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Abstract: Effective machine learning regression models are useful toolsets for managing and planning
energy in PV grid-connected systems. Machine learning regression models, however, have been
crucial in the analysis, forecasting, and prediction of numerous parameters that support the efficient
management of the production and distribution of green energy. This article proposes multiple
regression models for power prediction using the Sharda University PV dataset (2022 Edition). The
proposed regression model is inspired by a unique data pre-processing technique for forecasting
PV power generation. Performance metrics, namely mean absolute error (MAE), mean squared
error (MSE), root mean squared error (RMSE), R2-score, and predicted vs. actual value plots, have
been used to compare the performance of the different regression. Simulation results show that the
multilayer perceptron regressor outperforms the other algorithms, with an RMSE of 17.870 and an R2

score of 0.9377. Feature importance analysis has been performed to determine the most significant
features that influence PV power generation.

Keywords: photovoltaic; regression algorithms; mean absolute error; mean squared error; root mean
squared error; grid; forecasting

1. Introduction

Due to the capacity to produce power without predominantly generating greenhouse
gases, photovoltaic (PV) systems are being considered as an alternative form of clean
energy. Precise PV power generation forecasts are crucial for effective electricity oversight,
particularly for establishing and programming purposes [1]. Reliable forecasting of power
generation, impacted by an assortment of variables, including the climate, radiation from
the sun, and system effectiveness, is necessary for the effective operation of PV systems [2].
Accurate forecasting is crucial for effective energy management, planning, energy genera-
tion scheduling, and ensuring the power grid’s stability and reliability [3]. In recent years,
conventional machine learning algorithms have emerged as powerful tools for forecasting
PV power generation. Demand response, proactive maintenance, energy production, and
load predicting are just a few applications where machine learning models are the go-to
toolkit for researchers [4]. These models can capture complex nonlinear relationships
between various factors influencing power generation and accurately predicting future
values [5]. The use of deep learning, nevertheless, can be useful when dealing with time
series data. Auto-Regressive Integrated Moving Averages (ARIMAs) methods are beneficial
for instantaneous forecasting of powerful time series data. Artificial neural networks are

Energies 2024, 17, 1564. https://doi.org/10.3390/en17071564 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17071564
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0009-0008-8205-5721
https://orcid.org/0000-0002-3256-894X
https://orcid.org/0000-0002-9651-9282
https://doi.org/10.3390/en17071564
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17071564?type=check_update&version=2


Energies 2024, 17, 1564 2 of 21

far more potent than ARIMA models and quantitative approaches, particularly for model-
ing complicated interactions [6]. Because artificial neural networks have the appropriate
properties for interacting with non-linear models, forecasting time series has become a
more common application for supervised neural networks in recent years. Estimating
PV output can be crucial for grid operators and energy providers to plan and optimize
tasks like managing maintenance and regulating power demand. Machine learning re-
gression models can offer forecasting and anomaly detection in PV plants in such cases.
In this study, multiple regression models, such as linear regression (LR), a support vector
regressor (SVR), a k-neighbor regressor (KNR), a decision tree regressor (DTR), a random
forest regressor (DFR), a gradient boosting regressor (GBR), and a multilayer perceptron
regressor (MLP), have been used for PV power generation forecasting with promising
results [7]. The effectiveness of the proposed regression model has been compared with
existing approaches.

1.1. Motivation and Contribution

To address the effectiveness and applications of regression models for forecasting PV
power generation, a comparative analysis of multiple regression models used on a dataset
has been proposed. The testbed architecture of the PV system installed in the SHARDA
University campus is discussed in Figure 1 of the manuscript, followed by the dataset
description. Some of the major contributions of the article are as follows:

• Realistic time series dataset is harvested from PV panels (with sensors) and installed
on multiple buildings of the SHARDA University campus.

• A comparative study and a performance analysis of the LR, SVR, KNR, DTR, RFR,
GBR, and MPR for power prediction are tested.

• A discussion of numerous case studies for PV power is presented to identify the
important features favoring power prediction.
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1.2. Acronyms Used

The abbreviations and short forms used throughout the article are presented in Table 1
of the manuscript.
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Table 1. Abbreviations and short forms.

