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Abstract: Output-only methods for modal identification are only strictly valid if a set of requirements
are fulfilled regarding both structural and environmental conditions. A particularly challenging effect
in wind turbine dynamics is the significant presence of nonlinear damping sources coming from
aerodynamic forces and, in offshore applications, hydrodynamic forces on the substructure. In this
work, the impact of these terms is firstly discussed in analytical terms, and then the corresponding
effect on the performance of the covariance-driven stochastic subspace identification is evaluated on a
single-degree-of-freedom model. The analysis is then extended to a full hydro-aeroelastic simulation
of a 5 MW floating wind turbine using the open source software OpenFAST, mimicking the structural
response in free decay tests and in parked conditions with turbulent wind fields. The results show
that output-only identification methods are applicable in these challenging scenarios, but the results
obtained must be carefully interpreted, since their dependence on the environmental conditions and
motion amplitude imply that they are not directly translated into the structure properties, although
still closely related to them.

Keywords: floating wind turbines; operational modal analysis; nonlinear damping; output-only
identification

1. Introduction

Methods for operational modal analysis for continuous structural health monitoring
are already quite mature, with a considerable range of methods suitable to automated imple-
mentations (see, for instance, [1]), but their application relies on some baseline assumptions
regarding either the structure under analysis or the external loads’ properties. While an
extensive discussion of the conditions of validity and the main challenges of output-only
identification can be found in [2,3], the most relevant ones are typically associated with
the system’s linearity and stationarity (especially relevant for the identification of modes
with low natural frequencies that require longer observation periods) and a white-noise
type of excitation (an assumption usually relaxed for a broadband excitation in the relevant
frequency range). Although rigorously meeting all the validity criteria for the application of
output-only modal identification methodologies is hardly ever achieved in real structures,
there is a long successful history of structural health monitoring through operational modal
analysis based on output-only methods in conventional civil engineering structures and,
more recently, also in onshore and offshore wind turbines.

A particularly challenging effect on offshore wind turbine dynamics comes from the
nonlinear damping sources associated with the aerodynamic and hydrodynamic forces
acting on the structure. Even within this challenging framework and complex dynam-
ics, in recent years, structural health monitoring of wind turbines has been successfully
extended to bottom-fixed offshore solutions, where its application has been proven effec-
tive against experimental data [4–7] and to floating solutions, both based on numerical
simulation data [8,9] and experimental data from a full-scale structure [10].
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In this work, the impact of these nonlinear effects is firstly discussed in analytical
terms, and the corresponding effect on the performance of the covariance-driven stochastic
subspace identification (SSI-COV) [11], a parametric method in the time domain that tries
to identify a discrete state-space model from the recorded response [12], is evaluated. It
should be noted that the purpose of this work is not to characterise these sources per se,
but rather to illustrate the impact that these may have in output-only identification methods
(see, for instance, [13,14] for a discussion regarding the application of nonlinear modal
analysis to the complex nonlinear dynamics of an offshore structure and their identification,
and [15] for an extensive review of nonlinear damping identification). The document is
organised as follows: firstly, a brief description of the damping model used to represent the
phenomenon on floating wind turbines is given, and preliminary considerations based on
simple energy laws are presented. Secondly, a simple numerical solution to the differential
equations of this model is then used as a benchmark to the estimates from the free decays
response and the SSI-COV results, in a setup under stochastic excitation. Finally, full
hydro-aeroelastic of the NREL 5 MW reference floating wind turbine simulations under
particular conditions are considered, and the damping level for surge and pitch motions
evaluated in free-decay simulations and under stochastic excitation.

2. Theoretical Background

As discussed in [16], a general expression for the velocity-dependent fluid-induced
damping force may be taken proportional to ∝

∣∣ẋn−1(t)
∣∣ẋ(t), where ẋ(t) is the structure

velocity, and n is a non-negative integer. Some particular cases of this general expression
are found for n = 0, related to dry friction [17], while n = 2 recovers the usual aerodynamic
or hydrodynamic quadratic drag force [18]. The linear, or viscous, damping model is
equivalent to setting n = 1. Although the quadratic model is discussed in the context
of very large structural deflections by [16], while the general case is extensively detailed
by [19], in this work a simpler approach is followed based on energy considerations.
This is particularly useful to make the connection between environmental conditions and
structural motions in the context of floating wind turbines by assuming that the damping
force is given by:

