusions

The importance of energy storage for grid stability and power backup in both con-
ventional and renewable systems is evident. Particularly, supercapacitors stand out for
their excellence in high-power density applications, such as regenerative braking in electric
vehicles. This research concentrates on the parameterization of the Zubieta model tai-
lored for supercapacitors, employing a hybrid metaheuristic gradient-based optimization
(MGBO) strategy. The Zubieta model, featuring three RC branches and a self-discharge
branch, necessitates the identification of seven parameters. The investigation systematically
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compared the performance of the modified MGBO (M-MGBO) against particle swarm
optimization (PSO) and two variations—one integrating PSO with M-MGBO and the other
introducing a local escaping operator (LCEO). The evaluation encompasses key metrics like
convergence rate, accuracy, and processing/computational time. The results indicate that
both hybrid PSO-MGBO and PSO-LCEO surpass conventional PSO, exhibiting enhance-
ments of 51% and 94%, respectively. Remarkably, these variants proved to be comparable
to M-MGBO. These methodologies effectively contribute to the accurate estimation of
Zubieta model parameters, The study underscores the considerable potential of hybrid
optimization strategies in advancing the precision and effectiveness of supercapacitor
model parameterization.

The findings showed M-MGBO’s adaptability to diverse operational contexts, with
specific examples of a computational time of 31,320.07 s under a 4 A step input. Delving
into the consistency and reliability of M-MGBO, the study scrutinized standard deviation
values across 30 runs, revealing a remarkably stable pattern. This consistency is pivotal for
practical applications, ensuring predictability and reliability in outcomes. The meticulous
examination of the algorithm’s performance underscored its reliability, with a computa-
tional time of approximately 28,610 s across 30 runs, adhering to the expected order of
magnitude in resistance and capacitance values with respect to the analytical approach. As
reported in the literature, when using metaheuristic algorithms the search for the optimal
solution can become caught in local optima in most nonlinear systems with more than one
minimum. Moreover, they do not always guarantee the global optimum solution and only
provide nearly optimal solutions. This paper attempts to overcome these challenges by
proposing some novel updates to the metaheuristic algorithms, and further improvements
are left for future efforts.
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