Acronym Full Form

ANN Artificial Neural Network
XAI Extensible Artificial Intelligence

LSTM Long Short-Term Memory
CNN Convolutional Neural Network

ARIMA Autoregressive Integrated Moving Average
PV Photovoltaic

MLP Multi-layer Perceptron Regressor
SARIMA Seasonal Autoregressive Integrated Moving Average

SARIMAX Seasonal Auto-Regressive Integrated Moving Average with Exogenous Factors
LR Linear Regression

LAN Local Area Network
SVR Support Vector Regressor

1.3. Structure of the Article

The structure of the manuscript starts with the introduction containing the research
statement, problem identification, and improvements required. The introduction contains
three subsections: the first subsection represents the motivation and contribution; the
second subsection presents acronyms used throughout the manuscript; and the third
subsection depicts the structure of the manuscript. Section 2 of the manuscript presents
a detailed literature review of the related articles. Section 3 of the manuscript depicts
the Testbed architecture with a dataset description. The Data Acquisition Unit and Data
Monitoring Unit (DTU) are the two core subsections of Section 3. Section 4 of the manuscript
describes the proposed methodology, with various data preprocessing steps and multiple
regression methods. Section 5 of the manuscript discusses the results obtained from two
case studies, which are Case 1 and Case 2. Section 6 highlights a comparison of existing
state-of-the-art regression modelling for PV power prediction. Section 7 of the manuscript
presents the conclusion and future scope of the proposed research methodology.

2. Literature Survey

In this section, a literature survey has been conducted based on relevant research
conducted in PV power forecasting using XAI and machine learning regression models.
Table 2 presents the current state of the art research, including recent research in the field of
PV power forecasting with the help of regression modeling.

Table 2. Background and literature review.

Case
Studies Methodologies Regression Models Used Dataset Description Testbed Description

[8]
The study proposes two deep

learning methods for irradiance
predictions for the next hour.

LSTM and CNN networks
are used. - -

[9]

To tackle the consequences of
carbon dioxide and other
pollutants, this work has

provided a hybrid machine
learning and quantitative

programming approach that has
a high rate of approximation and

is used with sparse data.

The nine methods of ANN,
autoregressive, ARIMA,

SARIMA, SARIMAX,
random forest, SVR,

K-nearest neighbors, and
LSTM were used to predict
the harmful emissions of

each gas.

- -

[10]

The findings of PV power
generation forecasts using linear,
ridge, and Bayesian regression

methods are presented in
this work.

Linear regression, Ridge
regression, and Bayesian

regression.

The data collection
approach uses the data

records at 15 min
intervals.

Skymet W.S.P.L.
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Table 2. Cont.

Case
Studies Methodologies Regression Models Used Dataset Description Testbed Description

[11]

According to the distinctions
and commonalities, the paper
sorts the nomenclature of PV
energy forecast approaches,
optimizers, and prediction

frameworks into various groups.

The difficulties and
probable paths for future

study in PV power
forecasting using machine

learning algorithms are
discussed by the authors.

Challenges faced in
forecasting structure. -

[12]

For point-to-point and
intermediate modeling of PV

power in the context of a smart
grid ecosystem, a viable

composite empirical wavelet
transform (EWT)-based

modified resilient Mexican hat
wavelet kernel ridge regression

(RMHWK) approach has
been suggested.

EWT (empirical wavelet
transform) and RKRR
(robust Kernel Ridge

regressor) methods are
used by the researchers.

-

1 Megawatt PV Plant
data of Odisha, India,

validated using a
dataset from
Florida, USA.

[13]

Initially a time-series-based PV
power projection (SPF) structure

is developed using the nearby
meteorology station’s forecasted

weather data and its time
component. For the proposed

SPF, the long short-term memory
(LSTM) method is applied in

consideration of the data
correlations in the
data dimensions.

Long short-term memory
(LSTM) with Gaussian

process regression.
- -

[14]

The paper suggests an overall
regression neural network

(GRNN) built around Grey Wolf
optimization (GWO), which is

anticipated to deliver better
precise forecasts with
faster computation.

To achieve meteorological
aggregation and training

the neural network.
With GWO model, an

autonomous map (SOM)
is implemented.

Xiamen University Tan
Kah Kee College,

Zhangzhou China, and
National Kaohsiung
University of Science

and Technology,
Kaohsiung Taiwan.

Fifty-three thousand
records each year are

collected from various
PV plants.

[15]

The weighted Gaussian
procedure regression strategy is
used in this investigation, and a

novel method is suggested
where data points with an

elevated outlier likelihood are
given a lower weight.

