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Abstract: This paper presents a novel approach to estimating short-term production of wind farms,
which are made up of numerous turbine generators. It harnesses the power of big data through a
blend of data-driven and model-based methods. Specifically, it combines an Artificial Neural Network
(ANN) for immediate future predictions of wind turbine power output with a stochastic model for
dependability, using Hybrid Reliability Block Diagrams. A thorough state-of-the-art review has been
conducted in order to demonstrate the applicability of an ANN for non-linear stochastic problems of
energy or power forecast estimation. The study leverages an innovative cluster analysis to group wind
turbines and reduce the computational effort of the ANN, with a dependability model that improves
the accuracy of the data-driven output estimation. Therefore, the main novelty is the employment of
a hybrid model that combines an ANN with a dependability stochastic model that accounts for the
realistic operational scenarios of wind turbines, including their susceptibility to random shutdowns
This approach marks a significant advancement in the field, introducing a methodology which can
aid the design and the power production forecast. The research has been applied to a case study
of a 24 MW wind farm located in the south of Italy, characterized by 28 turbines. The findings
demonstrate that the integrated model significantly enhances short-term wind-energy production
estimation, achieving a 480% improvement in accuracy over the solo-clustering approach.

Keywords: cluster analysis; artificial intelligence algorithms; Reliability Block Diagrams; wind energy;
wind farm production estimation; artificial neural network

1. Introduction

Climate change is prompting more frequent extreme weather events globally, driving
Europe to actively pursue the 2030 Agenda to combat pollution and environmental degra-
dation. Achieving the Intergovernmental Panel for Climate Change (IPCC) goal of limiting
global warming to 1.5 ◦C, and reaching carbon neutrality by mid-century is essential, as
per the Paris Agreement [1], ratified by 195 countries, including the EU. The European
Commission’s European Green Deal [2] in December 2019 aims for climate neutrality by
2050. This includes enhancing the fit for 55 proposals to increase renewable energy and
efficiency targets [3], with plans under “Electrify Europe” [4] for deploying 480 GW of wind
and 420 GW of solar capacities. The “REPowerEU” strategy [3] seeks to frontload wind
and solar development by 20%, adding 80 GW by 2030 for renewable hydrogen production.
The role of production estimation in renewable energy, crucial for strategic planning and
ensuring a stable power supply despite the variability of renewable sources, highlights the
necessity for meticulous network planning.

In the last decade, the global wind energy sector has experienced remarkable growth,
expanding by an average of over 30% annually, as reported by the Global Wind Energy
Council (GWEC) [5]. Maintaining this growth trajectory could result in wind energy meet-
ing nearly one-third of the world’s electricity needs by 2050. As discussed in [6], the
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wind energy industry stands out as the fastest-growing infrastructure worldwide, with
promising prospects also because its generation costs have significantly declined over the
past 15 years. This trend applies both to offshore and onshore [7] installations, nearing
parity with traditional energy sources. Consequently, this phenomenon has encouraged the
scientific community to better assess estimation methods for wind energy production [8].
Wind power generators are characterized by inherent variability in wind speed and direc-
tion, and this makes it challenging to assess wind power generation using conventional
methods. Time horizon plays a crucial role in model accuracy, with estimation errors
typically increasing as the time range extends [9], affecting also the maintenance plan of
such complex machines. Estimation methods are categorized based on the time range for
different aims. Short-term methods (1 to 96 h) are employed for power system planning,
dispatch, and electricity trading. Medium-term methods (96 h to 1 week) are utilized
for scheduling maintenance of energy storage systems. Long-term methods (weeks to
months) are employed to evaluate wind farm overall energy production and investment
payback [10–12]. Thus, engineering models are variegated. Physical models utilize global
meteorological databases or atmospheric models, requiring extensive computational sys-
tems for accurate results [13,14]. Statistical methods analyze vast amounts of data without
representing meteorological processes, yielding good results for mean monthly or higher
temporal-scale wind speed estimation [15]. Learning approaches, or AI data-driven models,
serve as a compromise, explaining physical phenomena without relying on a physical
model. However, these methods face challenges in near-real-time performance due to
increased computational load of data time series and observations [9]. In light of these
outlined challenges, this study centers on a pivotal question: can data-driven methods
based on an ANN maintain high accuracy with a reduced set of data, for the short-term
estimation of wind farm energy production? This inquiry is crucial for developing real-
time, efficient energy estimation methods that reconcile computational demands with the
operational intricacies of wind power generation.

This study introduces a novel method for the short-term estimation of the energy
produced by a wind farm. This methodology adopts the combination of a multilayer
perceptron (MLP) artificial neural network (ANN) [10,16] and the dependability model of
the wind turbines. This approach marks a significant advancement in the field, introducing
a hybrid model that merges a data-driven AI technique with a model-based strategy,
thereby contributing a novel solution to the existing body of research.

The paper is structured as follows: Section 2 offers a comprehensive overview of
the current state of the art, setting the context for the paper’s contributions. Section 3
introduces the main components of the hybrid methodology, encompassing both the data-
driven approach and the model-based theory of dependability and reliability. Section 4
delves into the case study, detailing the experimental campaign and presenting the achieved
results. Finally, Section 5 concludes the paper with remarks and a discussion on limitations,
and envisions avenues for future research.

2. State of the Art

Effective production estimation in renewable energy plays a pivotal role across various
domains, significantly influencing planning, management, and integration within the
broader energy landscape. Accurate predictions of energy output from renewable sources,
such as solar and wind, are crucial for the strategic planning and operation of power grids.
The variability inherent in renewable sources requires careful network planning to handle
fluctuations and ensure a consistent power supply, avoiding overload and instability [17].

Moreover, production estimations are instrumental in seamlessly integrating renew-
able energies into the overall energy supply. As these sources often depend on weather
conditions, precise estimation facilitates efficient balancing of production and consump-
tion [18]. This integration is pivotal for optimizing the overall efficiency and reliability of
the energy grid.
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Operational efficiency is a key consideration for energy sector entities, including
operators of renewable energy facilities. Accurate production estimations enable these or-
ganizations to plan operational activities effectively, including scheduled maintenance [19],
production optimization, and human resource management [20]. The reduction in elec-
tricity costs is a significant benefit stemming from accurate production estimation. By
minimizing the need for excess backup energy and optimizing resource utilization, pro-
duction estimations contribute to the overall economic efficiency of the energy system [21].
In this way, companies can enhance overall efficiency and resource allocation [22] with
strategic investments in energy infrastructure which, in turn, aids in the broader goal of
transitioning towards sustainable and renewable energy sources.