Fd(t) = c1 ẋ(t) +
c2

u0
|ẋ(t)− ur|(ẋ(t)− ur) (1)

where ẋ = dx
dt is the structure velocity, ur is the external flow velocity, and ci are the damp-

ing coefficients associated with the linear and nonlinear damping sources. Additionally,
a characteristic velocity, u0, has been introduced such that the dimensions of c1 and c2
are consistent. In what follows, this is assumed to be unity. The free equation of motion
(without any external load) for a single degree of freedom with mass m may be written as:

ẍ(t) = −ω2
0x(t)− Fd(t)

m
(2)

where ω0 =
√

k
m is the system’s undamped natural frequency, and Fd(t) is the damping

force, which may be a generic function of time, but here, it is assumed to be given by
Equation (1).

For the linear damping model (c2 = 0), the differential equation above has the well-
known solution:

x(t) = Ae−ξ1ω0t cos
(

ω0

√
1 − ξ2

1t + ϕ

)
= Ae−ξ1ω0t cos(wdt + ϕ) (3)
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where ωd = ω0

√
1 − ξ2

1 is the system damped frequency, ϕ is the phase angle associated
with the initial conditions, and ξ1 is the damping ratio, defined as the ratio between the
damping coefficient and its critical value as:

ξ1 =
c1

ccr
=

c1

2mω0
(4)

Although this is no longer true if c2 ̸= 0, for low damping forces, one may still make
some general considerations based on energy dissipated by the system over a full period,
which may be written as:

W =
∫

T
Fd(t)dx (5)

Assuming the damping takes the form presented in Equation (1), for the linear damping
contribution, one finds:

W1 = c1

∫
T

ẋ(t)dx = c1

∫
T

ẋ2dt ≈ c1 A2ω2
0

∫
T

sin2(ω0t)dt = c1

(
A2ω0π

)
(6)

where it is assumed that to the first order, the motion may still be approximated over a
full cycle as x(t) = −A cos(ω0t), such that ẋ = Aω0 sin(ω0t). Under the same assumption,
the nonlinear contribution, for the limiting case where ur = 0, may be obtained as:

W2 = c2

∫
T
|ẋ|ẋdx = 2c2

∫
T/2

ẋ3dt ≈ 2c2 A3ω3
0

∫
T/2

sin3(ω0t)dt =

= c2
8A3ω2

0
3

(7)

A straightforward comparison with the linear damping result unveils that the linear co-
efficient that best approximates the quadratic response in terms of energy dissipation, c̃2,
when expressed as a fraction of the damping coefficient c2, is:

c̃2

c2
=

8
3π

Aω0 (8)

From the expression above, it can be seen that for a purely quadratic damping force
(meaning ur = 0), a linear dependency of the effective damping ratio on the motion
amplitude is expected. Additionally, this dependency on the amplitude also implies that
the identified value in an hypothetical experiment is not a direct measurement of the
damping coefficient, its variation overtime being more relevant for this purpose.

Finally, the general nonlinear case with a nonvanishing external velocity (ur) is more
easily analysed if rewritten as:

W2

c2
=
∫

T
|ẋ − ur|(ẋ − ur)dx =

= −
∫ T1

0
(ẋ − ur)

2 ẋdt +
∫ T2

T1

(ẋ − ur)
2 ẋdt −

∫ T

T2

(ẋ − ur)
2 ẋdt =

=
∫ T2

T1

(ẋ − ur)
2 ẋdt −

∫ T+T1

T2

(ẋ − ur)
2 ẋdt

(9)
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where T1 and T2 correspond to the lower and upper time limits of the region where the
structural velocity is higher than the environmental one, meaning ẋ = Aω0 sin(ω0t) ≥ ur
for t ∈ [T1, T2]. Solving the integrals leads to:

W2

c2
= −

2A3ω2
0

3

[
cos3

(
2π

T1

T

)
− cos3

(
2π

T2

T

)
− 3 cos

(
2π

T1

T

)
+ 3 cos

(
2π

T2

T

)]
+

+ ur A2ω0

[
4π

(
1
2
+

T1

T
− T2

T

)
− sin

(
4π

T1

T

)
+ sin

(
4π

T2

T

)]
+

− 2u2
r A
[

cos
(

2π
T2

T

)
− cos

(
2π

T1

T

)] (10)