For data with large
dimensions, a

density-based local outlier
identification approach is
presented to make up for

the degradation of the
Euclidean distance

outcome.

Dataset by Nanyang
Technical University.

The testbed used in the
research has six panel
systems, distributed at
various locations in a

tropical rainforest
region of Singapore.

[16]
This work involves performing

hour-ahead PV power
generation predictions.

Support vector regressor.
Lasso regression and

polynomial regression.

Data collected for
15 months are used in

the study.

Virginia Tech
Research Centre.

[17]

In this study, a non-parametric
predictive machine learning

method for PV electric power
generation and forecasting in an
anticipated timeframe of one to

six hours is presented. To
develop a gradient-boosted

regression tree (GBRT)
framework, 42 unique PV
roofing setups, past power
production, and pertinent

climatic data are used.

Gradient-boosted
regression tree and

multi-site modelling.
-

Data has been collected
from 46 distinctive

PV installations.
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Table 2. Cont.

Case
Studies Methodologies Regression Models Used Dataset Description Testbed Description

[18]

To simulate the real-world
practice of energy projections,

the research provides a support
vector regression approach to

generate PV power estimates on
an ongoing schedule for 24 h,

extending over an entire
calendar year.

Support vector regressor.

The dataset used in the
research is from the

Global Energy
Forecasting

Competition in the
year 2014.

Precise PV power units
installed in Australia.

[19]

The authors of the manuscript
propose a strategy that employs
the gradient boosting technique

for reliable planning.

Gradient boost and
k-nearest neighbor. GEFCom 2014. -

[20]

To project weekly PV power
output, this study creates a

genetic intermittent
decomposition least-square
support vector regression

(ESDLS-SVR).

Least-square support
vector regression, ARIMA,

SARIMA, and GRNN.

Dataset by the Ministry
of Science and

Technology of the
Republic of China

incorporating Taiwan.

-

[21]

The manuscript introduces an
online platform for power

forecasting in PV systems used
in various applications. This

article is used to forecast hourly
PV power estimates over

36 h spans.

Autoregressive models. Data of a 15 min
timelapse are used.

21 PV systems installed
on building rooftops.

3. Testbed and Dataset Description

The dataset utilized in this study has been obtained from the data collection Centre
at SU in Uttar Pradesh, India 28.4753◦ N, 77.4823◦ E, which is dispersed across several
building rooftops. The dataset contains the records of the year (2022) from date 21 January
2022 to 21 December 2023, and it has a time-lapse of 15 min between each instance. The
dataset has seven features namely hour, power (kW), irradiance (W/m2) (IRR), wind
(km/h), ambient/panel temperature (◦C), and PR representing performance percentage.

The architecture of the PV system is given in Figure 1 of the manuscript below, where
the PV panels are distributed at several locations. Various subparts of the testbed have
been discussed in detail in Section 3.1.

3.1. DAQ Unit

The DAQ unit and DMU are the main components of the chosen test bed. PV panels
are installed at various locations on the building rooftops of various buildings on the SU
campus. In addition, PV panels are equipped with radiation sensors, wind sensors, and
temperature transmitters. All the installed sensors transmit data to the remote terminal unit.

3.2. DMU

The DMU is used as a strong surveillance system to guarantee the steady and de-
pendable performance of any PV system. The DM unit also monitors several electricity
production indices and fault occurrences. In the proposed system, data from RTUs are
transmitted to a sub-control system, equipped with computer-aided monitoring for data
generation and system monitoring.

4. Proposed Regression Methodology

The various building blocks of the proposed model are presented in Figure 2. It starts
with taking the PV dataset as the input and performs multiple preprocessing steps on it.
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The preprocessed data frame is directed for data modeling and to the selected regressor at
the end.
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Figure 2. Proposed regression model.

4.1. PV Dataset

The dataset used in this study was collected from multiple building rooftops at the SU
data collection Centre in Uttar Pradesh, India (28.4753◦ N, 77.4823◦ E). With a time gap of
fifteen minutes between each occurrence, the dataset includes the recordings for the year
2022 from 21 January 2022 to 31 December 2023. The dataset includes the following seven
features: wind speed (km/h), power (kW), hour, ambient/panel temperature (degrees
Celsius), irradiance (W/m2) (IRR), and PR, or performance percentage.