In [23], Lee and Fields emphasize the historical tendency of the wind industry to
overpredict the annual energy production of wind farms, leading to significant financial
implications. To address this bias, over the past few decades, there has been widespread
development and successful application of various methodologies in predicting wind
energy. In general, these approaches can be classified into model-based and data-driven
methods [24–26]. Model-based methods utilize physics models that incorporate wind
forecasting data for predicting wind energy outcomes [27–30]. In a previous work, au-
thors have proposed a hybrid model to combine the Jensen wake mathematical theory
with a stochastic dependability model to improve the accuracy of energy production in a
long-term period [31]. On the other hand, data-driven approaches eschew explicit physical
models and exclusively rely on wind data to construct (black-box) models capturing the
relationship between wind-forecasting data and the corresponding wind energy produc-
tion [32–36]. In recent decades, numerous data-driven techniques have gained prominence
in the field of wind energy prediction. Noteworthy examples include Artificial Neural Net-
works (ANNs) [37–40]; Support Vector Machines (SVMs) [27,38,41,42]; k-nearest neighbors
(kNN) regression [39,43,44]; Support Vector Regression (SVR) [29,45]; and Gaussian Process
Regression (GPR) [38,46]. Such methodologies have been successfully applied also to the
field of predictive maintenance, where [47] shows that a dynamic dependability model can
be used to produce additional dataset for training AI predictors and estimate the remaining
useful life of general steel components.

Sanchez, in [48], introduces a statistical forecasting system for wind energy prediction
based on the adaptive combination of alternative dynamic models. This flexibility is
achieved through the utilization of alternative models based on different assumptions
about the involved variables, the adaptive estimation of their parameters using diverse
recursive techniques, and the implementation of an online adaptive time-varying forecast
combination scheme, where both the number of predictors and their weights vary over
time to derive the final prediction.

To quantify the possible sources of uncertainty that affect the predictions of wind
energy production provided by an ensemble of ANN models, [49] proposes the Bootstrap
(BS) technique for uncertainty quantification, relying on estimating Prediction Intervals
(PIs) for a predefined confidence level.

The optimal model probably consists in a mixed approach, which is very often adopted
by utilities to combine high accuracy for very short horizons together with longer forecasts
of up to 48–72 h. In [50], Cassola et al. focus on a mixed approach based on the use of
a Numerical Weather Prediction (NWP) model coupled to a statistical model based on
the Kalman filtering technique. They underline the fact that by tuning the time-step and
the forecast horizon of the filter, this methodology is capable of providing a significant
improvement in estimation with respect to the wind-speed-model direct output, especially
when used for very short-term estimation. Table 1 presents a categorization of papers
included in the literature review based on the adopted methodological approach and
model used. Approaches are differentiated into Data-Driven, Model-Based, and Hybrid
categories, to provide an organized overview.
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Table 1. Classification of Papers by Approach and Model used.

Approach Model Used Reference
Number

Data-Driven Autoregressive Integrated Moving Mean Models (ARIMA) [15]
Artificial neural networks (ANNs) [32,34,37,49]

Artificial neural networks (ANNs), Support Vector Regression (SVR), Gaussian
Process Regression (GPR) [38]

Evolutionary Optimization Algorithms, Neural Networks, Nearest Neighbor Search [39]
Non-Linear Autoregressive Network with Exogenous Inputs (NARX) ANN [40]

Variational Mode Decomposition (VMD), Maximum Relevance and Minimum
Redundancy Algorithm (MRMR), Long Short-Term Memory Neural Network (LSTM),

Firefly Algorithm (FA)
[41]

Support Vector Machines (SVMs) [42]
K-Nearest Neighbor Classifier (kNN) [43,44]

Support Vector Regression (SVR) [45]
Gaussian Process (GP), Numerical Weather Prediction Model (NWP) [46]

Statistical Forecasting System [48]
Kalman Filters [50]

Model-Based Atmospheric Fluid Dynamics [13,28]
Variational Mode Decomposition (VMD), Temporal Convolutional Network

Model (TCN) [30]

Jensen wake mathematical theory [31]

Hybrid Support Vector Regression (SVR), Seasonal Index Adjustment (SIA) and Elman
Recurrent Neural Network (ERNN) [11]

Non-dominated Sorting Genetic Algorithms [18]
Flexibility-based Multi-Objective Generation Maintenance scheduling associated with

Demand Response Programs (FMOGMDRPs) [19]

Support Vector Machine (SVM) and Data Mining [27]
Machine-Learning based Short-Term Wind Power Prediction and Support

Vector Regression [29]

Conditional Weighted Combination Method [35]
Dynamic Reliability Digital Twin [47]

AutoRegressive Moving Average (ARMA), Support Vector Machine (SVM), Particle
Swarm Optimization (PSO) [51]

Meteorological station data serves as the foundation for several influential studies
investigating the effects of renewable resource variability, such as those conducted by
Cox [52] and Sinden [53]. Kubik et al. [54] discovered that employing a single wind shear
coefficient throughout the entire year, a common practice in simulated wind generation
models, yields a reliable estimate for annual energy production. However, they noted that
errors related to specific hours could be significant. In this research work, meteorological
data were employed as input variables to train the neural network, avoiding the introduc-
tion of any coefficients, and thus reducing the error in calculating the power generated by
the wind farm.

In their study, Wang et al. [55] emphasized that considering the impact of multivariate
historical meteorological factors, including wind speed, wind direction, and ambient
temperature, on wind power output helps enhance forecasting performance. Consistent
with this study, this paper considered both wind speed and direction.

