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Abstract: The premise for formulating effective emission control strategies is to accurately and reason-
ably evaluate the actual emission level of vehicles. Firstly, the active subspace method is applied to
set up a low-dimensional model of the relationship between CO2 emission and multivariate vehicle
driving data, in which the vehicle specific power (VSP) is identified as the most significant factor
on the CO2 emission factor, followed by speed. Additionally, acceleration and exhaust temperature
had the least impact. It is inferred that the changes in data sampling transform the establishment of
subspace matrices, affecting the calculation of eigenvector components and the fitting of the final
quadratic response surface, so that the emission sensitivity and final fitting accuracy are impression-
able by the data distribution form. For the VSP, the best fitting result can be obtained when the
VSP conforms to a uniform distribution. Moreover, the Bayesian linear regression method accounts
for fitting parameters between the VSP and CO2 emission factor with uncertainties derived from
heteroscedastic measurement errors, and the values and distributions of the intercept and slope α

and β are obtained. In general, the high-resolution inventory of the carbon emission factor of the
tested vehicle is set up via systematically analyzing it, which brings a bright view of data processing
in further counting the carbon footprint.

Keywords: CO2 emission; vehicle specific power; active subspaces; multivariate analysis; uncertainty
analysis

1. Introduction

The transportation sector is the third largest CO2 emission source after power and
industry. Carbon emissions from transportation can cause significant harm to the climate
and environment [1]. Therefore, how to reduce vehicle exhaust pollution and greenhouse
gas emissions has become an undeniable challenge [2]. Roughly, China emitted 35% of
the world’s total CO2 emissions in 2023 [3]. Road transportation contributes to 70~80% of
the CO2 emissions in the transportation sector of China, which still dominates as one of
the largest parts of total carbon emissions [4,5]. An action plan of decarbonizing China’s
road transport is becoming among the stated national policies [6]; meanwhile, the technol-
ogy roadmap for energy saving and new energy vehicles is being undertaken by many
researchers and institutes, with the aim to achieve carbon neutrality by 2060.

How to accurately and reasonably evaluate the actual emission level of vehicles is
a prerequisite for formulating effective emission control strategies. Many scholars have
conducted research on this issue. When characterizing the emission characteristics of
different operating conditions, instantaneous operating parameters such as speed [7,8],
acceleration [9,10], fuel consumption [11,12], and driving distance [13] are used while the
vehicle specific power (VSP) is a newly proposed alternative parameter in correlation with
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speed and acceleration. Jimenez et al. [14] found that the VSP could capture the majority
of the dependence of light vehicle emissions on driving conditions when combined with
traffic flow data, thus improving the accuracy of the predicted emissions. Song et al. [15]
compared the estimated fuel consumption with actual data and demonstrated that the VSP
bin distribution model is reliable and accurate in estimating fuel consumption. When the
real-time speed data are available, the speed-specific VSP bin distribution model may help
monitor dynamic transportation, to facilitate quantifying the relationship between VSP
distributions and vehicle fuel consumption or emissions. Forcetto et al. [16] applied the VSP
as an additional parameter for improving the evaluation of the vehicle dynamics, which
can add a better comprehension of the real drive emission (RDE) dynamic, complementing
the regulatory parameters. By combining fuel consumption rates with VSP distributions,
Zhang, L. et al. [17] proposed an improved method for evaluating eco-driving behavior
depending on the VSP distribution at a specific speed, providing a potential way to evaluate
fuel consumption and emission combined with traffic conditions.

Vehicle CO2 emission is typically influenced by a combination of multiple factors, so
it is necessary to reveal the impacts of simultaneous multi-factor variables on emission
factors, in order to summarize the methods for constructing a high-resolution database of
the carbon emission factor. At present, existing multi-factor variable analysis models, such
as COPERT [18,19], MOBILE [20,21], IVE [22], etc., are all based on static factors such as
vehicle type, vehicle mileage, fuel quality, and fuel volatility to study the vehicle emission
factors of motor vehicles. The traditional one-at-a-time (OAT) sensitivity analysis applied in
the sensitivity analysis can only predict the relative sensitivity of a single input parameter
at a time, so that it precludes the synergistic effects between multiple input parameters. A
multivariate analysis is able to reflect the combined effects of multiple variables on output,
which displays a more accurate and flexible performance than an OAT sensitivity analysis.
However, a multi-factor analysis of emission factors based on dynamic driving conditions
is rarely reported.