4.2. Data Pre-Processing

In response to the data distribution within the six features, the pre-processing steps
embedded with regression models are depicted in Figure 3. The proposed regression model
takes the PV dataset as input and dataset concatenation is an initial step taken towards
pre-processing. After data-frame concatenation, the column “Ambient/Panel Temperature
(◦C)” is separated into ambient Temperature and panel temperature columns. Before feature
selection, outliers are detected and handled within the data frame with normalized values.
Furthermore, a correlation and heat map have been used to select important features and
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drop redundant features as shown in Figure 3. In the proposed work, two case studies
have been considered for data analysis.

Case 1:—Data frame with all features and removing rows with Null (NaN) values.
Case 2:—Data frame without PR% and wind (km/h) feature.
The two case studies have been deliberated in Section 5 of the manuscript.
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4.3. Data Modelling

The data frame is divided into training and testing, with 80% for training and 20% for
training. Power feature is selected as the target feature.

4.4. Regression Models

Various regression models have been used to predict the power production from the
data. The performance of each of the regression models used is evaluated using MAE, MSE,
RMSE, R2 error, explained variance score, and prediction plots. Considered regression
models have been explained in Section 4 hereafter.

4.4.1. Linear Regression

The strategies in linear regression assume that the desired result will be a linear blend
of the attributes. If ỹ represents the anticipated value in the notated form, it may be given as

ỹ(W,X) = W0 + W1 × 1 + W2 × 2 + . . . WnXn (1)

The shape of the vector is w = (W1, W2, . . . Wn) as the coefficient and W0 as the
intercept throughout the function. To reduce the total of the residuals of squares among the
targets found in the data frame and the ones forecasted using the linear estimation, linear
regression builds an equation with coefficients W = (W1, W2, . . . ,Wn−1, Wn).

4.4.2. Support Vector Regressor

It is comparable to SVR, which uses the argument kernel = ‘linear’, but because it
is constructed using “liblinear” instead of “libsvm”, it offers additional versatility in the
selection of penalty and loss coefficients and can expand more effectively to large chunks
of data samples. The input of both kinds is supported using this method [22].



Energies 2024, 17, 1564 8 of 21

For a trained dataset, if X is the input data and Y is the target variable, SVR aims to
find coefficients a and b that minimize the cost function and can be illustrated as

1
2
|| a|| 2 + C∑n

i=1 L(yi, f (xi)) (2)

|a| = norm of the weight vector a; C = regularization parameter; L = loss function that
penalizes errors.

4.4.3. K-Neighbor Regressor

The idea underlying nearest neighbor approaches is to select a set with several training
instances that are situated most closely to the point of interest and subsequently estimate
the designation based on them [23]. Regarding the scenario of radius-based neighbor
learning, the number of observations can either rely on the regional concentration of points
or be a customized constant (k-nearest neighbor learning). The distance can normally
be expressed in any metric system unit; the most popular option is the conventional
Euclidean distance. Since neighbors-based strategies merely “remember” everything about
the training data instances, they are referred to as non-generalizing machine learning
approaches [24]. Regression and time series prediction, where the desired factor is often
an order of interval scaled values, can benefit from applying the k-NN classifying concept
when the reliant parameter is categorical [25].

For a single input sample, a, the predicted output b is calculated as the average of the
target values of the K nearest neighbor in the dataset and can be illustrated as

b(a) =
1
k ∑k

i=1 bi (3)

here, b(a) is the predicted output for input a, bi is the target value of the i-th nearest
neighbor, and k is the no of neighbors.

4.4.4. Decision Tree Regressor

A decision tree regressor develops a model in the form of a tree structure to estimate
data in the future and generate useful continual output by observing the properties of
an item. Seamless output denotes the absence of uniform output, i.e., the absence of
representation by a discrete, well-known set of values [26]. The number of observations
that must have been collected for a tree to contemplate shattering a node into two is known
as the minimum sample split parameter. A structure splits until it reaches this value. The
level of a decision tree needs to be maintained constantly because a shallower tree is going
to possess significant bias along with little variance, whereas a more extensive tree would
have high variance and low bias [27,28]. As a result, in our study, we tested using the
splitting criterion as well as the maximum depth of the tree to generate a model that is as
accurate as possible. The mathematical representation of a decision tree regressor T(r) is
illustrated in

T(r) = Ci (4)

here

T(r) represents predicted output for the input a using a decision tree.
Ci is the constant value associated with the leaf node i.