As demonstrated by a rich literature [32,34,37,49], ANNs have already been applied
for non-linear stochastic problems of energy, power or weather forecast estimation. In
this study, the primary innovation of employing an ANN lies in its ability to significantly
reduce computational efforts by simplifying the elements involved in processing, while
still delivering accurate energy production estimates. These results are further improved
by integrating a dependability stochastic model that accounts for the realistic operational
scenarios of wind turbines, including their susceptibility to random shutdowns. The review
in [56] present several papers regarding the use of machine learning for optimizing the
maintenance planning of wind energy systems.
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The literature review was conducted using Mendeley and Scopus, inputting the queries
“wind AND turbin* AND model-based AND dependability AND analyses AND machine
AND learning AND methods” and “wind AND turbin* AND power AND estimation
AND dependability OR stochastic AND artificial AND neural AND network”. No articles
discussing the approach presented in this work were found.

The literature reveals a gap in integrating machine learning methods with model-based
dependability analyses of wind turbines. This paper aims to bridge this gap by proposing a
hybrid data-driven methodology that incorporates dependability aspects for the short-term
energy estimation of wind power plant production. Moreover, the methodology proposed
simplifies the process of assessing wind farm productivity potential during the site selection
phase. Specifically, engineers have the option to minimize the quantity of anemometers
deployed in the design stage by strategically situating them at locations corresponding to
the centroid turbines of identified clusters. This approach not only simplifies the initial
engineering tasks, but also offers potential cost reductions in terms of equipment and labor
needed for site assessment.

3. Methodology

This section outlines the methodology employed for short-term forecasting of power
and energy output in wind power plants. As illustrated in Figure 1, the proposed model
integrates two distinct algorithms: a data-driven module, structured into three stages, and
a dependability module that employs stochastic modeling to assess the reliability and
availability of wind turbine generators (WTGs).
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The approach is designed for efficiency in data usage, relying on available wind speed
and direction forecasts and focusing on data from select ‘centroid turbines’ rather than
the entire array. This targeted data collection reduces the volume of necessary input data,
enhancing computational efficiency. The integration of a dependability model further
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improves the accuracy of predictions, offering a comprehensive view of potential energy
output while maintaining precision in estimations.

Therefore, the methodology presents the following advantages:

- Reduced Computational Effort: by focusing on key turbines, the approach lessens the
computational load, enabling faster, more efficient processing.

- High Precision: the combination of the dependability model with the data-driven
module guarantees high accuracy in forecasting energy production, even with fewer
data inputs.

However, the methodology’s primary disadvantage lies in its strong dependence on
wind forecasts. In other words, the success and accuracy of predictions rely heavily on the
availability and precision of wind speed and direction forecasts, which may require sig-
nificant infrastructure and investment in forecasting technologies. This issue is, somehow,
reduced thanks to the utilization of centroid turbines, as discussed next.

3.1. Data-Driven Model

The Data-Driven Model used in this paper takes inspiration from the classic method-
ologies of machine learning and Artificial Intelligence. As it can be seen in Figure 1, a
pre-processing analysis has to be performed before feeding the Artificial Neural Network,
which represents the final layer of the Data-Driven Model. This latter is in charge of
performing the actual short-term estimation of the wind farm. As far as it concerns the
Data-Driven algorithm, the main novelty proposed in this paper is the adoption of an ad
hoc Cluster Analysis, in the second step of this module. The Cluster Analysis is tailored to
the wind farm because it makes use of Geographic Information System (GIS) information
of the wind turbines, including the terrain orography of the power plant site; this allows
for the simplification of the computation of the Neural Network.

3.1.1. Pre-Processing Analysis

The pre-processing analysis is a crucial step for the data-driven algorithm, as it involves
gathering and cleaning the data necessary for creating clusters of wind turbines and training
the neural network. This step entails collecting data from all turbines in the power plant
farm, followed by data pre-processing and standardization of statistical values. Initially, the
process begins with georeferencing the wind turbines using a GIS-based system to enable
geographical clustering.

For each wind turbine, variables such as power output, wind speed, and wind direction
are collected through time-series samples from available data sources (e.g., Supervisory
Control and Data Acquisition SCADA, and the Distributed Control System DCS). During
this phase, data pre-processing analysis, such as applying moving averages, may be utilized
to correct missing or incorrect values.

Subsequently, statistical metrics including mean and standard deviation (σ) of power
output, wind speed, and wind direction are computed for each turbine over a time interval.
The time interval must be chosen, for the sake of convenience in data transformation, to be
a multiple of the interval of the data sample time-step of the time-series (typically, SCADA
systems in wind power plants offer ten-minute intervals).

Given the significant scale differences among these variables, a standardization step
is critical for the next phase of the cluster analysis. This standardization facilitates the
comparison of scores, regardless of their differing measurement scales. The primary
criterion for this process makes use of the following transformation:

Z(X) =
(X − m)

σ
(1)

where Z(X) is the standardized value, X is the variable that has to be standardized, m is the
mean and σ is the standard deviation.
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3.1.2. Cluster Analysis

The aim of cluster analysis is to group wind turbines into homogeneous clusters. Each
wind turbine can be characterized by its GIS coordinates and the statistical data obtained
during the pre-processing analysis, which involves six variables: the mean and standard
deviation of the power output, wind speed, and wind direction. Thus, the wind turbines
can be represented in a multi-dimensional space (defined by the 6 variables, plus the
latitude, longitude and altitude retrieved by the GIS georeferencing), where each point
in the 9-dimensional space represents a turbine. The center of the n-dimensional space,
the centroid, is calculated using Euclidean distance. The turbine closest to the centroid is
selected, representing the cluster most accurately.

The two-step cluster analysis is extensively applied in a variety of environmental
research contexts [57,58]. This algorithm falls under the hierarchical clustering category
and consists of two stages:

• A pre-clustering that examines the data sample of each individual element (e.g., the
wind turbine) to determine whether it can be integrated into an existing cluster or if
it should serve as the centroid for a new cluster. This decision is based on a specific
distance criterion. For the proposed model, the Euclidean distance was selected as the
distance criterion, defined as follows:

Ed
(

T1, T2
)
=

√
∑n

i=1

(
T1

i − T2
i
)2 (2)

where Tk
i is a tuple Tk

i = (Tk
1 , Tk

2 , . . ., Tk
n) characterized by n variables. In these cases,

Tk
i represents the generic “k” wind turbine modeled by the 9 standardized variables

(i ∈ [1; 9]).

