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Abstract: Composition regulation of zeotropic mixture working fluid for a thermodynamic cycle
is an effective way to improve energy conversion efficiency, which offers the potential to construct
efficient, flexible and intelligent cycles. Current research on cycle construction of zeotropic mixture
composition regulation still heavily relies on construction methods using pure working fluids, where
the characteristics of flexible composition variations fail to be utilized. In this paper, the research
progress of cycle construction methods and composition regulated structures are comprehensively
reviewed, aiming to clarify the potential for enhancing a thermodynamic cycle based on composition
regulation. The characteristics of different cycle construction methods are firstly summarized and
compared. Then, the composition-regulated structures of a physical-based method and chemical-
based method are introduced, and the composition regulation performance are also concluded.
Finally, a future outlook on the cycle design and structure design is provided. The review results
show that the combination of 3D construction method and superstructure/intelligences construction
method has the potential to maximize the cycle performance, where the improvement of each thermal
process and the optimization of complex cycles can be considered simultaneously. The composition
regulation based on a passive physical method has the advantage of being readily applicable; however,
the composition regulation range is limited. In addition, the distillation and hydrate method have a
wider regulation range through extra energy input, where the trade-off between energy consumption
and cycle performance improvement should be considered in the future. This study greatly assists
in the design of thermodynamic cycles involving zeotropic mixture composition regulation and the
corresponding composition regulation structures.

Keywords: thermodynamic cycle construction; organic rankine cycle; zeotropic mixed working fluid;
composition regulation; low and medium temperature thermal energy

1. Introduction

With the put forward of “Carbon neutrality”, increasing the utilization efficiency of
energy, especially renewable energy, and reducing the use of fossil energy has become a
critical pathway to reducing carbon emission. Among them, the medium- and low-grade
thermal energy (temperature lower than 350 ◦C) plays a crucial role in the utilization of
renewable energy. According to the National Bureau of Statistics of China, the total amount
of medium and low grade energy that can be developed and utilized in renewable energy,
including geothermal energy, solar energy, ocean energy, is estimated to be 6.37 × 1022 J [1],
which is 420 times greater than the total energy consumption of China in 2021 [2], indicating
enormous utilization potential. Furthermore, in industrial processes that highly rely on fossil
energy, over 30% [3,4] of energy is released as medium- and low-energy-grade waste heat.
Therefore, to attain low-carbon and high-efficiency energy consumption, the utilization of
a medium and low energy grade can be explored through the perspective of renewable
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energy utilization and waste heat recovery, which is the key component in ensuring the stable
transition of the energy structure and achievement of carbon neutrality.

To utilize medium- and low-grade energy, one effective way is though a thermo-
dynamic cycle. Among them, the organic Rankine cycle (ORC) has received extensive
attention in both academic and industrials fields. In the past, research on ORC mainly
focused on the selection of working fluids [5], the design of key components [6] and im-
provements in the thermodynamic cycle structure [7]. However, due to the irreversible
losses in each component, especially in terms of the heat exchange process, the system’s
efficiency during applications and experimental testing remains limited. For instance, the
efficiency of the first law of thermodynamics is lower than 12% [8], and the thermodynamic
perfectibility is lower than 50% [9].

To break though the above limitation and further improve the thermal efficiency of
the thermodynamic cycle, some researchers have proposed utilizing the zeotropic mixture
working fluid. Using “zeotropic mixture” as a key word to retrieve in Web of science database,
it can be observed that 1042 papers have been published from 2005 to 2024 around the world,
as shown in Figure 1a, with a growing trend over the years. Among these papers, a significant
proportion of the research is focused on the heat transfer performance, phase equilibrium or
the replacement of pure working fluids with zeotropic mixture working fluid in a thermo-
dynamic cycle. Additionally, as depicted in Figure 1b, 43 papers among these publications
are related to composition regulation, whereby nearly 70% are published by Chinese authors.
The regulation of mass fraction ratios in the zeotropic mixture working fluid, referred to as
“composition regulation”, capitalizes on the inherent variability of physical properties. This
variability facilitates in matching between working fluid properties and thermodynamic pro-
cesses, notably the temperature matching during heat exchange process. As a consequence, it
also further reduces the irreversible losses in the system and improve system performance [10].
Research on thermodynamic cycles with zeotropic mixture working fluid can be summa-
rized into three types: construction of a thermodynamic cycle, key technologies of a system
component, and system applications. For the previous type, the innovation of novel a thermo-
dynamic cycle construction is based on thermodynamic theories and methods. Meanwhile,
by optimizing and analyzing system performance under various system operating conditions
and the system component, the maximum performance limit of the new thermodynamic cycle
can be obtained. For the second type, the research mainly focuses on the key components
involved in each thermodynamic process, aiming to obtain the actual performance of each
component under specific operating conditions. For the last type, the integration and the
experiments’ test of the novel thermodynamic cycle is mainly concerned with the objective of
evaluating the performance of actual thermodynamic cycles under specific operating condi-
tions. However, currently, the proven construction method of thermodynamic-cycle-based
composition regulation have not been widely reported. The majority of construction technical
pathways heavily rely on construction methods using pure working fluids, thereby failing to
fully utilize the characteristics of flexible composition variations.