At this point, it is convenient to write the equivalent linear damping coefficient as:

c̃2 = c̃A + c̃u (11)

where c̃A and c̃u include the terms proportional to the motion amplitude and to the envi-
ronmental velocity, respectively, according to Equation (11) and that may be alternatively
defined as:

c̃A
c2

= −2Aω0

3π

[
cos3(ω0T1)− cos3(ω0T2)− 3 cos(ω0T1) + 3 cos(ω0T2)

]
(12)

c̃u

c2
=

ur

π
[2(π + ω0(T1 − T2))− sin(2ω0T1) + sin(2ω0T2)]

− 2u2
r

Aω0π
[cos(ω0T2)− cos(ω0T1)] (13)

Additionally, two different situations should be analysed separately. Firstly, when
ur > Aω0, implying that T1 = T2 = 0 and that the first integral in Equation (9) vanishes,
the corresponding effective damping coefficients are:

c̃A
c2

= 0 (14)

c̃u

c2
=

2πur A2ω0

A2ω0π
= 2ur (15)

For Aω0 > ur > 0, however, things are drastically different. In this case,

T2 =
T
2
−T1, a condition that also implies cos(ω0T1) = − cos(ω0T2) and sin(ω0T1) = sin(ω0T2),

and the same coefficients are now given by:

c̃A
c2

=
4A3ω2

0
3A2ω0π

cos(ω0T1)
[
3 − cos2(ω0T1)

]
=

4Aω0

3π

[√
1 − u2

r

A2ω2
0

(
2 +

u2
r

A2ω2
0

)]
(16)

c̃u

c2
=

4ur

π

[
ω0T1 +

ur

Aω0
cos(ω0T1)

]
=

4ur

π

[
sin−1

(
ur

Aω0

)
+

ur

Aω0

√
1 − u2

r

A2ω2
0

]
(17)

For completeness, it may be checked that for ur = 0, or, alternatively, for Aω0 ≫ ur,
one recovers:

c̃A
c2

=
8

3π
Aω0 (18)

c̃u

c2
= 0 (19)

It may be noted that this is the same result as in [16], up to a different original definition of
the damping coefficient.
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The different contributions for the effective damping ratio of these systems, named
after the conventions used in Equation (15), are presented in Figure 1 for different values
of structural and environmental velocities, where a clear transition at ur = Aω0 can be
identified. It should be noted that the precise location of this transition depends on both the
environmental conditions, here parameterised by ur, and on the motion amplitude, such
that in a general case, the structure may evolve from one regime to another. As may be
seen, the amplitude-dependent contribution, given by c̃A on the left panel, is null for small
amplitudes and rapidly converges to a velocity-independent value of 8

3π for characteristic
structural velocities higher than the environmental one. On the other hand, the velocity-
dependent contribution, given by c̃u in the centre panel, exhibits a constant value, but not
null for low motion amplitudes, and decays above the critical velocity. An important
aspect to retain is that, for a given environmental fluid velocity, ur, the nonlinear damping
contribution increases with the increasing motion amplitude. It is also true that for most of
the amplitude range, the damping ratio increases with increasing fluid velocities. However,
it is also possible to find conditions where the opposite happens, due to the sudden increase
in the amplitude-dependent contribution. This effect is clear when the two dashed lines
included in Figure 1 are compared. Finally, it can also be seen that for sufficiently small
motion amplitude, or perhaps more importantly, for floating offshore wind platforms and
for sufficiently small natural frequencies, the existence of sea current drastically changes the
results. In fact, in the scenario of still water, a linear dependence on the motion amplitude
is expected, while in the presence of currents, a constant damping force dictated by the
current speed will appear.

0 1 2 3 4
A 0

0

1

2

3

4

5

c/
c 2

cA

0 1 2 3 4
A 0

cu

0 1 2 3 4
A 0

c2

0

1.2
1.4
1.5

u r
 (m

/s
)

Figure 1. Evolution of the different contributions, as defined in Equation (9), for the effective
damping of the structure expressed with respect to the true damping coefficient, c2. In the left panel,
the amplitude-dependent term, c̃A, with the limit defined by Equation (18) included as dashed-dotted
line. In the centre panel, the external velocity-dependent contribution, c̃u, with the limit defined by
Equation (15) for Aω0 = ur indicated as dashed-dotted line. In the right panel, the total effective
damping, obtained as a superposition of the two contributions from the previous panels. In this case,
the dashed lines are included for two particular values of ur = 1.2 m/s and ur = 1.4 m/s.