The active subspace (AS) is an emerging dimensionality reduction method for mul-
tivariate analysis, which can obtain the low-dimensional structure of the multivariate
function by transforming the high-dimensional space [23,24]. At the same time, the compo-
nent values of the active direction vector can provide global sensitivity information of the
target quantity relative to the input parameters [25]. In the field of engineering, the active
subspace method has been applied in sensitivity analysis studies of turbomachinery [26,27]
and combustion [28–30], but, up to now, few reports of AS application in transportation
emissions analysis had been presented.

Moreover, as the data size increases, the uncertainties driven by the error distribution
from the sampling data play an important role in the accounting accuracy of carbon emis-
sions under varied transportation scenarios. Thus, uncertainty quantification is necessary
when formulating emission factor models based on real-driving cycles.

Bayesian inference methods have been used widely for model calibration and uncer-
tainty analysis [31,32]. The goal of the Bayesian regression method is to characterize the
parameter distribution consistent with the given experimental dataset, instead of finding
the best fit for regression model parameters [33,34]. Li et al. [35] used Bayesian approaches
to explicitly accommodate the uncertainty of the model predictions. Mudgal, A. et al. [36]
modeled the speed profiles of drivers by using a Bayesian inference methodology, and
then estimated the vehicular emissions using past experimental data. Martin et al. [37]
presented a new Bayesian methodology called the Cambridge Automotive Research Mod-
elling Application (CARma), which was able to categorize the sources of uncertainty and
calibrate uncertain parameters to present the results as probability distribution functions.

The active subspace method and Bayesian linear fitting method are used in this study
to combine multivariate analysis with uncertainty analysis, explore the sensitivity of vehicle
emissions to operating parameters, and improve the accuracy of emission prediction by
considering the distribution of operating points. This method comprehensively studies the
impact of vehicle driving parameters on emission factors, laying the foundation for con-
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structing a high-resolution database of the carbon emission factor. The study is structured
as follows: In Section 2, the methodologies of this study are introduced, including the data
processing and the principles of data analysis methods, such as multivariate analysis and
uncertainty analysis. Then, Section 3 describes the details analysis of the sensitivity and the
uncertainty of the carbon emission factor. Finally, some concluding remarks are given in
Section 4.

2. Materials and Methods
2.1. Data Source

In China, light gasoline vehicles account for a large proportion of road traffic. Mean-
while, China has fully implemented the national VI motor vehicle emission standards.
Therefore, in this study, the multi-purpose gasoline passenger vehicle that meets the na-
tional VI motor vehicle emission standards was chosen. The source of data used in this
study is the RDE test conducted by China Automotive Engineering Research Institute Co.,
Ltd. (Chongqing, China).

The RDE test was conducted once and employed by using on-board emission measure-
ment system OBS-ONE GS Unit from Japan’s HORIBA company to measure the vehicle’s
emissions per second. The test route is shown in Figure 1. The test route is located in
Chongqing, China. The total length of this route is 82.096 km, and the maximum altitude
and minimum altitude are 499.4 m and 240.9 m, respectively. The test data are divided
into three working conditions based on the vehicle’s driving speed, urban (v ≤ 60 km/h),
suburban (60 km/h < v ≤ 90 km/h), and highway (v > 90 km/h), as shown in Figure 2,
and the distribution of driving conditions is shown in Table 1.
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Table 1. Distribution of vehicle driving conditions.