• The clustering validity analysis is the step of the algorithm that determines the dimen-
sion and the number of elements of each cluster. This algorithm can iteratively perform
a grouping with different sizes of elements. In order to select the most appropriate
number of clusters, the silhouette (S) coefficient is used:

Si =
bi − ai

max[ai, bi]
(3)

In this methodology, ai represents the mean distance between the ith data point and
all other points within the same cluster, whereas bi denotes the smallest average distance
from the ith to all points in any other cluster that does not include the ith point. If the
value of S is greater than 0.5 the cluster can be considered as coherent (wind turbines are
homogeneous with each other).

Therefore, in order to lower the computational effort, the smallest number of clusters
that satisfy the coherence criteria is selected and a representative turbine for each cluster
is selected. This selection is based on identifying the turbine with the smallest Euclidean
distance from the centroid of its respective cluster.

3.1.3. Artificial Neural Network Estimation Step

In this study, a Multilayer Perceptron (MLP) neural network is employed to per-
form the short-term estimation of the wind power plant productivity. Multilayer Percep-
tron is particularly suited for addressing complex nonlinear problems like wind power
estimation [32,33,37]. The network adopts a feedforward architecture and consists of
three layers: an input layer, a hidden layer, and an output layer. With the exception of
the input nodes, each node functions as a neuron that employs a nonlinear activation
function. Specifically, the sigmoid function was chosen for its historical prevalence in
neural network applications.

The neural network architecture employed in this study, an MLP, features an input
layer designed with a number of neurons that corresponds to the total number of wind
turbines in the farm. It uses a supervised learning method known as backpropagation for
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training purposes. In the training phase, this network is supplied with datasets containing
wind speed and direction for each turbine, effectively modeling each turbine’s contribution
to the farm’s overall power output. This process relies on supervised learning, necessitating
prior knowledge of the wind farm’s actual power output for accurate model adjustment.
During the subsequent testing phase, the network is challenged to predict the farm’s power
output using only the input data on wind conditions. In the development of the MLP model,
careful consideration was given to the dataset’s preparation and the network’s training
and testing conditions to ensure optimal predictive performance. The dataset was divided
into 70% for training and 30% for testing, a split that is widely recognized in machine
learning practices for offering a balanced approach to model training and generalizability
assessment. This ratio allows for comprehensive learning from a substantial portion of the
data while retaining a significant subset for unbiased evaluation of the model’s predictive
capability on unseen data. Further, a temporal data splitting strategy was employed,
allocating 10 days for model training followed by 4 days for testing. Such a temporal split
results in 1440 training samples and 576 testing samples, considering a sampling rate of
1 data point every 10 min, thereby ensuring that the model is well-adjusted to both the
frequency and variability of wind farm data.

Additionally, to enhance the model’s efficiency and accuracy, we leveraged the Matlab®

(Version R2022B) Deep Learning Toolbox, which offers a comprehensive suite of functions
and tools designed to optimize neural networks. These methodological choices—spanning
data splitting, temporal allocation for training and testing, and Matlab optimization—are
designed to strike a delicate balance between learning complexity and prediction capability.

As demonstrated in the experimental section of the case study, the objective of the pre-
processing and cluster analysis is to reduce the number of wind turbines (correspondingly,
the input layer neurons) in the neural network, thereby alleviating the computational load
of the methodology.

3.2. Model-Based Dependability

One of the main attributes of dependability is reliability, which measures the proba-
bility of a system working with no failures for the entire time of observation, known as
mission time. The mathematical formulation of system reliability is shown in Equation (4):

R = e−
∫ t

0 h(τ)dτ (4)

where h(τ) is known as the instantaneous failure rate of the system. This function serves to
quantify the probability of a failure occurring within a given time interval, given that no
failure has occurred prior to time t [59].

Figure 2 shows the bathtub curve, a more general model for the instantaneous failure
rate property h(τ) of a generic component, where it is possible to identify three main regions:

- Early failures: where h(τ) decreases with time. This phase contributes to removing all
the components which do not pass the trial stage, so that components are not placed
on the market.

- Random failures: where it is assumed that only random failures can occur. This is the
phase that characterizes the useful life of a component, assuming that this failure rate
is constant (this represents a general limitation of reliability models).

- Deterioration: where h(τ) is increasing due to deterioration. This region corresponds to
the phase where the component is old and should be replaced with a new component.

The three regions of the bathtub curve can be modelled by means of the Weibull
density function, which depends on two parameters, the scale factor α and the shape
parameter β:

h(t) =
β

αβ
tβ−1 (5)

If β = 1, the h(t) is constant with λ = 1/α; otherwise, with β > 1 h(t) it is increasing and
with β < 1 h(t) it is decreasing.
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The ‘random failures region’ refers to a phase in the system’s life known as its useful
lifetime, during which the system primarily experiences random failures. These random
failures are assumed to occur unpredictably and can be accurately described using an
exponential distribution. This assumption allows the instantaneous failure rate to be
considered constant over time, denoted as h(t) = λ [60]. This leads to a simplified equation
for reliability which calculates the probability that the system will function without failure
up to time t:

R(t) = e−λt (6)

This simplified model is particularly useful when dealing with complex machinery
composed of many parts. Engineers and risk management professionals often rely on it
for its straightforwardness and practicality. The constant failure rate (λ) is determined
based on manufacturer recommendations and the historical data of similar or equivalent
components [58,61–63]. In the context of wind turbines, for instance, several studies
focus on compiling the failure rates of various components to establish an average failure
rate [64]. This approach allows for a more manageable analysis of the causes behind wind
turbine failures, offering a way to aggregate component data and better understand overall
system reliability.