3. Methods for Modal Identification

The identification of nonlinear systems is a large topic on its own, with several applica-
tions (see, for instance, [20]), but most modal identification methods are mostly based on the
assumption that the structure behaviour is linear, or that at least the nonlinear response is
subdominant and maybe safely neglected. Following the discussion in Section 2, this works
tries to understand how these nonlinear terms impact the damping ratio estimates, when a
linear method is used for the identification. For this purpose, a brief overview of the con-
ventional logarithmic decay method is presented, as well as the traditional implementation
of the SSI-COV.
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3.1. Logarithmic Decay Method

For systems with linear damping, one may immediately see that the response is given
by a periodic function modulated by a negative exponential, implying that ξ1 can be directly
evaluated from the response amplitude:

ln(Ae−ξ1ω0t) = ln(A)− ξ1ω0t (20)

meaning that the envelope amplitude’s natural logarithm, here obtained through the peak
value in every oscillation, is a linear function of time with slope −ξ1ω0. As in [21,22],
this idea can be generalised to define an equivalent damping at a given point as the time
derivative of the slope that can be written, in general, as:

ξ = ξ0 + ξA (21)

where ξ0 and ξA are the amplitude-independent and -dependent contributions. In the
model under analysis, this relation may still be well approximated for most of the condi-
tions as:

ξ = ξ0 + mξ · A (22)

where A is the motion amplitude, and mξ is a constant that depends on the damping regime:
for a linear damping model or when ur < Aω0, it is expected to vanish (mξ ∼ 0), while
for a nonlinear model and ur > Aω0, it is expected to be given by mξ ≈ 8ω0

3π ξ2, where ξ2
should be interpreted as the dimensionless analogue of the nonlinear contribution:

ξ2 =
c2

2mω0
(23)

3.2. Stochastic Subspace Identification

If the method above is suitable to analyse the free-decay response of a given structure,
it fails to properly characterise the response under a stochastic action and/or when more
than one mode contributes to the response. If the latter can be mitigated by a suitable appli-
cation of data-filtering methodologies, the former requires more robust and sophisticated
approaches. In this work, the SSI-COV method (covariance-driven stochastic subspace
identification), applied for the first time in [11] in the context of structural identification,
was used. This methodology is based on the identification of a state-space model [23] of
the recorded response (yk) as:

xk+1 = A · xk + wk (24)

yk = C · xk + vk (25)

where xk is the state vector, and wk and vk the process and measurement noise, respectively,
and where the state matrix A contains all the relevant dynamic information of the system.
The critical step for the method is the identification, under a white-noise external action,
of the state matrix from the output correlation matrix, using equations [23]:

Ry(j) = E
[

yk+j · yT
k

]
= C · Aj−1 · G = C · Aj−1 · E

[
xk+1 · yT

k

]
(26)
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which allows us to distribute the correlation matrices in a Toeplitz matrix such that:

T(1|ji) =


Rre f

ji Rre f
ji−1 . . . Rre f

1

Rre f
ji+1 Rre f

ji . . . Rre f
2

...
...

. . .
...

Rre f
2·ji−1 Rre f

2·ji−2 . . . Rre f
ji

 =


C

C · A
...

C · Aji−1

 ·
[
Aji−1 · G . . . A · G G

]

=
[
U1 U2

]
·
[

S1 0
0 0

]
·
[

V T
1

V T
2

]
(27)

where the last equality follows from the singular value decomposition of the Toeplitz matrix,
and the non-zero values of this decomposition are marked with the index 1. The Toeplitz
matrix can still be written from the observability (O) and controllability (Γ) matrices as: Oji = U1 · S

1
2
1

Γji = S
1
2
1 · V T

1

−→ T(1|ji) = Oji · Γji (28)

Comparing Equations (27) and (28), it can be easily shown that the output matrix C can be
computed from the first n lines of the observability matrix, n being the number of DOFs of
the system. Having defined the output matrix, the corresponding state matrix results from
an optimisation problem since († stands for the Moore–Penrose pseudoinverse matrix):

C
C · A

...
C · Aji−2

 · A =


C · A
C · A2

...
C · Aji−1

 −→ A =


C

C · A
...