Urban Rural Motorway Total

Average Speed (km/h) 28.2 77.6 106.0
Distance (km) 27.2 26.7 28.3 82.096

Duration (h:min:s) 0:57:52 0:20:36 0:16:00 1:34:28
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2.2. VSP Binning Method

VSP is a dynamic proxy variable of the vehicle with vector nature, defined as the
power output per unit mass of motor vehicle towed by the engine (kw/t) or m2/s3 [14].
For light gasoline vehicles, the formula for VSP is computed as [38]:

VSP = v × (1.1a + 0.132) + 0000302 × v3 (1)

where v is the driving speed of the tested vehicle in a unit of m/s, and a is the driving
acceleration of the tested vehicle in a unit of m/s2.

The values of VSP can be one-to-one corresponded and classified with cluster bins,
thus using the overall VSP distribution as a function of average vehicle speed for statistical
analysis. Since there is a certain degree of discreteness in RDE data, this study conducted
cluster analysis on VSP [38], when VSP bin = k, and VSP ∈ [k − 0.5, k + 0.5]. The data are
mainly concentrated in VSP bin ∈ [−20, 20], accounting for 96.93%. Therefore, this study
mainly focuses on the data in this range, and the VSP bin distribution is shown in Figure 3.
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The traffic carbon emission factor generally refers to the carbon emissions generated
per unit workload, in order to evaluate carbon emission efficiency. This study applies
the speed-specific CO2 emission factor based on driving distance to characterize the mass
of CO2 emitted by motor vehicles per unit distance (g/km), which can be obtained by
Equation (2):

EFk =
∑ ERk

∑ vk × 3600 (2)

where EFk, ERk, and vk, respectively, represent the CO2 emission factor (g/km), CO2
emission rate (g/s), and driving speed (km/h) of the tested vehicle when VSP bin = k.

2.3. Active Subspace Method

The active subspace is a type of low-dimensional structure in a function of several vari-
ables. It can achieve dimensionality reduction through transformations in high-dimensional
spaces, which essentially involves important directions with higher sensitivity in high-
dimensional spaces through linear space transformations. In the present study, a one-
dimensional active subspace is observed to figure out the key contributors to the variability
in the emission factor response. The input–output response diagram is approximated by a
linear model. This method is applicable when both conditions are satisfied that the activity
subspace is one-dimensional and the relationship between the quantity of interest and its
input parameters is approximately monotonic. The sufficient summary plot shows the rela-
tionship between the linear combination of the quantity of interest and input parameters
(i.e., active variables), with the weights of the linear combination being the components
of the normalized gradient of the linear model. Each point on the plot represents a set of
inputs and corresponding outputs of the model. The specific flowchart of performing the
active subspace method for sensitivity analysis is shown in Figure 4. In the current study,
speed, acceleration, VSP, CO2 emission rate, and exhaust temperature are selected as input
variables, and corresponding CO2 emission factor as the quantity of interest.
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The active subspace is defined by the eigenvectors of a symmetric positive semidefi-
nite matrix:

C =
∫

∇f∇fTρdx = WΛWT (3)

where W is the orthogonal matrix of the eigenvector, and Λ is the diagonal matrix of
non-negative eigenvalues arranged in descending order.

To estimate the eigenvectors and eigenvalues, independent random samples of gradi-
ent vector are used to estimate C and calculate its eigenvalue decomposition [39]:

C ≈ Ĉ =
1
M

M

∑
i=1

∇ f (xi)∇ f (xi)
T = ŴΛ̂ŴT (4)

where xi are based on ρ(x) drawing randomly and independently.
In this study, the gradient of polynomial approximation is worked out and the least-

squares polynomial model is fitted to a pair of
(
xj, f

(
xj
))

. When the polynomial approxi-
mation is a linear function of x, the calculation amount of Ŵ decreases sharply. The gradient
of the global linear model is constant for all x:

f (x) ≈ â0 + âTx (5)

∇ f (x) ≈ â (6)

Thus, Ĉ can be expressed as:

Ĉ ≈ 1
M

M

∑
i=1

ââT = ââT = ŵλ̂ŵT (7)

where ŵ = â/∥â∥ is the normalized gradient of the linear model. In a linear model, only
one-dimensional active subspace can be identified.