Equation (7) shows the equation for the reliability when the Weibull probability
function is used:

R(t) = e−( 1
α t)

β

(7)

Depending on the stochastic behavior, the failure of a component is sometimes mod-
elled by means of the normal distribution, characterized by two parameters: µ is the mean
time to failure and σ is the standard deviation. In this case, the integration of Equation (8)
must be performed numerically:

R(t) =
∫ ∞

t

1
σ
√

2π
e−

1
2 (

τ−µ
σ )

2

dτ (8)

Since the mathematical dependability formulation of a complex system is not easy
to formulate, high-level methodologies, such as Reliability Block Diagrams (RBD) are
often used in the industrial field. This methodology helps in modeling and assessing the
reliability of systems comprised of interconnected components, aiding in the identification
of critical paths, potential failure points, and overall system vulnerabilities. In an RBD,
system components are represented by blocks, each denoting a distinct element contributing
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to the overall functionality. Blocks can encompass a variety of components, ranging from
simple elements to entire subsystems. Connections of blocks, reflecting different modes
of component interaction, may be in series or parallel, forming the RBD paths. For the
system/process to work there may exist a path from the node IN to the node OUT.

In the example of Figure 3, the RBD is made up of five components; A and B constitute
a series subsystem, and C and D constitute a parallel subsystem. These two subsystems are
in series with the component E.
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The reliability of each block is generally modelled by means of a mathematical for-
mulation (see Equations (5)–(8)) that depends on the component (or subsystem) failure
characteristics. Finally, the reliability of the system/process can be computed by calculating
the probability of all the paths of the RBD.

One of the main limitations of this methodology is the incapability of modeling
environmental conditions and variable operational parameters. Clearly, in the field of
renewable power plants [35], this represents an important drawback considering the
randomness of primary resources (wind, sun, etc.) and their dependency with regard to the
operations of these systems. To tackle this issue, this paper proposes the adoption of hybrid
blocks that can vary their failure characteristics according to the operational conditions of
the system.

In this paper, the modeling of the Hybrid Reliability Block Diagram (HBRD) has
been realized by exploiting the Stochastic Hybrid Fault Tree Object Oriented (SHyFTOO)
library [64], a Monte Carlo simulation engine that allowed for the modification of the
failure/repair rate of wind turbines. In fact, as discussed in [65,66], the threshold value of
20 m/s defines a limit between two different failure probability density functions, for each
component of the wind turbine. This concept will be further developed in the case study
model of Section 4.

4. Case Study and Results

This section describes the case study and the results obtained with the methodology in-
troduced in Section 3. In Section 4.1, the wind farm is described; in Sections 4.2 and 4.3, the
results of the power estimation with the sole data-driven algorithm are presented. Finally,
Section 4.4 shows the results by coupling the data-driven model with the dependability
model of a wind turbine, utilizing the Hybrid Reliability Block Diagram model. As dis-
cussed in Section 4.5, the hybrid model enhances the accuracy of the algorithm estimations.

4.1. Wind Farm

The wind farm object of this case study is located in the southern Italy. It presents a
total out power (Pout) of 24 MW with 28 identical wind turbines. The wind farm is situated
in a mountainous area, with varying altitudes for each turbine. Additional key details are
provided in Table 2.
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Table 2. Main characteristics of the wind farm.

Feature Site

Position 37◦58′32′′ N, 15◦07′00′′ E
N◦ Turbines 28

Turbine quote 732–1149 m
Turbine Height 52–58 m

N◦ Blades 3
Turbine Pout 850 kW

The turbine model presents a power curve with a very low cut-in speed, as reported
in Figure 4. The choice of this turbine model is probably due to the low wind speed
distribution of that geographical zone. Figure 5 illustrates the layout of the wind farm.
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The dataset of the wind power plant is provided by a second-level SCADA with a
sampling time-step of 10 min. The data presented a percentage of missing samples of
around 1% that were cleaned with the pre-processing step of the algorithm.

Table 3 shows, as an example, the main values of the mean and the standard deviation
for a subset of turbines (one per cluster). As discussed in Section 3.1.1., the mean and
standard deviation of these variables (Pout, Wind speed and Wind Direction) are retrieved
by the pre-processing analysis. This set of data is then used in the cluster analysis to group
the wind turbines.

Table 3. Main data of statistical variables (second week of February 2017) [57].

Turbine
ID

Mean Pout
[kW]

Max Pout
[kW]

Dev.std Pout
[kW]

Mean Wind
Speed [m/s]

Max
Wind Speed [m/s]

Dev.std
Wind Speed [m/s]

206 163.75 850 199.61 5.67 23.71 3.27
216 75.89 828.73 146.39 4.07 16.21 2.38
214 351.51 843.11 194.18 7.71 21.45 3.48
309 144.21 848.55 198.83 5.85 20.35 3.53

213 170.69 849.81 206.23 5.57 27.76 3.30
308 216.21 849.99 229.90 6.51 25.17 3.59
207 163.88 848.45 204.53 5.21 33.81 3.47
317 111.42 849.41 165.92 4.85 17.86 2.54

As far as the wind direction is concerned, Figure 6 presents the frequency distribution
for the same wind turbines.
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4.2. Cluster Analysis Results

Table 4 presents the results of the cluster analysis, by having the algorithm testing
from 2 up to 8 clusters. The wind farm site, due to the variability of all samplers (all
variables presented a high standard deviation), showed a lower S coefficient, and only the
case of 8 clusters fulfilled the criterion (S > 0.5). Figure 7 shows the clusters and Table 5 the
centroid turbine of each cluster.

Table 4. Silhouette results.

Cluster Silhouette Results

2 3 4 5 6 7 8

Coef. Silh. 0.423 0.445 0.467 0.472 0.485 0.495 0.511
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Table 5. The centroid turbines of the cluster analysis.

Clusters Turbine ID Centroid Turbine ID

Cluster 1 206, 226 206
Cluster 2 216, 217, 220, 222, 223 216
Cluster 3 214, 221 214
Cluster 4 309, 310 309
Cluster 5 210, 213, 318, 219, 313 213
Cluster 6 308, 311, 314, 308
Cluster 7 207, 224, 225, 312, 315,318 207
Cluster 8 316, 317 317

4.3. Neural Network Results

The network was trained with a dataset of the year 2017, splitting it with a pattern of
10 days of training and 4 days of testing, corresponding to 1440 samples of training and
576 for testing (a sample each 10 min).