Based on the aforementioned information, to reveal the potential for enhancing ther-
modynamic systems based on composition regulation, this paper presents a comprehensive
review of the research progress on the novel thermodynamic cycle that utilizes zeotropic
mixture working fluid with composition regulation, as shown in Figure 2. The focus of the
research lies primarily in the thermodynamic cycle construction and key technologies of
the system component. Firstly, the conventional construction thermodynamic cycle, 3D
construction thermodynamic cycle method, superstructure construction thermodynamic
cycle method and intelligence construction thermodynamic cycle method are summarized
and compared. Furthermore, the composition regulation technologies based on physical
phase separation (T-junction, liquid-separation condenser and distillation towers) and
chemical reaction regulation (hydrate-based method) is summarized. The proposed novel
thermodynamic cycle construction provides valuable insights for the advanced thermal
power conversion technologies. However, the application of the composition variation
characteristic of the zeotropic mixture working fluid for the available method is still limited.
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Additionally, when applying the composition regulation technologies to the actual thermo-
dynamic cycle, it is crucial to strike a comprehensive balance between the extra energy input
and the energy output resulting from the composition regulation. This study is of great
help in the construction of the zeotropic mixture composition regulation thermodynamic
cycle and the design of the composition regulation structure.
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2. Methods of Thermodynamic Cycle Construction

The method of the thermodynamic cycle construction serves as the foundation for
proposing a new thermodynamic cycle. By explicitly defining the basic principles of
thermodynamic cycle construction, it can effectively guide the design of innovative cycle
structures. In traditional research, the introduction of new thermodynamic cycles often
relies on modifying and combining multiple conventional thermodynamic cycles using
topological configurations such as repetition and parallelism, for specific thermodynamic
processes. However, there is a lack of unified methods to provide guidance, resulting in
complex and diverse new cycle structures that heavily depend on specific boundary condi-
tions. Recently, some scholars have proposed various methods for thermodynamic cycle
construction, including the conventional construction method, 3D construction method,
superstructure method and intelligent method.

2.1. Conventional Construction Method of Thermodynamic Cycle

Conventional construction method primarily involves the optimization of specific
thermodynamic processes (such as multiple evaporation, heat recovery, reheat, composition
regulation, etc.) to tackle the challenges encountered in the existing thermodynamic cycle.
In the refrigeration thermodynamic cycle, to increase the evaporation pressure and reduce
the compression work, a greater amount of low-boiling point refrigerant should be applied
in the evaporator. Yan et al. [11] proposed a vapor-compression refrigeration cycle with
separation condensation. By regulating the composition of zeotropic mixture working fluid,
the system performance (COP, volumetric refrigeration capacity, total exergy destruction
and energetic efficiency) can be improved. Yang et al. [12] proposed a new combined power
and ejector cycle with composition regulation, aiming at reducing the exergy loss of each
component. The results show that the exergy efficiency and the thermal efficiency reach
10.29% and 10.77%, respectively. Similarly, Yaïci et al. [13] focus on the utilization of low-
grade heat source utilization and the low-GWP and near zero-ODP working fluids, which
proposed combined cooling, heat, and power generation systems. The results demonstrate
that the heating efficiency and COP can be increased. However, it is important to note
that there is a significant reduction in the net power output and power efficiency. Feili
et al. [14] analyze the bi-evaporator ejector refrigeration cycle (BE-ERC) with the objective
of improving exergy efficiency. The results show that the exergy efficiency of the BE-ERC
system can reach 20.95%. By implementing a liquid-separation condenser in ORC with
zeotropic mixture, Luo et al. [15] demonstrated an increase in the heat transfer coefficient,
thereby alleviating the need for a corresponding increase in the heat transfer area. The
results indicate a power output increase of 13.05–26.18%. Lu et al. [16,17] designed an
ORC and a Carnot battery system using a zeotropic mixture with composition regulation.
The performance of systems under off-design operating conditions can be increased. The
results show that the ORC system achieves a 21.43% lower average electricity production
cost, while the Carnot battery system achieves a 22.40% higher round-trip efficiency.

To sum up, the use of the conventional construction method effectively addresses the
concerns and exhibits an improved thermodynamic performance and economic perfor-
mance. However, it has limitations, as the design of the new systems relies primarily on
experience and may not represent the optimal design for the system. It is more suitable
as a prototype thermodynamic system, and in later stages, the assistance of intelligent
algorithms is still required to aid in system construction.

2.2. 3D Construction Method of Thermodynamic Cycle

Zeotropic mixture working fluid exhibits both temperature glide and composition
variation of each phase during the phase change process. Currently, the application
of the zeotropic mixture working fluid primarily follows the research methodology of
pure working fluid. It is applied directly in the traditional organic Rankine cycle (ORC)
without any modification to the system construction. Only the characteristic of temperature
glide of the zeotropic mixture working fluid is utilized during phase change process to
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achieve better temperature matching between the working fluid and the heat (cold) source.
Although the irreversibility in the heat transfer process can be decreased, the improvement
of the performance of the zeotropic mixture working fluid systems is still limited, and their
thermo-economic performance might be lower compared to the ORC with pure working
fluid. There is still a lack of comprehensive exploration regarding the impact of composition
variation of zeotropic mixture working fluid on system performance. In fact, the main
difference between zeotropic mixture working fluid and the pure working fluid lies in the
composition variation in the phase change process. If zeotropic mixture working fluids
are directly applied to the conventional cycle structures, they are, indeed, confined to a
single cycle composition, restricting the potential for system performance improvement
that could be attained through composition variations. How to overcome the limitations
of the pure working fluid in the thermodynamic cycles and exploring avenues to enhance
thermal cycle efficiency by effectively utilizing the characteristics of zeotropic mixture
working fluid composition variations has become a pressing issue in cycle construction
that needs to be addressed.