C · Aji−2


†

·


C · A
C · A2

...
C · Aji−1

 (29)

Having identified the state matrix, the mode shapes’ components, natural frequencies and
modal damping ratios follow directly from its eigendecomposition [24]:

A = Ψ · ΛD · Ψ−1 (30)

where Ψ contains the mode shapes’ components in its columns, and ΛD is diagonal with the
discrete-time eigenvalues (µk), related to the natural frequencies (ωk) and modal damping
coefficients (ξk) by [24]: λk =

ln µk
∆t

λk, λ∗
k = −ξk · ωk ± i ·

√
1 − ξ2

l · ωk
−→

{
ωk = |λk|
ξk = −ℜe(λk)

|λk |
(31)

When real observation data are used, the number of non-zero singular values of the
Toeplitz matrix, or model order, is not clearly defined, as a significant number of poles
may be needed to properly model the noise and the load frequency content induced in the
response. As this value is a priori unknown, a common procedure in operational modal
analysis is to test different model orders, keeping only the modes that are consistently
obtained, regardless of the order used. In this work, we also introduce a new criterion for
modal differentiation that explores the amplitude of the modes identified in the state matrix
decomposition. Although this information is often not considered since the mode shapes
are only defined up to a numerical factor, in real applications where the state matrix is
obtained from experimental data, the retrieved configurations have imprinted the level of
excitation of each mode. It may be argued that this effect also reflects the modal coordinate
at a given point, but from an identification point of view, both aspects are completely
degenerated and cannot be immediately distinguished.
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Finally, it should also be noted that while the SSI-COV method was originally de-
veloped as a tool for stochastic identification, it also relies on the fact that the observed
free decays are closely related with the correlations of the responses associated with a
white-noise excitation. Consequently, measured free decays can also be used as input to
the SSI-COV method, taking the place of the correlation functions calculated from the
ambient responses [25]. In this case, instead of basing the identification on the correlations
between the measured responses, the algorithm is applied to a time-dependent matrix with
a single column containing the free decays measured at the instrumented points. If this
approach solves the already mentioned limitation of the traditional procedure based on the
logarithmic decrement of the response that requires the contribution of a single mode to
be isolated, eventually, by the application of band-pass filters, it should be noted that the
amplitude-dependence identification of the damping coefficient is, at least, partially lost.

4. Simplified Single Degree of Freedom Model

In the previous section some analytical predictions were derived for the effective en-
ergy dissipation induced by hydrodynamic and aerodynamic responses, or more generally,
by any nonlinear damping source that may be parameterised by Equation (1). To see how
they stand against numerically simulated data, the equation of motion was numerically
evaluated for different conditions considering the following model parameters:

• Simulation 1: ξ1 = 1%, ξ2 = 0%, ur = 0 m/s
• Simulation 2: ξ1 = 1%, ξ2 = 2%, ur = 0 m/s
• Simulation 3: ξ1 = 1%, ξ2 = 2%, ur = 0.5 m/s
• Simulation 4: ξ1 = 1%, ξ2 = 2%, ur = 1.1 m/s

The values above were defined in order to cover the different damping regimes
discussed in Section 2, here expressed in terms of the damping ratio ξ1 and ξ2. Without
loss of generality, it was assumed in all simulations that ω0 = 1.

4.1. Free-Decay Analysis

In a first approach, the response was simulated by imposing a unitary initial dis-
placement and null velocity as initial conditions. For each simulation, the free decay was
analysed and the damping ratio estimated based on the logarithmic decrement at every
two periods. The results are presented in Figure 2, where some relevant aspects that confirm
the theoretical predictions can be identified.

Firstly, for the linear damping case, a constant equivalent damping is identified and
the original value recovered, which should come as no surprise since this is just a simple
linearly damped harmonic oscillator whose behaviour is well understood. In the second
case, however, a clear linear trend can be seen, as predicted from the quadratic force. In this
case, it can be checked that the interception at the origin is given by the linear damping
coefficient once more, while the amplitude-dependent slope is well approximated by

8
3π ξ2 ≈ 1.70%. Finally, the two simulations where an external flow velocity was considered
also exhibit the expected characteristic features. On one hand, for velocities higher than the
structural peak velocity, the results are well approximated by a single, constant, equivalent
damping coefficient given by ξ̃ ≈ ξ1 + 2urξ2 = 1 + 2 × 1.1 × 2 = 5.4%. On the other hand,
Simulation 3 shows the phase transition happening at ur = Aω0. In this case, this threshold
is achieved midway through the simulation and at posterior times (associated with lower
motion amplitudes), the solution is once more well approximated by a constant equivalent
damping, here given by ξ̃ ≈ ξ1 + 2urξ2 = 1 + 2 × 0.5 × 2 = 3%.