4.4.5. Random Forest Regressor

Three primary phases make up the random forest development algorithm. Establish-
ing B sample sets of dimensions N utilizing the baseline data, these sample sets might be
swapped out and combined. For every sample in the dataset, we create a random forest
tree Tb by iteratively continuing the subsequent procedures for each terminal node unless
the minimal node count min is obtained:



Energies 2024, 17, 1564 9 of 21

I. Pick m predictors randomly from the p covariates.
II. Choose the top predictor for the split section out of the m identified predictors.
III. Divide this location (node) into two minor nodes by establishing specific decision-

making guidelines.

Lastly, determine the combination of the trees {Tb}B
1 , where B is the total number of

trees in the random forest.
f̂RF =

1
B∑B

b=1 Tb(x) (5)

f̂RF is the predicted output for the input X;
B is the total number of trees left (base learners right) in the RFR;
∑B

b=1 Tb(x) is the prdiction of the b-the decision tree in the forest for input X.

The final prediction is the average of these individual tree predictions.

4.4.6. Gradient Boosting Regressor

The loss argument in the gradient boosting regressor allows the specification of a
variety of loss functions in regression and squared error, which constitutes a typical loss
function. A loss function is employed during the boosting procedure. The “squared error”
and “Poisson” losses incorporate the “half least squares loss” and “half Poisson deviance”
to make the mathematical calculation of the gradient simpler. Additionally, “Poisson” loss
employs an internal log connection and needs y ≥ 0. Pinball loss is employed by “quantile”.

Mathematical representation for M weak learners and the prediction FM(i) for input
(i) is given using

FM(i) = ∑M
m βmhm(i) (6)

FM(i) is the predicted output for (i) input using a gradient boost model with weak
learners. hm is the prediction of the m-th weak learner for input (i), and βm is the weight
assigned to the m-th weak learner. The update rule for the weights and the new weak
learner is determined by minimizing a loss function, often using gradient descent.

4.4.7. Multilayer Perceptron Regressor

MLP has a layered configuration with input, hidden, and output layers, like the other
neural networks. During the MLP classifier’s recurrent development process to adjust
the parameters, the estimates of the loss function regarding the parameter estimation
are generated at each observation time. The loss function may undergo a convolution
operation that lowers the model’s coefficients to prevent overfitting [29]. It learns with a
supporting function.

f (X) : Rm → Ro (7)

where “Rm” represents the input space, “→” indicates mapping from the input space
to the outer space, Ro represents the outer space [30]. A data frame with the input
X = ( x1, x2, x3 . . . xn) and the target variable and y is provided. “Rm” represents the input
space, “→” indicates mapping from the input space to the outer space, Ro represents the
outer space [30]. The proposed MLP regressor is tuned with Adam as an optimizer, and
loss is calculated using MAE and with a learning rate parameter of 0.01, across 250 epochs.
The decimal value of 0.31 is used as the initial value for the validation split parameter on
the training set of data. The information from the preceding layer is transformed by each
neuron in the hidden layer using a weighted linear sum of weights and input sets.

5. Results

For the proposed model, the results section is divided into two case studies concerning
the feature vector of the dataset. Pearson’s correlation method has been used to select and
drop the features from the dataset. Pearson’s correlation method is simple and strategic
to determine the strong and weak correlation between independent and dependent vari-
ables [31]. From Figure 4 of the manuscript, which is the correlation and heat map plot of
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the features, wind (km/h) and hour are visualized as weakly correlated and are dropped
in two different cases. The two different case studies are

Case 1:—Data frame with all features and removing rows with null (NaN) values.
Case 2:—Data frame without PR% and wind (km/h) feature.
For each case study, the LR, SVR, KNR, DTR, RFR, MLP, and GBR are tested. The

performance of each regression model is evaluated using the MAE, MSE, RMS, R2 Score,
and prediction plots (actual and predicted values).
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Figure 4. MAE score plots of Case 1.

5.1. Case 1:—Data Frame with All Features

The PR% feature of the dataset contains a hefty amount of NaN values, so all NaN-
valued rows from it have been dropped. Time slots during the night were all representing
NaN values in the PR% column. Replacing NaN values with substitute statistical outcomes
was not an option and could have inserted bias in the dataset. However, the power
generation using the PV system at night is zero. In this case study, the rows representing
NaN in the PR% column are dropped. A comparison of various errors for Case 1 using the
regression method has been presented in Table 3. and score plots for the MAE, MSE, RMSE,
and R2 are illustrated in Figures 4–7. The comparison of actual values and prediction values
for Case 1 using various models is plotted in Figures 8–14.