In view of this, Xu et al. [18] proposed a 3D construction method of the thermodynamic
cycle based on the “temperature-entropy-composition of working fluid” coordinate system,
as shown in Figure 3. In this method, the variations of working fluid composition is the core
concept, where the thermodynamic process of composition separation and mixing is added
to the conventional thermodynamic cycle. Therefore, the composition of zeotropic mixture
in each thermodynamic process can be regulated, allowing each thermodynamic process
to progress under difference working fluid composition. The 3D construction method
of the thermodynamic cycle is taking full advantage of composition variations under
different thermodynamic processes, achieving overall cycle performance improvement by
synergistically considering the performance of all thermodynamic processes.
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The foundation of applying the 3D construction method of the thermodynamic cycle
reveals the correlation between the thermophysical properties of the working fluid and
the performance of each thermodynamic process, as well as determining the selection
criteria and the optimal working fluid of each specific thermodynamic process. The typical
studies on the selection of working fluids for various thermodynamic processes in ORC are
summarized in Table 1. Zheng et al. [19] presented a statistical parameter σ for selecting the
optimal zeotropic working fluid for the heat transfer process by analyzing the irreversibility
of this process. Stijepovic et al. [20] proposed a correlation between the molar volume of
the saturated liquid working fluid and the performance of the compression process. The
results indicate that the performance of compression process is inversely proportional to
the saturated liquid working fluid. The combined parameter based on the compressibility
factor, density and specific heat capacity under constant pressure, which is utilized in
the optimal working fluid selection for the compression process, was introduced by Xu
et al. [21] through experiment research. Moreover, despite the investigation of the corre-
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lation between the expansion process and the thermophysical properties of the working
fluid in references [20,22–25], a unified conclusion has not been reached.

Table 1. Studies on the working fluid selection for thermodynamic process in ORC.

Ref. Thermodynamic
Process

Selecting Parameters of
Working Fluid Main Findings

[19] heat transfer σ
Proposed the statistical parameter to guide the selection of working
fluid in the heat transfer process.

[20] compression vslp
Working fluid with lower saturated liquid molar volume will
enhance the performance of the compression process.

expansion αV, M, cp,ig

Working fluids with high compressibility factor, molecular weight,
and ideal gas specific heat at constant pressure will improve the
performance of the expansion process.

[21] compression αV, ρ, cp
The lower the αV/ρcp of the working fluid, the higher the efficiency
of the compression process.

[22] expansion - The scroll expander numerical model with working fluid properties
is established, and the optimize working fluid also proposed.

[23] expansion ηexp = f (π, ξ, τ, S, V, w) The expansion efficiency including working fluid properties
is proposed.

[24] expansion Tcri, cp,ig, N
The working fluid with lower critical temperature, heat capacity
under constant pressure and atom numbers is more suitable to the
expansion process.

[25] expansion γ
The working fluid with high heat capacity ratio can improve the
performance of the expansion process.

Based on the 3D construction method of the thermodynamic cycle, the construction
of the new cycle requires determining the functional features of the cycle firstly according
to the boundary conditions of the heat source and heat sink, as well as the demand of
the cycle. Subsequently, the optimal working fluid of each thermodynamic process is
defined based on the operating characteristics. Then, the cycle is combined with various
thermodynamic processes through composition regulation, and the mixture working fluid
of the cycle is determined. This method offers a new approach to cycle construction based
on the zeotropic mixture working fluid, which breaks through the limitation imposed by a
single working fluid in conventional thermodynamic cycles, allowing for improved cycle
performance. However, the application of this method also relies on the selection criteria
of the working fluid in each thermodynamic process. Currently, there is still a lack of
extension research on the working fluid selection aimed at each thermodynamic process.
Meanwhile, due to the differences in the assumptions among various studies, the results in
the available research lack universality. Therefore, further extensive and in-depth research
is urgently needed.

2.3. Superstructure Method of Thermodynamic Cycle

In the superstructure method of the thermodynamic cycle, the superstructure is a set
of all possible alternative options in the thermodynamic cycle design [26]. It should be
collected firstly while constructing a new thermodynamic cycle, including various thermo-
dynamic process (superheated process, heat recovery process, etc.) and interconnection
methods of these processes. Then, the optimal parameters such as cycle structure, working
fluid and operating conditions are obtained from superstructure optimization based on
the application scenarios and boundary conditions. Kermani et al. [27] presented an ORC
superstructure that includes five pressure levels based on the superstructure construction
method. The schematic of the temperature entropy diagram is shown in Figure 4.

The available research on the construction of medium- and low-temperature thermo-
dynamic cycles by using the superstructure method is summarized in Table 2. In 2017, the
superstructure method is innovatively used in the construction of ORC by Elsido [27,28],
Lee [29] and Yu [30]. Heat recovery process, superheated process, vapor extraction process,
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multistage compression process, multistage expansion process and other thermodynamic
processes were applied in the construction of the ORC superstructure. Subsequently, the
superstructure method has been widely used in the design and optimization of the new
ORC structure, such as liquefied natural gas (LNG) cold thermal energy recovery [31,32],
industrial waste heat recovery [33,34], geothermal power generation [35] and solar power
generation [36,37]. Lee et al. [29] applied a ternary zeotropic mixture working fluid n-
C5H12/CF4/CHF3 (0.09/0.33/0.58) in the superstructure optimization study containing
1024 types of cycle structures. Result shows that the thermal efficiency of the new cycle
structure is 26.2% higher than conventional ORC. Yuan et al. [32] designed a new ORC
structure that comprehensively considers both power generation performance and system
thermal economy using the binary zeotropic mixture R32/C2H4 (0.45/0.55). Furthermore,
the superstructure method has also been used in the construction and optimization of the
heat pump cycle [38,39] and supercritical CO2 Brayton cycles [40,41].
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Table 2. Studies on the superstructure method of thermodynamic cycle.