2.4. Bayesian Linear Regression

Bayesian linear regression is a method that uses probability distribution rather than
point estimation to construct linear regression. The response variable y is not a single
value to be estimated, but a probability distribution assumed to be extracted from a
normal distribution. The posterior probability distribution of model parameters P(β|y,X)
is conditional on the inputs and output of the training, as calculated in Equation (8):

P(β|y, X ) =
P(y|β, X )P(β|X )

P(y|X )
(8)

which is equal to the likelihood P(y|β,X) multiplied by the prior probability distribution
P(β|X) of the parameter β of the given input and divided by the normalization constant.

In this study, the data with heteroscedastic measurement errors (errors with different
variances) in both variables are regression-fitted through Bayesian theory. It is assumed that
the independent variable ξ and the dependent variable η follow a Gaussian distribution,
and that ξ is a random vector of n data points extracted from a certain probability distri-
bution [40,41]. According to the usual additive model, the dependent variable η depends
on ξ:

ηi = α + βξi + εi (9)

where εi is a random variable which represents the intrinsic scatter in ηi about the regression
relationship and (α, β) are the regression coefficients. The mean of εi is assumed to be zero
and the variance σ2 is constant. The values (x, y) measured with errors are observed instead
of the actual values of (ξ, η). The measured values are assumed to be related to the actual
values as:

xi = ξi + εx,i (10)
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yi = ηi + εy,i (11)

where εx,i and εy,i are, respectively, the random measurement errors on xi and yi, which are
normally distributed with known variances σ2

x,i and σ2
y,i and covariance σxy,i. The variances

and covariance are assumed to be the same for each data point in this study.
Due to the complexity of parameter distribution, the Markov chain Monte Carlo

(MCMC) method is introduced to conduct efficient sampling and promote the final con-
vergence to the target distribution. By using MCMC, the mathematical expectation of the
posterior distribution inferred by Bayesian inference is obtained as the estimated value of
the parameter.

3. Results and Discussion
3.1. Multivariate Sensitivity Analysis of CO2 Emission Factor

The components of the eigenvector are plotted in Figure 5; the single-column active
variable weights quantify the sensitivity of the output to input parameters. The larger the
weights, the greater the changes in the CO2 emission factor caused by the corresponding
parameters. The CO2 emission rate (CO2/[g/s]) is definitely the most influential input
parameter for the CO2 emission factor, and the VSP (vsp/[kw/t]) and speed (v/[km/h]) are
coming next, with the VSP having a greater weight than speed. In addition, the influence
of acceleration (a/[m/s2]) and exhaust temperature (ExhaustTemp/[degC]) is minimal.
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The symbol of the input parameter weight can represent the positive and negative
ratio relationship between the output parameter and input parameters. Meanwhile, the
trend of the change can also be quantitatively described by the quadratic response surface
curves and the influence of the eigenvector components on the activity variables (as seen in
Figure 6). When all other input parameters suppose fixed values, the CO2 emission factor
decreased by 3.333% when v is increased from 5 to 10, and continually decreased by 3.330%
when v reached 15. In general, the CO2 emission factor will increase with a decrease in
speed. This result may be caused by the definition of the emission factor, which is based
on the driving distance (Equation (2)). When the speed decreases, ∑ vk decreases, and the
amplitude of the ∑ ERk change is much smaller than ∑ vk, hence resulting in an increase
in EFk.



Energies 2024, 17, 1774 8 of 14

Energies 2024, 17, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Input parameter weights calculated using all operating points. 

The symbol of the input parameter weight can represent the positive and negative 
ratio relationship between the output parameter and input parameters. Meanwhile, the 
trend of the change can also be quantitatively described by the quadratic response surface 
curves and the influence of the eigenvector components on the activity variables (as seen 
in Figure 6). When all other input parameters suppose fixed values, the CO2 emission fac-
tor decreased by 3.333% when v is increased from 5 to 10, and continually decreased by 
3.330% when v reached 15. In general, the CO2 emission factor will increase with a de-
crease in speed. This result may be caused by the definition of the emission factor, which 
is based on the driving distance (Equation (2)). When the speed decreases, ∑𝑣  de-
creases, and the amplitude of the ∑𝐸𝑅  change is much smaller than ∑𝑣 , hence result-
ing in an increase in 𝐸𝐹 . 