Table 3. MAE, MSE, RMSE, and R2 error outcomes in Case 1.

Regression Method MAE MSE RMSE R2 Score

LR 16.047 517.434 22.747 0.8990
SVR 15.170 547.968 23.408 0.8931
KNR 11.710 370.1811 19.2400 0.9278
DTR 13.1296 586.275 24.213 0.8856

random forest regression 10.0267 298.475 17.776 0.9417
MLP 11.507 319.36 17.870 0.9377
GBR 11.627 329.415 18.149 0.9357

The efficacy and performance of the various ML regression models are presented in
the form of MAE, MSE, RMSE, and R2 scores. Figure 4 of the article depicts the MAE scores
obtained from various regression methods. The vertical axis represents the numeric values
ranging from 0 to 18, and the values of MAE obtained using each regressor model are
presented in the plot.

In contrast, Figure 5 depicts the MSE scores obtained from various regression methods.
The vertical axis represents the numeric values ranging from 0 to 700, and the value of MSE
obtained using each regressor model is presented in the plot.
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Figure 5. MSE score plots of Case 1.

Similarly, Figure 6 depicts the RMSE scores obtained from various regression methods.
The vertical axis represents the numeric values ranging from 0 to 700, and the values of
RMSE obtained using each regressor model are presented in the plot.
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Figure 6. RMSE score plots of Case 1.

Figure 7 of the study illustrates the R2 values acquired from numerous regression
approaches. The vertical axis indicates the numeric values ranging from 0.82 to 1.0, and R2

values obtained using each regressor model are shown in the plot.
Figure 8 depicts the actual vs. predicted plots using LR. Figure 9 depicts the actual

vs. predicted plots using SVR for Case 1. In a regression problem, the actual vs predicted
plot visually assesses model performance. The red dotted diagonal line signifies perfect
predictions, with blue points ideally aligning closely. Scattered points deviating from this
line indicate model inaccuracies, highlighting potential performance issues. A clustered
alignment around the diagonal line signifies robust model performance.
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Figure 9. Actual and predicted plots using SVR.

Figure 10 depicts the actual vs. predicted plots using the MLP regressor, and Figure 11
depicts the actual vs. predicted plots using GBR for Case 1.
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Figure 12 depicts the actual vs. predicted plots using RFR, and Figure 13 depicts the
actual vs. predicted plots using DTR for Case 1.
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5.2. Case 2:—Data Frame without Wind (Km/h) and PR% Features

Dropping rows from the dataset with NaN values in the PR% column, the row count of
the dataset remains 14,220 from 25,656. To improve the performance of regression models,
PR% with maximum NaN values and wind (Km/h) with a weak correlation with the power
feature are dropped. The regression matrices are presented in Table 4.

Table 4. MAE, MSE, RMSE, and R2 error outcomes in Case 2.

Regression Method MAE MSE RMSE R2 Score

LR 10.435 314.922 17.746 0.945
SVR 8.817 379.194 19.472 0.934
KNR 6.497 212.448 14.575 0.963
DTR 0.138 212.448 14.575 0.963

random forest regression 6.234 199.386 14.120 0.965
MLP 7.394 235.224 15.337 0.962
GBR 7.227 215.640 14.684 0.959

The efficacy and performance of the various ML regression models are presented in
the form of MAE, MSE, RMSE, and R2 scores. Figure 15 of the article depicts the MAE
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scores obtained from various regression methods. The vertical axis represents the numeric
values ranging from 0 to 18, and the values of MAE obtained using each regressor model
are presented in the plot.

Energies 2024, 17, x FOR PEER REVIEW 15 of 22 
 

 

Dropping rows from the dataset with NaN values in the PR% column, the row count 

of the dataset remains 14,220 from 25,656. To improve the performance of regression mod-

els, PR% with maximum NaN values and wind (Km/h) with a weak correlation with the 

power feature are dropped. The regression matrices are presented in Table 4. 

Table 4. MAE, MSE, RMSE, and R2 error outcomes in Case 2. 