Time Ref. Cycle Working Fluid Characteristic

2017 [28] ORC Pure fluid Including heat recovery process, dual compression process and dual heat
transfer process;

2017 [29] ORC Mixture fluid Including 1024 cycle construction;

2017 [30] ORC Pure fluid Including heat recovery process, superheated process and split vapor
reheating process;

2018 [31] ORC Pure fluid Including dual compression process, xxx

2018 [27] ORC Pure fluid Including superheated process, heat recovery process, reheated process
and split vapor process;

2019 [32] ORC Mixture fluid Including dual condensation, dual compression process and dual
expansion process;

2020 [33] ORC Pure fluid Including heat recovery process, exhaust process and reheated process;
2020 [35] ORC Pure fluid Including dual compression, exhaust process and dual expansion process;

2021 [36] ORC Pure fluid Including dual evaporation process, dual condensation process, exhaust
process and heat recovery process;

2022 [34] ORC Pure fluid Including heat recovery and exhaust process;
2022 [37] ORC Pure fluid Including dual heat source;
2017 [38] Heat pump Pure fluid Including split process and mix process;

2018 [39] Heat pump Pure fluid Including dual expansion process, subcooling process and
superheated process;

2021 [41] Brayton cycle Pure fluid Including dual compression and dual expansion process, established
60 cycles;

2022 [40] Brayton cycle Pure fluid Including dual expansion process and dual reheated process, established
67 cycles;
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The superstructure method of the thermodynamic cycle is a “top-down” method to
thermodynamic cycle construction. The upper-level superstructure is established, which
contains all cycle structures, and the specific lower-level cycle structure is determined
based on the boundary conditions. The computational consumption of cycle construction
is reduced through the implementation of the superstructure method, particularly for
thermodynamic cycles with multiple processes. With the superstructure method, the time-
consuming process of individually calculating and comparing the performance of each cycle
can be bypassed. Instead, complex cycle optimization can be achieved through computer
optimization algorithms. However, there also exist limitations to the superstructure method.
The proposed superstructure heavily relies on the thermodynamic theory and research
experience of the designer, resulting in variations in the form of the superstructure among
individuals and inevitably introducing impractical or suboptimal structure form. To sum
up, determining an appropriate superstructure is the key point to the superstructure
method of the thermodynamic cycle. Additionally, only a few studies have been conducted
on zeotropic mixture working fluid, with the majority of studies primarily focusing on
pure working fluids. The superstructure for utilizing zeotropic mixture working fluid, in
contrast to the one using pure working fluids, involves not only mass flow rate regulation
but also composition regulation. Therefore, the introduction of zeotropic mixture working
fluid to the thermodynamic cycle superstructure construction has the potential to expand
the diversity of new cycle structures.

2.4. Intelligent Construction of Thermodynamic Cycle

The superstructure-free construction of the thermodynamic cycle, which is proposed
to breakthrough the limitation of the superstructure design in the upper-level of the super-
structure method of the thermodynamic cycle, has the characteristic of a “down-top” con-
struction cycle method. By definition, the basic element structure (single thermodynamic
process or combination method of multi-thermodynamic process) of the thermodynamic
cycle construction is firstly at a lower level. Then, the synthesis rules of each basic element
structure are determined to obtain the new thermodynamic cycle at the upper level.

The basic element structure in the superstructure-free method is obtained through
the HEATSEP method, where the heat transfer processes are separated from the entire
cycle, forming a hot (cold) end. Taking the conventional ORC structure in Figure 5a as an
example, the basic element structure is obtained using the HEATSEP method (Figure 5b).
Then, the compression process and the expansion process are retained in the cycle and the
evaporation process, and the condensation process are replaced by hot end or cold end.
Ultimately, the thermophysical properties of the working fluid is transmitted through both
ends of the hot (cold) end. Based on the principles of thermodynamic process sharing,
the new thermodynamic cycle is constructed using various intelligent cycle construction
methods based on the basic element structure. The thermodynamic process sharing rep-
resents those two thermodynamic cycles undergoing the same thermodynamic process.
As shown in Figure 5c, it can be seen that Cycle A and Cycle B undergo the compression
process simultaneously, indicating that the compression process of Cycle A is a shared
thermodynamic process.

To sum up, the superstructure-free construction of the thermodynamic cycle consists of
two steps. The first step is determining the basic element structure based on the HEATSEP
method and obtaining the new cycle structure using an intelligent algorithm based on
the principle of shared thermodynamic process. The second step is optimizing the heat
exchanger network based on the split thermal process and the boundary conditions of the
heat source (sink).