The effectiveness of the data-driven model is assessed comparing the real output power of
the wind farm against the output of the neural network under three different configurations:

- All turbines: the neural network is fed with the wind direction and wind speed of all
the turbines of the wind farm (28 neurons in the input layer of the neural network).

- Random turbine: the neural network is fed with the wind direction and wind speed
of a random turbine (1 neuron in the input layer of the neural network).

- Cluster centroid: the neural network is fed with the wind direction and wind speed of
the centroid turbines of the clusters (8 neurons, depending on the cluster analysis, in
the input layer of the neural network)

Table 6 shows the normalized mean squared error (NMSE) retrieved for the testing
dataset of 2017. The NMSE is computed using the following formula:

NMSE =
1
N ∑N

i=1

(
Pi − P̂i

Pi

)2

(9)
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where N is the number of samples of tests (one sample each ten minutes), Pi is the real
output of the wind farm of the ith sample, and P̂i is the estimation of the network for the
ith sample.

Table 6. Comparison of the Normalized Mean Squared Error of the power output.

Month NMSE_All Turbines NMSE_Clustering NMSE_Random Turbine

January 0.01945 0.69648 6.81375

February 0.02126 0.65839 6.66039

March 0.01935 0.65967 6.49241

April 0.02075 0.76712 6.28689

May 0.02303 0.66172 6.82694

June 0.02171 0.75546 6.12375

July 0.02095 0.68517 6.64920

August 0.02017 0.76030 6.68725

September 0.02213 0.75023 6.45569

October 0.02265 0.71657 6.17180

November 0.02321 0.77436 6.37107

December 0.02223 0.72278 6.33632

Figure 8 shows a comparison chart of these results considering a time-interval of a test
of 96 h (from 10 to 14 of February 2017). From both the charts in Figure 8 and the results in
Table 6, it is possible to notice that the “All Turbines” model is able to give good estimates,
such that it is difficult to distinguish it from the P real trend. Nevertheless, the computing
effort required to train and run the neural network is higher than the clustering model that
uses only 8 input neurons against the 28 of the “All Turbines”. Finally, the random turbine
model gives errors with 2 orders of magnitude higher than the “All Turbines” approach.

Energies 2024, 17, x FOR PEER REVIEW 15 of 25 
 

 

estimates, such that it is difficult to distinguish it from the P real trend. Nevertheless, the 
computing effort required to train and run the neural network is higher than the clustering 
model that uses only 8 input neurons against the 28 of the “All Turbines”. Finally, the 
random turbine model gives errors with 2 orders of magnitude higher than the “All 
Turbines” approach. 

 
Figure 8. The real and estimated power (96 h, 10 to 14 of February 2017). 

4.4. Hybrid Reliability Block-Diagram-Simulation Model of the Wind Turbine Generator 
With the goal of improving accuracy, the data-driven model has been combined with 

the dependable model of failure of the wind turbine. The internal structure diagram of a 
wind turbine is very complex and, as discussed in [64,65], for the purpose of a 
dependability model they can be grouped in the subsystems shown in Table 7. 

In this case study, the Hybrid Reliability Block Diagram (HBRD) used to model the 
wind turbine is shown in Figure 9. This approach fits with the claims of [64,65], which 
demonstrate that the wind speed affects the probability density function of the 
components of the Safety Subsystem and of the Brake Assembly. Table 7 shows the 
probability density functions of the subsystems used for this case study. 

 
Figure 9. Hybrid Reliability Block Diagram of the wind turbine generator. 

  

Figure 8. The real and estimated power (96 h, 10 to 14 of February 2017).



Energies 2024, 17, 1627 15 of 24

4.4. Hybrid Reliability Block-Diagram-Simulation Model of the Wind Turbine Generator

With the goal of improving accuracy, the data-driven model has been combined with
the dependable model of failure of the wind turbine. The internal structure diagram of a
wind turbine is very complex and, as discussed in [64,65], for the purpose of a dependability
model they can be grouped in the subsystems shown in Table 7.

Table 7. Probability density function (PDF) of the components of the Safety Subsystem and of the
Brake Assembly.

Component
ID Description PDF

(0 < wspd ≤ 20)
PDF

(wspd > 20)

C1 Generator Weibull (76,000; 1.2) Weibull (76,000; 1.2)
C2 Gearbox Weibull (123,000; 1.05) Weibull (123,000; 1.05)
C3 Blade Normal (42,000; 663) Normal (42,000; 663)
C4 Electrical System Weibull (35,000; 1.5) Weibull (35,000; 1.5)
C5 Converter System Exponential (1/45,000) Exponential (1/45,000)
H6 Pitch Assembly Normal (84,534; 506) Normal (14,089; 506)
H7 Yaw Assembly Exponential (1/65,000) Exponential (1/8125)
H8 Hydraulic Assembly Weibull (66,000; 1.3) Weibull (33,000; 1.3)
H9 Air Brake Exponential (1/100,000) Exponential (9/500,000)
H10 Mechanical Brake Exponential (1/120,000) Exponential (1/30,000)

In this case study, the Hybrid Reliability Block Diagram (HBRD) used to model the
wind turbine is shown in Figure 9. This approach fits with the claims of [64,65], which
demonstrate that the wind speed affects the probability density function of the components
of the Safety Subsystem and of the Brake Assembly. Table 7 shows the probability density
functions of the subsystems used for this case study.
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Figure 9. Hybrid Reliability Block Diagram of the wind turbine generator.

In the proposed model, we assume that the restoration brings back the component as
good as new, with a mean time to restoration shown in Table 8.

Table 8. Mean time to restoration with an exponential probability density function.