Regression Method MAE MSE RMSE R2 Score 

LR 10.435 314.922 17.746 0.945 

SVR 8.817 379.194 19.472 0.934 

KNR 6.497 212.448 14.575 0.963 

DTR 0.138 212.448 14.575 0.963 

RFR 6.234 199.386 14.120 0.965 

MLP 7.394 235.224 15.337 0.962 

GBR 7.227 215.640 14.684 0.959 

The efficacy and performance of the various ML regression models are presented in 

the form of MAE, MSE, RMSE, and R2 scores. Figure 15 of the article depicts the MAE 

scores obtained from various regression methods. The vertical axis represents the numeric 

values ranging from 0 to 18, and the values of MAE obtained using each regressor model 

are presented in the plot. 

 

Figure 15. MAE score plots of Case 2. 

In contrast, Figure 16 depicts the MSE scores obtained from various regression meth-

ods. The vertical axis represents the numeric values ranging from 0 to 700, and the values 

of MSE obtained using each regressor model are presented in the plot. 

10.435

8.817

6.497

0.138

6.234

7.394 7.227

0

2

4

6

8

10

12

LR SVR KNR DTR RFR MLP GBR

Commented [M3]: This figure is the same as 

Figure 4. Please check and revise. 

Commented [b4R3]: Figure is updated 

Figure 15. MAE score plots of Case 2.

In contrast, Figure 16 depicts the MSE scores obtained from various regression methods.
The vertical axis represents the numeric values ranging from 0 to 700, and the values of
MSE obtained using each regressor model are presented in the plot.
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Figure 16. MSE score plots of Case 2.

Similarly, Figure 17 depicts the RMSE scores obtained using various regression meth-
ods. The vertical axis represents the numeric values ranging from 0 to 30, and the values of
RMSE obtained using each regressor model are presented in the plot.
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Figure 17. RMSE score plots of Case 2.

Figure 18 illustrates the R2 values acquired from numerous regression approaches.
The vertical axis indicates the numeric values ranging from 0.82 to 1.0, and the values of R2

obtained using each regressor model are shown in the plot.
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Figure 18. R2 score plots of Case 2.

Figure 19 depicts the actual vs. predicted plots using LR; Figure 20 depicts the actual
vs. predicted plots using SVR for Case 2.
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Figure 19. Actual and predicted plots using LR in Case 2.
Energies 2024, 17, 1564 17 of 21 
 

 

 
Figure 20. Actual and predicted plots using SVR in Case 2. 

Figure 21 depicts the actual vs. predicted plots using MLP, and Figure 22 depicts the 
actual vs. predicted plots using GBR for Case 2. 

 
Figure 21. Actual and predicted plots using MLP in Case 2. 

 
Figure 22. Actual and predicted plots using GBR in Case 2. 

Figure 23 depicts the actual vs. predicted plots using RFR, and Figure 24 depicts the 
actual vs. predicted plots using DTR for Case 2. 

Figure 20. Actual and predicted plots using SVR in Case 2.

Figure 21 depicts the actual vs. predicted plots using MLP, and Figure 22 depicts the
actual vs. predicted plots using GBR for Case 2.



Energies 2024, 17, 1564 17 of 21

Energies 2024, 17, 1564 17 of 21 
 

 

 
Figure 20. Actual and predicted plots using SVR in Case 2. 

Figure 21 depicts the actual vs. predicted plots using MLP, and Figure 22 depicts the 
actual vs. predicted plots using GBR for Case 2. 

 
Figure 21. Actual and predicted plots using MLP in Case 2. 

 
Figure 22. Actual and predicted plots using GBR in Case 2. 

Figure 23 depicts the actual vs. predicted plots using RFR, and Figure 24 depicts the 
actual vs. predicted plots using DTR for Case 2. 

Figure 21. Actual and predicted plots using MLP in Case 2.

Energies 2024, 17, 1564 17 of 21 
 

 

 
Figure 20. Actual and predicted plots using SVR in Case 2. 

Figure 21 depicts the actual vs. predicted plots using MLP, and Figure 22 depicts the 
actual vs. predicted plots using GBR for Case 2. 

 
Figure 21. Actual and predicted plots using MLP in Case 2. 

 
Figure 22. Actual and predicted plots using GBR in Case 2. 

Figure 23 depicts the actual vs. predicted plots using RFR, and Figure 24 depicts the 
actual vs. predicted plots using DTR for Case 2. 

Figure 22. Actual and predicted plots using GBR in Case 2.

Figure 23 depicts the actual vs. predicted plots using RFR, and Figure 24 depicts the
actual vs. predicted plots using DTR for Case 2.