 
Figure 6. Estimation of output change with respect to input parameter values. 

3.2. Inference of CO2 Emission Factor by Bayesian Regression 
The relationship of the CO2 emission factor with the VSP is plotted in Figure 7, with 

the error bars indicating a 2σ- uncertainty of the data points. The test data are first fitted 
by the method of ordinary least squares without considering errors, and the fitting func-
tion is: 

142.6 + 5.243 ξη =  (12) 

where 𝜂 is the value of the CO2 emission factor, and 𝜉 is the VSP bin value. 

Figure 6. Estimation of output change with respect to input parameter values.

3.2. Inference of CO2 Emission Factor by Bayesian Regression

The relationship of the CO2 emission factor with the VSP is plotted in Figure 7, with
the error bars indicating a 2σ- uncertainty of the data points. The test data are first fitted by
the method of ordinary least squares without considering errors, and the fitting function is:

η = 5.243 ξ+142.6 (12)

where η is the value of the CO2 emission factor, and ξ is the VSP bin value.
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Figure 7. Regression results for VSP and CO2 emission factor.

The test data are not a fixed value but a distribution within a certain range; the CO2
emission factor should also be taken within a certain range. When considering sampling
errors, the uncertainty of the CO2 emission factor is plotted within the shaded area bounded
by the upper and lower 95% confidence interval (95% CI) (in Figure 7). Meanwhile, the
posterior probability distributions of parameters α and β are shown in Figure 8, as well as
MCMC trace-plotting the samples of α and β under the Bayesian framework. The mean
posterior distribution of α is 146.5362, while the mean posterior distribution of β is 5.1986.
The progressions of the samples plotted in the trajectories of α and β seem to converge well
without significant drift.
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Figure 8. Tracing plots and posterior probability distribution of parameter (α,β) by MCMC under
Bayesian inference: (a) tracing plots and posterior probability distribution of parameter α by MCMC;
(b) tracing plots and posterior probability distribution of parameter β by MCMC.

For the surge of the CO2 emission factor when VSP bin = 0 (Figure 7), the reason may
be related to the lower vehicle speed. The CO2 emission factor increases with the decrease
in vehicle driving speed [42], and approximately 86.67% of the ultra-low speed operating
points (v < 10 km/h) are accumulated in the VSP bin = 0 cluster. Meanwhile, the nosedive
in vehicle driving speed in the range of VSP bin = 0 may result in sustained carbon dioxide
emissions without the mileage being increased, causing a rising change shape in the CO2
emission factor.

3.3. The Influence of Distribution Functions on Multivariate Analysis

Since the surge of the CO2 emission factor when VSP bin = 0 in Section 3.2, only the
cases with the VSP bin not being equal to zero are considered in this section, to mitigate
the accounting uncertainties. The VSP distribution is determined to be approximately the
Rayleigh distribution using the marginal distribution plot and Q–Q plot (Figure 9), with
the corresponding p-value being less than 0.05. It can be seen from Figure 9a that, when
VSP > 5 and VSP < −5, the marginal distribution of the VSP is in good agreement with the
Rayleigh distribution; however, when −5 < VSP < 5, there is a certain deviation. For the
Q–Q plot (Figure 9b), the quantile of the probability distribution of the VSP is basically fit
to the Rayleigh distribution.
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Then, the VSP data are set to the uniform distribution and Rayleigh distribution,
respectively, when the distribution functions of other input variables remain unchanged.
All input variables are normalized and brought into the active subspace for a sensitivity
analysis. The linear combinations of the CO2 emission factor relative to the inputs (i.e.,
the active variables) exhibit a univariate trend as given in Figure 10, and the relationship
between the output and active variables can be represented via a quadratic polynomial:

g(y) ≈ C0 + C1y + C2y2 ≈ C0 + C1(ŵTx) + C2(ŵTx)
2

(13)

The function g(y) outputs the CO2 emission factor (g/km) where y represents the
active variable, which is the weighted sum of the input parameters after scaling.