The free decays for the different simulations were used as input to the SSI-COV
algorithm, and the results obtained are presented in Figure 3, where a reference value
based on the free decay results just described has also been included for reference as a
dashed line, based on the different limits that are adequate for each simulation. Here, and
in the following, the SSI-COV results are presented as stabilisation diagrams: the first row
includes the different stable poles (a pole is considered stable if the frequency and damping
variation between model orders is not higher than 1% and 10%, respectively) identified for
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different model orders, with the corresponding damping level and the relative contribution
for the total response presented on the second and third row, respectively. The poles were
separated in different clusters with DBSCAN [26] using as metric the differences in the
frequency, damping and modal contribution. It is interesting to note that while the results
from Simulation 1 trivially recover the theoretical values, the remaining simulations exhibit
different properties. In fact, it can be seen that Simulation 2, where the environmental
velocity vanishes, corresponds to the cases where the identification is harder and exhibits
significant scatter. On the other hand, as the environmental velocity increases, the natural
frequency identification is easily recovered, but different harmonics are also found. These
harmonics, due to the nonlinear components of the model, are also partially visible in
Simulation 2.
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Figure 2. Identified damping coefficients from a free decay for different combinations of linear and
nonlinear damping sources based on the logarithmic decay.
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Figure 3. Stabilisation diagrams obtained with SSI-COV using the free decay for different combina-
tions of linear and nonlinear damping sources as direct inputs.
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Finally, it can still be seen that the introduced criteria regarding the modal contribution
as estimated from the decomposition of the Toeplitz matrix can be used to effectively
identify the relevant modes for the identification.

4.2. Stochastic Excitation

If the results until now were already expected based on the theoretical considerations
previously presented, they also clearly identify the possible issues for output-only identifi-
cation methods, where a linear structural behaviour is assumed. In particular, the SSI-COV
algorithm strictly depends on this assumption through, at least, two different perspectives.
Firstly, the method inputs are the correlation functions that are obtained by averaging over
the full time series. If the system undergoes a nonlinear motion, this averaging procedure
will inevitably fail. On the other hand, and even considering that the free decay could be
well defined, for instance by using free-decay test results such as the ones presented in
Figure 2, the method characterises the state matrix of what is assumed to be a linear system,
a condition that is once more not verified.

If the issues above could raise the question of whether or not to use the SSI-COV,
the fact is that the free decays that have been used as a direct input for the identification
method are not compatible with the more commonly available experimental data. To em-
ulate this situation, the single-degree-of-freedom model was excited with a white-noise
external action for 4000 s. The generated time series after removing the first 400 s to ensure
that the transient events were properly faded away are presented in Figure 4. The results
of the SSI-COV method are presented in Figure 5, where 30 s was used for the length of
the correlation function estimates. Once more, it can be seen that in all cases, the estimated
damping coefficient is in accordance with the values obtained for the free decay, but dif-
ferent for different environmental conditions (note that all simulations were conducted
with the same structural properties). Additionally, while Simulations 1, 3 and 4 recover the
expected theoretical values, Simulation 2, where the amplitude dependence of the response
was more pronounced, exhibits a higher scatter in the damping estimates. In all cases but
Simulation 1, it should be noted that the identified value is not a direct estimate of the
damping coefficient.
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Figure 4. System response when subjected to a stochastic loading for different combinations of linear
and nonlinear damping sources.

Additionally, the constant and stable values found in all simulations for the damping
ratio may come as a hint that the induced motion amplitudes are mostly falling below the
threshold previously identified. To test this hypothesis, the response was simulated for
different intensities of white-noise loading. The evolution of the identified damping ratio
with the characteristic motion amplitude, as defined by its standard deviation, is presented
in Figure 6. The motion amplitude was used rather than the white-noise characteristic
value, since it is expected to be more closely related to the identified damping ratio. As can
be seen, while Simulation 1’s predictions are stable for arbitrary conditions, as expected,
Simulation 2 to 4 exhibit a clear dependency on the intensity of the external loading. In fact,
it can be seen that there is a given characteristic motion amplitude that separates a region
where the identified damping is constant from a region where it increases with the motion
amplitude. Additionally, it can be seen that the point at which this transition is found is
closely related to the reference environmental speed, ur, of the corresponding simulation:
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in Simulation 2, ur = 0 and the amplitude dependence is found for all simulated conditions,
in Simulation 3 and 4, with ur ̸= 0, a constant damping coefficient is found for motion
amplitudes ∼ur, increasing after that threshold (note that the theoretical prediction is found
at Aω0, but here, ω0 = 1, and A is closely related with the motion’s standard deviation).
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Figure 5. Stabilisation diagrams obtained with SSI-COV using the correlation functions estimated
from the stochastic response of the system for different combinations of linear and nonlinear damp-
ing sources.
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Figure 6. Evolution of the identified damping ratio for different intensity stochastic loading in the
different simulation scenarios.