Component
ID Description PDF

(0 < wspd ≤ 20)

C1 Generator Exponential (1/120,000)
C2 Gearbox Exponential (1/120,000)
C3 Blade Exponential (1/120,000)
C4 Electrical System Exponential (1/120,000)
C5 Converter System Exponential (1/45,000)
H6 Pitch Assembly Exponential (1/120,000)
H7 Yaw Assembly Exponential (1/120,000)
H8 Hydraulic Assembly Exponential (1/120,000)
H9 Air Brake Exponential (1/100,000)

H10 Mechanical Brake Exponential (1/120,000)
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For the HRBD proposed, the resolution is performed by implementing a Monte Carlo
simulation that allows for the coding of the dynamic behavior of the reliability blocks
and for integrating numerically Equations (5), (7) and (8). To this end, we require the
adoption of a time-interval, ∆τ (the time-step of the simulation), which rules the discrete
integration of the reliability equations. In this way it is possible to evaluate the generic
working/failure state of each component by comparing the reliability at time τ with a
random uniform sample value, ψ in [0, 1[. The time-step of the proposed simulation has
been set to 10 min, which corresponds to the data sample of the time histories provided to
train the data-driven algorithms.

Figure 10 shows the reliability of a WTG, namely the probability that it never stops
working during the mission time. In this case study, this information gives the indication
that the generic WTG has roughly a probability of 78% of working continuously during the
96 h of observation. The dependability model takes as input the estimated power predicted
by the data-driven model, PDD (Figures 8 and 11). At each iteration of the Monte Carlo
simulation it evaluates the PMC(∆τk) for each ∆τk, k = 0,. . ., 96 h (with a 10 min time-step),
according to Equation (10):

PMC(∆τk) =
1
N

N

∑
i=1

PDD(∆τk) ∗ WTGi (10) (10)

where N is the number of clusters and WTGi is the status of the ith centroid turbine that
can be equal to 1 if the WTG is working, and 0 otherwise. To provide the status of each
centroid turbine, the dependability algorithm solves the corresponding HRDB. In order to
do that, each component C is evaluated by integrating the corresponding failure rate (see
Equations (6)–(8)) and comparing it with a random uniform value, ρ ∈ R in [0, 1[, sampled
at each time-step, according to the logic of Equation (11):

Φ(∆τk) =

{
OK, if rand > R(∆τk)
KO, if rand ≤ R(∆τk)

(11)
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If the component C has failed, the dependability algorithm samples the next repair
time using the inverse function of the repair distribution. More details can be found in [67].

The Monte Carlo simulation of the HRBD has been set to run 104 iterations, and
Figure 11 shows the charts comparing the improvement in the dependable model with
respect to the clustering (this figure also presents the prediction of the days from 10 to
14 February 2017). In Table 9, the comparison of the normalized mean squared error of the
power output between the clustering and the dependable algorithms are shown.

Table 9. Comparison of NMSE of the power output between dependable and clustering approach.

Month NMSE_Dependable NMSE_Clustering

January 0.53027 0.69648

February 0.54553 0.65839

March 0.51623 0.65967

April 0.53606 0.76712

May 0.51203 0.66172

June 0.53197 0.75546

July 0.53421 0.68517

August 0.54446 0.76030

September 0.53152 0.75023

October 0.52361 0.71657

November 0.53811 0.77436

December 0.53472 0.72278

It is possible to notice that the dependable model retrieves a more accurate evaluation
compared to the Pcluster algorithm. This result is clearer if we consider the prediction of the
energy produced as shown in Figure 12. This value can be obtained during the same 96 h
of observation with the formula of Equation (12):

EPRED = ∑N
i=1 Pi (12)
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where N is the number of samples and Pi is the output power of the wind farm for the
ith sample.
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Table 10 displays the normalized mean squared error values for the estimated energy
of the testing dataset, comparing two models: the dependable model and the model
based solely on clustering. The results clearly demonstrate the advantage of incorporating
dependability models into the energy estimation process for wind farms. By doing so, the
methodology not only achieves higher accuracy in predicting energy production, but also
offers insights into the operational efficiency and potential output of wind farms under
varying conditions.

Table 10. Normalized Mean Squared Error of the energy produced.

Month NMSE_Dependable NMSE_Clustering

January 0.00075 0.00344

February 0.00078 0.00370

March 0.00071 0.00366

April 0.00074 0.00366

May 0.00077 0.00367

June 0.00077 0.00367

July 0.00077 0.00366

August 0.00071 0.00364

September 0.00075 0.00362

October 0.00074 0.00360

November 0.00078 0.00357

December 0.00078 0.00355
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4.5. Results Discussion

The need to improve the accuracy of the solo data-driven clustering algorithm has
motivated the idea of coupling it with a dependable model also, as proposed in previous
research [31], where this solution was tested for long-term production estimation of a
analytical wake model. These two approaches are thus not comparable in terms of results.

Compared with existing material [11,15,28,32,34,37,49], the proposed approach intro-
duces several novel aspects that collectively advance the subject area. First, analyzing
other similar research papers that adopt a data-driven model with an ANN, it is possible to
highlight the fact that none of those make use of a dependable model of the wind turbine.

As far as the data-driven model based on ANN is concerned, the efficient use of
data through centroid turbines offers a novel way of reducing computational demands by
focusing on ‘centroid turbines’ for data collection and analysis. This strategy, underexplored
in the literature [15,17–20], optimizes the forecasting process by minimizing the data
required without compromising the accuracy of the output. It provides a practical solution
to the challenges of data management in large wind farms, setting a new direction for future
research in the area. In this way, the methodology presented addresses the common trade-
off between computational load and prediction accuracy, tackled by different literature
studies with other regression algorithms [11,15,29,38,40,45,51], maintaining high precision
in forecasts while reducing computational effort. Beyond theoretical advancements, this
study has practical implications for wind farm management, as it helps in simplifying the
site assessment phase and it enhances real-time operational decision-making, suggesting
ways to reduce costs and improve efficiency in wind energy production.

The experimental campaign of the wind farm case study reveals that the dependable
model proposed significantly outperforms the solo-clustering model. Specifically, for the
year 2017, the total NMSE for the dependable model (NMSE_dependable) is 0.00905, in
contrast to 0.04344 for the clustering model (NMSE_clustering). This difference indicates
a substantial improvement in accuracy, with the dependable model being approximately
4.8 times more accurate than the clustering model, which equates to a 480% increase
in accuracy.