The CO2 emission can be understood through a powerful information combination of
the parameter weights and sufficient summary plots. The positive and negative weights of
the input parameters can be used to predict the trend of the changes in the active variables
affected by the input parameters, thereby further predicting the trend of the changes in the
output parameters. For example, as plotted in Figure 10a, since the VSP index weight is
negative for the EF, a greater VSP index decreases the active variable, which results in the
decrease in EF. The opposite trend of influence compared to Bayesian fitting is led by the
comprehensive influence of other input parameters in multivariate analysis.

It is inferred that the changes in data sampling transform the establishment of subspace
matrices, thus affecting the calculation of eigenvector components and the fitting of the
final quadratic response surface. As a result, the acceleration and speed, along with the
VSP, are combined to become the most influenced factor of the CO2 emission factor when
the VSP is sampled according to the Rayleigh distribution. The fitting coefficients C0, C1,
and C2 in Equation (13) and the corresponding coefficient of determination (R-squared)
values for each of the VSP distribution functions are tabulated in Table 2. Overall, the result
of the R-squared from the VSP sampled according to uniform distributions shows a better
performance on the goodness of fit. It also suggests that the data shown in Figure 10 are
more in line with a quadratic polynomial. Hence, the input parameter distribution function
determines the relationship between the combination of inputs and the output of interest
to a certain extent.
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Table 2. Summary of quadratic model coefficients.

Distribution C0 C1 C2 R2

Rayleigh 122.59 −124.90 −29.29 0.88

Uniform 202.63 224.32 −31.76 0.91

So far, comprehensive studies on the impact of vehicle driving parameters on emission
factors by multivariate sensitivity analysis and uncertainty analysis have been carried
out. It is highlighted with high-resolution database processing prepared for the further
modelling of the carbon footprint in transportation.

4. Conclusions

In the present study, dynamic vehicle data contributing to traffic carbon emissions
are comprehensive studied in the aspects of data sensitivity and uncertainty. The active
subspace method can identify which input parameters are the most important through
magnitudes of the input parameter weights, while exploring how the combination of
inputs is related to the output of interest, without the expense of multiple simulations.
It is concluded that the CO2 emission factor is most sensitive to the VSP. The method
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has great potential to readily derive the relationship between the combination of inputs
and outputs in a complex domain without the expense of multiple simulations. And the
relationship between the input parameters (i.e., the active variables) and CO2 emission
factor is able to be formulated using a quadratic function. Moreover, two domains with
varied VSP data distributions are set up to evaluate the sampling diversity on the emission
sensitivity. At the same time, a conclusion similar to that in Section 3.3 can be obtained by
changing the distribution function of other vehicle operating parameters. But, due to the
study only focusing on the RDE data of one light gasoline vehicle, it cannot be guaranteed
that the sensitivity analysis of diesel vehicles or non-light gasoline vehicles is consistent
with this study.

Concluded from a sensitivity analysis, the relationship between the VSP and CO2
emission factor is explored via the Bayesian linear regression method with the sampling
uncertainties considered. The uncertainty of the CO2 emission factor within the upper
and lower 95% CI is determined when considering the sampling errors. The uncertainty
quantifications for the calibrating parameters α and β are well demonstrated by using the
heteroscedasticity measurement errors of both variables. In addition, the reason for the
surge of the EF in the VSP bin = 0 cluster is discussed by combining it with the active
subspace method. Compared with traditional linear or nonlinear methods, the proposed
method takes into account the uncertainty of the parameter distribution and improves the
fitting accuracy.

Generally, this article comprehensively studies the impact of vehicle driving parame-
ters on emission factors via multivariate sensitivity analysis and uncertainty quantification
analysis. The input parameters that have a significant impact on emission factors are ob-
tained, and the influence of the error distribution and distribution function of the sampled
data on the fitting results is explored. On this basis, a new perspective for modelling
traffic carbon emission with a high-resolution database is proposed. And it is conducive to
improving the accuracy of carbon counting under varied transportation scenarios, laying
the foundation for constructing a high-resolution database of the carbon emission factor.
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