The available research of the thermodynamic cycle construction based on the
superstructure-free construction method is summarized in Table 3. This method was
first proposed by Toffolo et al. [42] in 2014, which determined the basic principle of the
HEATSEP method and the thermodynamic process sharing. Subsequently, it has been
applied to the design of the ORC structure [43–45]. Lin et al. [46] also employed the
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superstructure-free construction method to design optimal cycle structures using both pure
fluid and mixture fluid, respectively. Liang et al. [47] constructed a dual-evaporation ORC
structure using a binary zeotropic mixture working fluid n-pentane/n-heptane (0.9/0.1)
through the superstructure-free construction method. Moreover, the superstructure-free
construction method also has been widely applied to design the advanced thermody-
namic cycle such as absorption refrigeration cycle [48,49], absorption power cycle [50] and
supercritical CO2 Brayton cycle [51,52].
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Table 3. Studies on the intelligent construction of thermodynamic cycle.

Time Ref. Cycle Working Fluid

2014 [42] ORC Pure fluid
2017 [43] ORC Pure fluid
2018 [44] ORC Pure fluid
2018 [45] ORC Pure fluid and zeotropic mixture
2020 [46] ORC Zeotropic mixture
2022 [47] ORC Zeotropic mixture
2019 [48] Absorption refrigeration cycle Zeotropic mixture
2022 [49] Absorption refrigeration cycle Zeotropic mixture
2021 [50] Absorption power cycle Zeotropic mixture
2021 [51] Brayton cycle Pure fluid
2021 [52] Brayton cycle Pure fluid

The characteristics of each cycle construction method is summarized in Table 4. Com-
pared to the superstructure construction method, the superstructure-free construction
method does not predetermine the search domain of the cycle structure. Instead, through a
proper combination of thermodynamic processes, any possible thermodynamic cycle struc-
ture can be constructed theoretically. Meanwhile, in the superstructure-free construction
method, the cycle construction does not rely on previous experiences but is optimized by
intelligent algorithms based on combination principles. Therefore, it is also categorized as
an intelligent construction of the thermodynamic cycle. However, though any possible ther-
modynamic cycle structure can be constructed through a superstructure-free construction
method, the characteristic and the advantage of the zeotropic mixture working fluid on com-
position regulation has not been explored deeply, similar to the superstructure construction
method. The application of active composition regulation of zeotropic mixture working
fluid between different thermodynamic processes in the superstructure-free construction
method has the potential to further improve the thermal performance of new cycles.
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Table 4. Comparation of different construction methods.

Method Characteristics

Conventional construction method Starting from the challenges encountered in the existing cycle. Only specific
thermodynamic process are added instead.

3D construction method Matching corresponding working fluids and compositions for each
thermodynamic process.

Superstructure construction method The thermodynamic process and the interconnection method are pre-defined
as the basic element, based on artificial experience.

Intellgence construction method Using intelligent algorithms to construct the thermodynamic cycle.

3. Methods of Zeotropic Mixture Composition Regulation

In the construction of an advanced thermodynamic cycle using zeotropic mixture, a
key parameter is the composition regulation technology. In the section, the composition
regulation technologies are comprehensively reviewed, including both physical phase
separation methods and chemical phase separation methods.

3.1. Composition Regulation Based on Phase Separation
3.1.1. T-junction

T-junction is a phase separation device with a simple structure, low cost, and easy
integration with existing systems, which has been widely applied in petroleum exploitation
engineering, chemical industry, nuclear power plant and so on. It can be categorized into
two types, namely “Impacting T-junction” [53] and “Branching T-junction” [54], as shown
in Figure 6. When the two-phase fluid flows into the intersection region of the T-junction,
the trajectory of the vapor phase and the liquid phase deviates due to the differential of the
inertia force in each phase, resulting in phase separation.
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In impacting the T-junction, the inlet is perpendicular to the two outlets. The two-phase
fluid flows into the T-junction from the inlet and impacting the wall of T-junction, then the
flow trajectory of the vapor phase and the liquid phase deviates due to the differential of
the gravitational force in each phase, resulting in phase separation. Ideally, in an impacting
T-junction, the liquid and vapor can be fully separated, where the lower vapor quality than
the inlet tube can be achieved as liquid flows out from the lower tube (i.e., liquid outlet)
as well as the higher vapor quality than the inlet tube can be achieved as vapor flows out
from the upper tube (i.e., vapor outlet). However, due to the intensive interaction between
vapor and liquid, the phases cannot be fully separated after the fluids impact the wall of the
T-junction, resulting in the phenomenon of droplet entrainment and bubble entrainment.

In the branching T-junction, the fluids flow straight forward from one of the two
branches. The two-phase fluid flows into the T-junction from the inlet and then the flow
trajectory of the vapor phase and the liquid phase deviates due to the differential of the
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inertia force in each phase, resulting in phase separation. Ideally, in a branching T-junction,
the two-phase fluid can be fully separated when the inlet flow pattern is a stratified flow
by controlling the outlet pressure and mass flow rate. However, the flow pattern of the
two-phase fluid can also present as an intermittent flow, annular flow or mist flow and so
on. The interaction between vapor and liquid is more intensive than the flow pattern in the
stratified flow, which results in a decrease in phase separation efficiency.