Energies 2024, 17, 1564 18 of 21 
 

 

 
Figure 23. Actual and predicted plots using RFR in Case 2. 

 
Figure 24. Actual and predicted plots using DTR in Case 2. 

Figure 25 depicts the actual vs. predicted plots using LR for Case 2. 

 
Figure 25. Actual and predicted plots using KNR in Case 2. 

6. Discussion 
This section highlights a comparison of existing state-of-the-art regression modelling 

for PV power prediction using the R2 regression metric in Table 5. 

Figure 23. Actual and predicted plots using RFR in Case 2.



Energies 2024, 17, 1564 18 of 21

Energies 2024, 17, 1564 18 of 21 
 

 

 
Figure 23. Actual and predicted plots using RFR in Case 2. 

 
Figure 24. Actual and predicted plots using DTR in Case 2. 

Figure 25 depicts the actual vs. predicted plots using LR for Case 2. 

 
Figure 25. Actual and predicted plots using KNR in Case 2. 

6. Discussion 
This section highlights a comparison of existing state-of-the-art regression modelling 

for PV power prediction using the R2 regression metric in Table 5. 

Figure 24. Actual and predicted plots using DTR in Case 2.

Figure 25 depicts the actual vs. predicted plots using LR for Case 2.

Energies 2024, 17, 1564 18 of 21 
 

 

 
Figure 23. Actual and predicted plots using RFR in Case 2. 

 
Figure 24. Actual and predicted plots using DTR in Case 2. 

Figure 25 depicts the actual vs. predicted plots using LR for Case 2. 

 
Figure 25. Actual and predicted plots using KNR in Case 2. 

6. Discussion 
This section highlights a comparison of existing state-of-the-art regression modelling 

for PV power prediction using the R2 regression metric in Table 5. 

Figure 25. Actual and predicted plots using KNR in Case 2.

6. Discussion

This section highlights a comparison of existing state-of-the-art regression modelling
for PV power prediction using the R2 regression metric in Table 5.

Compared to the cited research articles in Table 5, the proposed model has outper-
formed various regression methodologies in PV power prediction. However, the novelty of
the model is determined by the portability of the best-performing regression method. The
proposed model has harnessed 0.9650 of R2 value and uses a novel preprocessing strategy
and steps. The feature engineering step in the proposed model used co-relation values to
extract important features from the dataset.
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Table 5. Comparison analysis of various research articles vs. proposed methodology.

Case Study Feature Selection
Method Regression Type Features Used Maximum R2 Dataset Used

[30]

Tree-based feature
importance and

principal component
analysis.

Artificial neural network
and random forest.

Temperature,
humidity, day, and

time.
0.9355

Metrological data of
Hawaii United States

of America (2016)

[31]

Wavelet
transformation-based

decomposition
technique.

WT-LSTM, LSTM, Ridge
regression, Lasso

regression and
elastic-net regression.

Cloudy index,
visibility,

temperature, dew
point, humidity,

wind speed,
atmospheric,

pressure, altimeter,
PV output power.

0.9505 Urbana Champaign,
Illinois

[32]
Correlation heatmap

and Bayesian
optimization.

LSTM
41 different

features are used
with variation.

0.8917 German dataset

Proposed
Model

Pearson’s correlation
and heatmap.

LR,
Hour, power,

IRR (W/m2), wind
km/h, ambient

temperature, and
panel temperature.

0.9650
SHARDA University

PV Dataset
(2022 Edition)

SVR,
KNR,
DTR,
RFR,

GBR, and
MLP

7. Conclusions

This study demonstrates the propensity of the regression models to forecast PV power
generation in PV systems. The Sharda PV dataset offers a variety of properties that have
helped the proposed model significantly understand the correlation between these variables,
which are significant in a majority of PV datasets used in research. The model’s efficacy and
accuracy point to it becoming a crucial component in how enterprises develop and operate
AI-powered PV grid systems. Given the opportunity for extra parameters in the dataset
for model training, the proposed model could achieve higher success rates in addition to
metrological properties. It is concluded that the proposed model can be useful for future
research and serves as a foundation for improving PV power predictions. Numerous
studies have examined the impact and participation of different deep learning models and
ensemble approaches, and the findings have been encouraging. The authors intend to use
deep learning methods and ensemble methods in future to develop and improve the model
and its efficiency. Using the proposed model for datasets with a wide variety of feature
vectors is also possible in the future.
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