5. Numerical Validation with Full Aeroelastic Simulations
5.1. Numerical Model Description

Having studied the impact of different damping models on the performance of output-
only identification methods, in the following section, this is used to gain insight into data
that more closely mimic experimental records. For this purpose, the NREL 5 MW wind tur-
bine [27] and the corresponding reference semisubmersible floating platform designed for
Phase II of the Offshore Code Comparison 4 (OC4) [28] were used to simulate the dynamic
response for different environmental and operation conditions. It should be noted that
in this case, two different sources of nonlinear damping were present, the hydrodynamic
and aerodynamic counterparts, which differently impacted the surge and pitch motions
of the floating platform. In all simulations where a turbulent wind field was considered,
the full wind field was generated using NREL’s TurbSim [29] generator with a varying
reference mean wind speed and turbulence intensity. The mooring systems were modelled
using MoorDyn [30]. While the platform motions are typically described from three trans-
lations (surge, sway and heave) and three rotations around the same axis (roll, pitch and
yaw), as represented in Figure 7, in this work, for the sake of brevity, the evaluation of the
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SSI-COV performance was made using as input for the algorithm the platform surge and
pitch motions as output by OpenFAST. For reference, these motions were associated with a
natural frequency of 0.009 Hz and 0.037 Hz, respectively [28,31].

Figure 7. Rigid body’s degrees of freedom of a floating offshore wind turbine.

5.2. Free-Decay Analysis

As a first step, the structure was displaced from its equilibrium position and the
corresponding free decay evaluated. This work focused on the surge motion, by imposing
a 10 m displacement along this direction, and the pitch motion, by imposing a 5◦ rotation
along the relevant axis. For each case, the free decay was computed for the following
environmental conditions:

• Simulation 1: reference scenario without currents nor wind;
• Simulation 2: sea current with a velocity of 0.25 m/s, no wind;
• Simulation 3: 3 m/s steady wind field, parked rotor;
• Simulation 4: 22 m/s steady wind field, normal-operation rotor with a constant

angular velocity of 12.1 RPM (revolutions per minute).

In all simulations, the pitch value was defined to be 20◦. The higher wind speed was
chosen from [27] as the normal operation conditions associated with the same pitch angle
and the rotor angular velocity was set for the corresponding value of 12.1 RPM. Finally, since
in all simulations but Simulation 1, the structure is displaced from its equilibrium position
by wind or current loading, a preliminary simulation without the prescribed displacement
was conducted, and the new equilibrium position used as initial conditions for the free-
decay analysis. This procedure ensured that the free decay was performed with exactly
the same initial conditions in all cases. The results based on the logarithmic decrement are
presented in Figures 8 and 9 for the surge and pitch motions, respectively. It may be easily
seen that the surge motion is mostly impacted by the presence of a nonvanishing current
rather than by the external wind field. On the other hand, the pitch motion is strongly
impacted by the wind speed, but not by the current. This can be explained from the fact that
the structure velocity at the rotor level sourced by the pitch motion is not only associated
with higher frequencies (when compared with surge motion) but is also amplified by
the tower height. At this point, it should be mentioned that although Simulation 4 was
compatible with normal operation conditions, the controllers were not active, implying
that both the rotor angular velocity and the blades’ pitch angle were constant throughout
the simulation time. In a more realist scenario, the velocity variation sourced by the pitch
motion would trigger a response from the control system that would impact the results.
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Although this is clearly an oversimplification, this analysis should not be understood as
representative of actual operating conditions (it is not expected to conduct a free-decay
analysis with an operating rotor in the first place) but to illustrate the impact of the different
contributions for the overall damping level of the different motions.
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Figure 8. Identified damping coefficients from a free decay for different combinations of wind and
current conditions for the surge motion.
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Figure 9. Identified damping coefficients from a free decay for different combinations of wind and
current conditions for the pitch motion.