The available research of composition regulation in the zeotropic mixture working
fluid using T-junction is summarized in Table 5. It can be seen that there are still some
limitations on the composition regulation in the T-junction. Zheng [55] and Su [56] con-
ducted a series of experimental research on impacting T-junction and branching T-junction,
respectively. Lu [57] and Su [58] established a numerical model of branching T-junction
and explored the flow characteristic and the phase separate performance of the two-phase
fluid. They point out that since the zeotropic mixture working fluid consists of R134a and
R600a, the composition in the branching T-junction can be regulated from 0.44/0.56 at
the inlet to 0.70/0.30 at the outlet, which achieves the maximum composition regulation
ability in the available research. Although the structure parameters, working fluid and the
boundary conditions differ, the composition regulation in T-junction mostly relies on the
phase separation based on the available research. Moreover, the phase separation efficiency
is more affected by the tube geometry, inlet mass flux, inlet vapor quality, inlet pressure,
inlet working fluid and the inlet composition simultaneously. A generalized conclusion
and the prediction model that are suitable for different types of T-junction are still lacking
and need to be developed.

Table 5. Studies on the composition regulation of zeotropic mixtures using T-junction.

Time Ref. Type * Working Fluid
Range of Regulation

Method *
Before After

2016 [55] I R134a/R245fa 0.272/0.728 0.349/0.651 EX
2018 [56] B R134a/R600a 0.256/0.744 0.344/0.651 EX
2020 [57] I R134a/R600a 0.440/0.560 0.700/0.300 CFD
2022 [58] B R134a/R600a 0.700/0.300 0.710/0.290 CFD
2023 [59] C R134a/R245fa 0.429/0.571 - EX

* I: impacting T-junction; B: branching T-junction; C: compound T-junction; CFD: Computational fluid dynamic;
EX: experiment.

To further improve the composition regulation performance of the T-junction, the
research of active composition regulation of T-junction and the combined T-junction has
been conducted. Su et al. [60] developed a numerical model of branching T-junction with
different temperatures on the wall of the branch tube and run tube. Then, the composition
regulation performance driven by the thermal field of the zeotropic mixture working fluid
in the branching T-junction is investigated. The results showed that compared to passive
composition regulation, actively adding different strengths of the thermal field at each
outlet can achieve a higher composition regulation performance. Yang et al. [61] designed
and fabricated a combined T-junction and further tested the phase separation performance
of R134a. The results demonstrated that the combined T-junction had the capability to
separate more vapor out of the liquid compared to a single T-junction. Building upon
this, Bai et al. [62] developed a numerical model based on the structure of the combined
T-junction and conducted research under a wide range of boundary conditions, including
inlet mass flow rate, mass flow rate ratio and so on. The optimized geometry of combined
T-junction is proposed. Fu et al. [59] designed a compound T-junction and conducted
tests to evaluate the composition separation performance of R134a/R245fa (0.429/0.571).
The results indicate that, at an inlet mass flow rate and vapor quality of 13 g/s and 0.19,
respectively, the composition separation efficiency can reach 86.86%, which is 10% higher
than that in the conventional branching T-junction.
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3.1.2. Liquid-Separation Condenser

The liquid-separation condenser is a component that combines heat transfer and
vapor–liquid separation. As the vapor continuously converts into liquid inside the heat
transfer tubes, the prompt separation of the liquid and vapor allows for the regulation of
the mass flow rate ratio between the vapor and liquid within the tubes. It was initially
proposed by Peng et al. [63] to enhance the heat transfer performance of heat exchangers
which can be divided into three main parts: firstly, replacing a long tube with multiple
short tubes for condensation; secondly, implementing vapor–liquid separation between
each short tube to remove the liquid film promptly, maintaining dropwise condensation
rather than film wise condensation; and thirdly, regulating the flow area of each short tube
to maintain the same mass flux of the refrigerant. It is always preferable to integrate the
liquid-separation unit into the condenser as a whole to make the LSC compact and effective;
typical configuration of the liquid-separation condenser is shown in Figure 7 [64]. Thus,
the structure of the liquid-separation unit is essential to the phase separation performance.
Li [65] and Huang [64] developed numerical models of the liquid-separation unit with
single tube type and multiple tube type, respectively. The two-phase flow characteristics of
R134a under various inlet working conditions and structure parameter are explored. The
results show that the vapor quality in the outlet tube (i.e., the heat exchange tube in the
next pass) is higher than that in the inlet tube, where the phase separation occurs in the
liquid-separation unit. Moreover, plenty of research findings have shown that, compared
to conventional heat exchanger, the liquid-separation condenser can achieve an increase
in the heat transfer coefficient while reducing the pressure drop [66]. Furthermore, the
thermal performance and thermal-economic performance can also be effectively enhanced
by using a liquid-separation condenser, including refrigeration systems [67], heat pump
systems [68], ORC [69] as well as heat pump water heater (HPWH) [70].
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The application of liquid-separation condensation technology to ORC using zeotropic
mixture working fluid R600/R601a was investigated by Li et al. [10]. The results indicated
improvements in system performance and thermal economy. The explanations for these
improvements can be summarized as follows [71,72]: firstly, from the perspective of
heat transfer, the prompt separation of the liquid and vapor effectively enhances the
heat transfer coefficient in the heat exchanger, thereby reducing the heat transfer area.
Secondly, from the perspective of thermodynamics, the prompt separation of the liquid and
vapor also leads to regulation in composition, further improving the temperature match
between the working fluid during condensation and the heat source, thereby reducing
irreversibility in the heat transfer process. Additionally, through active design of the
liquid-separation condenser using the zeotropic mixture working fluid, it is expected to
further enhance the heat transfer coefficient and reduce irreversibility losses. Moreover,
the separated liquid phase from the condenser can be supplied to other components of
the system, thereby altering the composition of the components and achieving a better
thermal performance. A series of research conducted by Luo et al. [15,16,73–75] also verified
that, under appropriate zeotropic working fluids and suitable operating conditions, the
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liquid-separation condenser can effectively reduce the heat exchanger area, and improve
the thermal performance and economic performance of ORC. Lu et al. [76] conducted
an experimental study on a 1 kW ORC with composition regulation. The results show
that when the working fluid is R134a/R245fa, the composition can be regulated from
0.300/0.700 to 0.172/0.828. Furthermore, compared to the composition-fixed ORC, the net
power output can be increased by 4.79% to 9.71%.