5. Conclusions

In this study, a novel methodology for the short-term estimation of wind farm output
has been introduced. The proposed methodology integrates an artificial intelligence frame-
work with a data-driven approach alongside a stochastic model assessing wind turbine
generator reliability. At the heart of the approach is the use of a multilayer perceptron (MLP)
neural network, which undergoes training and evaluation over dataset patterns spanning
10 days for training and 4 days for testing. The findings indicate that through clustering
analysis, it is possible to significantly reduce the number of input neurons required in the
neural network without compromising the accuracy of power output predictions. This
reduction presents substantial benefits in two key areas. Firstly, it simplifies the process
of assessing wind farm productivity potential during the site selection phase. Specifically,
engineers may not need to deploy as many anemometers as initially anticipated, correlating
directly with the reduced number of critical wind turbines (centroid turbines of clusters)
identified through clustering. This not only streamlines the preliminary engineering work,
but also can lead to cost savings in the equipment and labor required for site analysis. Sec-
ondly, for real-time operational scenarios, the proposed methodology offers the advantage
of reduced computational demands. By needing to process information from fewer input
neurons, the system can generate short-term productivity estimates more efficiently. This
efficiency is particularly beneficial in scenarios where rapid decision-making is critical, en-
hancing operational responsiveness and potentially reducing the computational resources
required for data processing and analysis. Together, these advantages demonstrate the
utility of the proposed approach in both the planning and operational phases of wind farm
management, offering a means to optimize both the initial site assessment and ongoing
power output estimation with a focus on computational efficiency and practicality.
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The impact of the clustering approach has been demonstrated in the first part of the
experimental section. When the neural network is trained and used with the turbines
identified by cluster analysis (8 turbines), the normalized mean squared error (NMSE)
values increase in comparison to the full data set (28 turbines), yet they are still within
a reasonable range. This increase implies a reduction in prediction accuracy, which is
expected due to the decreased number of input variables. However, the relatively low
NMSE (compared to the random turbine selection) suggests that the clustering method is
effective in identifying representative turbines that still enable the neural network to make
relatively accurate predictions, albeit with reduced computational effort.

The integration of a Hybrid Reliability Block Diagram (HRBD) model marks a signif-
icant advancement in refining the accuracy of the estimations, being able to incorporate
the variability in operational conditions of wind turbines over time. The second part of the
experimental section shows the benefit of such coupling. Results demonstrated that the re-
liability model furnishes a more precise evaluation of energy production, particularly over
short-term periods, when compared to results obtained solely from the clustering algorithm.
These outcomes strongly indicate that a synergistic approach, combining both clustering
techniques and stochastic reliability models, can substantially improve the accuracy and
dependability of predictions for wind power plant energy output.

While the methodology proposed in this study demonstrates a good capability for
predicting the production of the wind farm through neural networks and clustering al-
gorithms, it is important to acknowledge a pivotal limitation: the reliance on accurate
and timely wind speed and direction forecasts. In fact, for the neural network to provide
precise estimations, it requires wind forecasts for the upcoming interval of time for which
the prediction is requested. This dependency underscores a crucial challenge; although
acquiring short-term wind forecasts is a common practice within the wind power industry
for operational planning, grid integration, and maintenance scheduling, the accuracy of
these forecasts can vary, especially as the forecast period extends. This highlights a po-
tential constraint in real-time operation and maintenance scenarios, where the quality of
forecasts directly impacts the precision of power production estimates. Thus, while this
approach offers a streamlined and efficient method for estimating wind power production,
the accuracy of these estimations is fundamentally tied to the availability and precision of
short-term wind forecasts.

In conclusion, this study presents a refined approach to estimating wind power
production, demonstrating slight but significant improvements in precision by integrating
a neural network with a dependability model. This enhancement is contingent upon a
thorough understanding of wind turbine failure rates and fault behaviors, which are critical
inputs for the dependability model. Accurately incorporating these factors is essential for
realizing the full potential of the methodology in improving prediction accuracy.

Future research will focus on optimizing the dependability model by enhancing its
adaptability to diverse operational conditions and maintenance schedules. Additionally,
we aim to explore the integration of advanced weather forecasting techniques to further
refine our predictions. These focused areas of study promise to elevate the efficiency
and reliability of wind power forecasting, contributing to the broader goal of advancing
renewable energy technologies.

By addressing these specific aspects, we not only aim to bolster the methodology’s
robustness, but also to ensure its applicability in the dynamic landscape of wind energy
production. The importance of production estimation in renewable energy cannot be over-
stated. Its multifaceted impact on planning, integration, operational efficiency, investment
decisions, and cost reduction underscores its role as a cornerstone in the transition towards
a stable, efficient, and economically viable renewable energy landscape.

Up until now, the proposed methodology has held promise for advancing the accuracy
and reliability of short-term wind power predictions, contributing to the efficient integration
of wind energy into the electricity grid.
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Abbreviations

Acronym Definition
ANN Artificial Neural Network
IPCC Intergovernmental Panel for Climate Change
GWEC Global Wind Energy Council
MLP Multilayer Perceptron
AI Artificial Intelligence
ANNs Artificial Neural Networks
SVMs Support Vector Machines
SVR Support Vector Regression
GPR Gaussian Process Regression
BS Bootstrap
PIs Prediction Intervals
NWP Numerical Weather Prediction
ARIMA Autoregressive Integrated Moving Average
NARX Non-Linear Autoregressive Network with exogenous inputs
VMD Variational Mode Decomposition
MRMR Maximum Relevance and Minimum Redundancy Algorithm
LSTM Long Short-Term Memory Neural Network
FA Firefly Algorithm
kNN K-Nearest Neighbor
GP Gaussian Process
VMD Variational Mode Decomposition
TCN Temporal Convolutional Network Model
SIA Seasonal Index Adjustment
ERNN Elman Recurrent Neural Network
FMOGMDRPs Flexibility-based Multi-Objective Generation Maintenance scheduling

associated with Demand Response Programs
PSO Particle Swarm Optimization
GIS Geographic Information System
SCADA Supervisory Control And Data Acquisition
DCS Distributed Control System
RBDs Reliability Block Diagrams
HBRD Hybrid Reliability Block Diagram
SHyFTOO Stochastic Hybrid Fault Tree Object Oriented
NMSE normalized mean squared error
PDF Probability density function
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