Once more, the same results could be estimated using the SSI-COV and the results
are presented, for reference, for the surge motion in Figure 10, where the presence of the
fundamental frequency harmonics is easily identified. This is important because it unveils
that this effect can be used to identify nonlinear contributions that could be otherwise
interpreted as independent modes. It may also be seen that the identified damping levels
exhibit a significant scatter, except for Simulation 2. This can be understood, since the
case with the external sea current is the one where the damping level is dominated by the
amplitude-independent terms. In all other cases, there is a pronounced dependence on
the motion amplitude, and this is perceived as different damping levels in the stabilisa-
tion diagrams. In fact, and referring back to Figure 8, it may be seen that the scatter is
compatible with the maximum and minimum damping levels identified in the logarithmic
decay analysis.
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Figure 10. Stabilisation diagrams obtained with SSI-COV using the surge’s free decay for different
combinations of environmental conditions (poles associated with the surge’s fundamental frequency
in blue).

5.3. Stochastic Excitation

Finally, the structural response with a stochastic wind field characterised by a given
wind speed and turbulence intensity was simulated. To avoid including transient effects
associated with the model convergence in the first time steps, the results were obtained by
running 4000 s simulations and discarding the first 400 s, leaving 3600 s (60 min) for the data
analysis. For simplicity, no wave loading was considered in the simulations, implying that
the stochastic nature of the response was fully characterised by the wind field’s turbulent
component. Since the damping level was expected to depend on the motion amplitude
(essentially conditioned by the wind turbulence) as well as on the average wind speed,
the following 3D wind fields were generated:

• Wind field 1: 2.5 m/s mean wind speed with a 10% turbulence intensity;
• Wind field 2: 2.5 m/s mean wind speed with a 26% turbulence intensity;
• Wind field 3: 6.5 m/s mean wind speed with a 10% turbulence intensity.

Note that the chosen conditions ensured that the standard deviation of the wind
time series was the same in wind field 2 and wind field 3. All conditions were combined
with different sea current velocities between 0 and 50 cm/s, for a total of 33 independent
simulations. The stabilisation diagrams for the minimum and maximum current speeds
considered, as well as an intermediate case, are presented in Figure 11 for wind field 1.
As can be seen, the damping level associated with the surge motion seems to increase with
the speed of the current, while the same does not seem to happen for the pitch motion.

The identified damping ratio evolution with the current and wind speed is presented
in Figure 12 for the studied surge and pitch motion. As can be seen, neither the average
speed nor the energy associated with the turbulent component of the wind field seems
to significantly impact the identified damping for surge motion, which is completely
dominated by the sea current intensity. This is an expected result following the free-decay
analysis, since the energy dissipation for this particular motion was found to be associated
with the hydrodynamic response. On the other hand, the pitch motion was found to
be mostly governed by the aerodynamic damping at the rotor level, and this was also
confirmed by the simulations. In fact, it can be seen that the current intensity does not
impact significantly the damping level identified, which now can be seen to be more
correlated to the mean wind speed. It can also be seen that the energy content associated
with the turbulent components also contribute to higher damping levels, even considering
that the simulations’ conditions were associated with small-amplitude pitch rotations.
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6. Conclusions

In this work, the applicability of the output-only method SSI-COV for modal identifi-
cation in the presence of nonlinear damping sources was discussed, with a particular focus
on the relation between the identified damping level and the corresponding linear and
nonlinear damping coefficients. In a first approach, based solely on an analytical analysis
and energy dissipation considerations, it was shown that the equivalent damping ratio
that this type of systems experience depends on the relation between the characteristic
motion amplitude and the external (environmental) reference velocity, with a motion’s
frequency-dependent critical value separating two distinct regions. This behaviour shows
that the relation between identified damping ratio and the structure damping coefficients
is not trivial, which is an important conclusion when calibrating numerical models with
experimental data.

In a second step, the theoretical predictions were verified by numerically solving the
equation of motion of a single-degree-of-freedom system for a single initial perturbation
and with a stochastic excitation. If in the first case, the variation in the damping ratio
with the motion amplitude becomes evident, the same does not happen when methods for
stochastic identification are required. In these cases, it was shown that additional harmonics
of the fundamental frequency appear in the stabilisation diagram. These should not be
taken as additional structural modes.

Finally, the gained insight was used to better understand the results and damping
levels using a full hydro-aeroelastic simulation of a reference floating wind turbine for
different sea currents and wind field properties. This analysis showed that the damping
level of different platform motions is impacted differently by the different environmental



Energies 2024, 17, 1671 16 of 17

conditions. Here, a remark should be made, since only very particular conditions were
tested, where the wind turbine rotor was either parked or spinning with a constant angular
velocity. The study of the control system’s impact on the results is left for future work.
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