Additionally, the application of liquid-separation condensation technology has also
been implemented by Sun [77], Chen [78], Pang [79], and Zhu [80] in various scenarios
such as combined cooling and power cycle (CCP), LNG cold energy recovery, flash cycle,
and dual cooling source system (DCS). The results all demonstrated that under specific
operating conditions, the liquid-separation condenser has the capability to effectively
enhance system performance. A summary of the system-related research on the zeotropic
mixture working fluid liquid-separation condensation is provided in Table 6.

Table 6. Studies on ORC using zeotropic mixtures with liquid-separation condensation.

Time Ref. Working Fluid System Main Findings

2017 [10] R600/R601a Liquid-separation ORC Condensation area decreased by 44.1% compared
with baseline

2017 [75] R245fa/R601 Liquid-separation ORC
Condensation area decreased by 17.6%;
thermo-economy efficiency increased by
13.3–18.4%; second law efficiency increased by 4.2%

2018 [15] R245fa/R365mfc Liquid-separation ORC with
dual-pressure Net power output increased by 13.05–26.18%

2019 [74]
R245fa/R365mfc

R245fa/R113
R245ca/R113

Liquid-separation ORC with
composition regulation Net power output increased by 9.15%

2020 [72] R600/R601a Liquid-separation ORC Thermo-economy efficiency increased by 4.0–8.8%

2021 [16] R245fa/R113 Liquid-separation ORC with
composition regulation

Net power output and thermal efficiency increased
by 0.52% and 2.20%, respectively; costs decreased
by 21.43%

2021 [77] CO2/R32 Liquid-separation CCP Net power output increased by 5.18%

2022 [73]

R245fa/R365mfc
R600/R1234ze(Z)
R1234ze(Z)/R601

R600a/R601

Liquid-separation ORC
coupled vapor–liquid ejector Net power output increased by 14.20%

2022 [78] ethylene/propane Liquid-separation ORC Net power output and thermal efficiency increased
by 2.86% and 2.47%, respectively

2022 [79] R600a/R601a Liquid-separation organic
flash cycle Condensation area decreased by 23.33%

2023 [81] R32/R236fa Liquid-separation DCS COP and dehumidification rate can reach 5.1 and
2.2 kg/h, respectively

2023 [76] R134a/R245fa Liquid-separation ORC with
composition regulation Net power output increased by 4.79–9.71%

2024 [80]

R32/isobutane
R32/R1234ze(E)

R32/R1234yf
propane/isobutane
propane/R1234ze(E)

Liquid-separation DCS
Exergy loss of evaporator decreased by 17.1–73.7%
while the exergy efficiency increased by 3–59.7%;
refrigerant charge decreased by 5.54–15%.

In summary, it can be observed that, at the theoretical level, the effectiveness of
liquid-separation condensation technology in improving the thermal performance and
the thermal-economy of ORC has been demonstrated, providing strong support for its
potential widespread application. However, in actual operating systems, the variations in
the system operating condition and structure lead to deviations in vapor–liquid separation
performance from theoretical analysis, resulting in lower thermal performance than pre-
dicted. Therefore, further in-depth studies are still required through extensive experimental
investigations. Additionally, the vapor–liquid separation mechanism and the composition
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separation mechanism of the liquid-separation unit, which is an essential component for
achieving vapor–liquid separation, remains unclear. Further analysis of the flow charac-
teristics of the zeotropic mixture working fluid necessitates additional experimental and
simulation studies.

3.1.3. Distillation Tower

The distillation tower achieves the phase separation through gravity force and is
widely used in the petrochemical industry, as shown in Figure 8 [82]. To maintain optimal
phase separation performance, heat sources and heat sink are typically arranged at the
bottom and top of the distillation tower, respectively, enabling the evaporation and con-
densation of the working fluid within the tower. Additionally, various structured packings
such as grid packing and corrugated packing are often added to the distillation tower to
enhance the efficiency of the mass transfer.
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Collings et al. [82] utilized a distillation tower to achieve the regulation of the zeotropic
mixture working fluid and proposed an ORC system with regulation of composition in
response to ambient temperatures. Similar composition regulation methods were also
adopted by Liu and Gao [83]. By regulating the composition through the distillation tower
in an ORC system, the regulation of the system performance under both design and off-
design conditions is enabled. Kim et al. [84] employed a packed-type distillation tower
for capacity control of the heat pump system. The results demonstrated that when using
R32/R134a (0.50/0.50) as the working fluid, the composition could be regulated within the
range of 0.39/0.61 to 0.65/0.35. Correspondingly, the system’s cooling capacity could be
modulated between 2.64 kW and 3.38 kW.

Based on the above summary, it can be observed that the utilization of the distillation
tower in thermodynamic systems allows for the regulation of composition in response to
the ambient temperature and off-design operating condition. In comparison to passive
separation structures based on inertia force or gravitational force in the T-junction and
liquid-separation condenser, actively controlling the temperature at the bottom and top
of the distillation tower enables active phase separation, which offers a wider range of
composition regulation and holds significant potential for achieving precise composition
regulation. However, the composition regulation through the distillation tower in the
available research has only focused on system composition regulation, without considering
the composition regulation of the specific thermodynamic process, which restricted the
improvement of the system thermal performance.

3.2. Composition Regulation Based on Chemical Reaction

Composition regulation based on chemical reactions is a method that utilizes the selec-
tive reaction of reactants through chemical reactions to achieve the composition regulation.
Currently, only Zhang [85] and Lai [86] propose a composition regulation technique based
on the separation characteristics of hydrates, called “hydrate-based gas separation” and
conduct experimental verification [87]. Gas hydrates are crystalline compounds formed by
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encapsulating guest molecules within cage-like structures composed of water molecules.
During formation, gas hydrates exhibit selectivity towards guest molecules, with different
guest molecules requiring varying temperature and pressure for hydrate formation. There-
fore, by controlling the temperature and pressure, the generation and decomposition of
working fluid hydrates can be achieved, enabling active regulation of zeotropic mixture
working fluid, as shown in Figure 9 [85]. Zhang et al. [87] conducted experimental research
on the regulation of zeotropic hydrate composition. R125/R22 is selected as the working
fluid and the effect of hydrate generation methods and temperature control methods on the
regulation speed and range of composition regulation are analyzed. The results show that,
through the generation and decomposition of hydrates, the maximum R125 enrichment in
the gas phase could be regulated from 50 mol% to 68.67 mol%. Later, Lai et al. experimen-
tally investigated the hydrate-based composition regulation of R32/R1234yf. The results
indicate that R32 in the gas phase can change by 11.14–18.21 mol% in 90 min.
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The hydrate-based composition regulation is a novel technique of active composition
regulation. The results of the experiment above has demonstrated the feasibility of this
method. However, further research is needed in terms of relevant theory, simulation, and
comprehensive experimental studies.

In conclusion, as shown in Table 7, composition regulation based on physical phase
separation mostly can typically be achieved using simple devices. However, such devices
cannot achieve arbitrary composition regulation. As shown in Figure 10, ideally, full phase
separation of two-phase fluid can be achieved, resulting in the composition separation of a
zeotropic mixture working fluid with an initial composition of C0 into a liquid phase with a
composition of Ca and a gas phase with a composition of Cb. In these situation, Xu et al. [88]
indicates that the thermal efficiency and the second law efficiency of composition regulation
ORC can be increased by 1.56% and 22.89% compared to that in the conventional ORC,
respectively. The hydrate-based composition regulation requires more complex chemical
reaction systems. However, a wider range of composition regulations can be obtained.
Through the rational design of chemical reaction systems, there is potential for further
enhancement of cycle performance.

Table 7. Comparation of different composition regulation structures.

Method Structure Principle Characteristic

Physical-based
T-junction

Passive phase separation
through gravitation force and

inertia force

Simple structure, low cost and limits
composition regulation range.

Liquid-separation condenser Passive phase separation
through gravitation force

Simple structure, low cost and limits
composition regulation range.

Distillation tower Active phase separation
through external energy input

Wide range of composition regulation,
complicated structure and high cost.

Chemical-based Hydrate-based method Chemical reaction Wide range of composition regulation
but with long regulation time.
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4. Conclusions and Prospects

Thermodynamic cycle utilizing composition regulation technology of zeotropic mix-
ture working fluid is the principal pathway to achieve energy conversion, which has the
capability to break through the limitation in lower thermal performance by matching the
physical properties of working fluid to each thermodynamic process. This paper presents a
comprehensive review on the construction of the thermodynamic cycle with composition
regulation of the zeotropic mixture working fluid. The perspectives of the cycle construc-
tion method and composition regulated structure are mainly concerned; the conclusions
are as follows:

(1) Using a 3D construction method can obtain maximum thermal performance for single
thermodynamic process, where the working fluid pair for each process is different
and highly relies on the working conditions.

(2) The reliance of a non-artificial experience is the vital parameter to obtain an opti-
mal thermodynamic cycle, with only the intelligence construction method capable
of achieving this, while the conventional construction method and superstructure
construction method cannot.

(3) The advantages of simple structure and not requiring external energy input of T-
junction and liquid-separation condenser contribute to the thermodynamic cycle.
However, the range of composition regulation achieved through gravitation force and
inertia force is restricted.

(4) Though a wider composition regulation range can be obtained through distillation
tower and a hydrate-based method, there is a comprehensive trade-off between the
energy input and the improvement in cycle performance.

Based on the above conclusions, it can be observed that cycle construction method
for composition regulation and the trade-off between energy consumption and separation
performance are the main factors hindering the improvement of the zeotropic mixture
composition regulation cycle. The prospects for future research are as follows:

(1) The combination of 3D construction method and intelligence construction method,
where the composition matching for each thermodynamic process is taken as the
fundamental principle and the composition regulation process is taken as the basic
element in cycle construction, is expected to be a new technical pathway of advance
thermodynamic cycle construction.

(2) In composition regulation units, further exploration should be investigated for active
composition separation by adding external energy sources in T-junctions, while balancing
the trade-off between energy consumption and system performance improvement.

(3) The hydrate-based method has been proven that composition can be regulated through
chemical reaction; further exploration is necessary at the theoretical, simulation and
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experimental level to investigate the fundamental principles and laws of composi-
tion regulation as well as the thermal performance when it is coupled within the
thermodynamic cycle.
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