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Abstract: Numerical calculations were performed to study the vortex-induced vibration (VIV) of
a circular cylinder, which was elastically supported by springs of linear and cubic terms. These
simulations were conducted at high Reynolds numbers ranging from 4200 to 42,000. To simulate
the cylinder’s motion and the associated aerodynamic forces, Computational Fluid Dynamics were
employed in conjunction with dynamic mesh capabilities. The numerical method was initially
verified by testing it with various grid resolutions and time steps, and subsequently, it was validated
using experimental data. The response of cubic nonlinearities was investigated using insights gained
from a conventional linear vortex-induced vibration (VIV) system. This 2D study revealed that both
the amplitude and frequency of vibrations are contingent on the flow velocity. The highest output
was achieved within the frequency lock-in region, where internal resonance occurs. In the case of a
hardening spring, the beating response was observed from the lower end of the initial branch to the
upper end of the initial branch. The response displacement amplitude obtained for the linear spring
case was 27 mm, whereas in the cubic nonlinear case, the value was 31.8 mm. More importantly, the
results indicate that the inclusion of nonlinear springs can substantially extend the range of wind
velocities in which significant energy extraction through vortex-induced vibration (VIV) is achievable.

Keywords: vortex-induced vibrations; nonlinear spring; flow structure; Reynolds number; shedding
frequency

1. Introduction

Fluid-induced vibration (FIV) refers to the dynamic reaction of a structure as it engages
with the flow of a fluid. FIV indeed has the potential to cause damage to structures,
including the risk of fatigue-related failure in structures like marine risers [1] and extended
flexible cylinders [2–4]. Conversely, it can be employed for energy harvesting from the
fluid motion [5]. Vortex-induced vibration (VIV) is one of the most common phenomena
in FIV [6,7]. VIV is a fluid–structure interaction (FSI) occurrence where the structure
experiences vibrations due to the alternating forces generated by vortices being shed
intermittently from the surfaces of a bluff body (e.g., a circular cylinder) [8]. The behavior
of VIV in a uniform flow for a circular cylinder is determined by factors such as the Reynolds
number, structural damping ratio, mass ratio, and reduced velocity [9]. VIV-based energy
harvesting has gained significant attention because of its distinct characteristics, involving
self-triggered oscillations within the synchronization or lock-in region. This occurs when
the shedding frequency closely matches with the natural frequency of the structure [10].
Typically, amplitude response is maximum in the lock-in region.

The vortex pattern downstream of a cylinder has been studied both experimentally
and numerically by various research groups [11,12]. Based on the number of vortices shed
per vibrating cycle, shedding modes are divided into three modes: (i) 2P mode; (ii) 2S mode;
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and (iii) P + S mode. Here, ‘P’ and ‘S’ represent the pair of vortices and a single vortex
shed into the wake per oscillating cycle [9]. Govardhan and Williamson [11] observed that
when the combined mass-damping parameter is high, the lower branch exhibits the 2S
mode, while the upper branch displays the 2P mode. However, when the mass-damping
parameter is low, the cylinder’s response in the lock-in region is categorized into three
branches: the initial branch, the upper branch, and the lower branch [13]. This configuration
with three branches allows for the occurrence of transitions between 2P and 2S modes. In
general, the 2P mode can effectively transmit energy from the fluid to the body’s motion
when the amplitudes are relatively high within a specific range of reduced velocities.

Typically, most of the reported investigations of vortex-induced vibration have been
conducted using a circular cylinder supported by a linearly elastic spring, in which the
force was provided with the help of a spring-damper system. Nevertheless, recent research
on fluid–structure systems featuring nonlinearity in their restoring forces has shown that
these nonlinear forces can amplify the vibration amplitudes [14–16]. One of the main
features of a nonlinear restoring force is that it causes the object’s natural frequency to cease
being constant; instead, it becomes a function of vibration amplitude. In 2013, Mackowski
and Williamson [17] conducted experimental research on the VIV amplitudes of a circular
cylinder when it was supported by both linear and different types of nonlinear springs.
Their findings indicated that it is possible to gain insights into and forecast the behavior of
a nonlinear structural system by applying the principles learned from a conventional linear
VIV system. They concluded that the introduction of nonlinearity into the spring system
has the potential to result in a substantial enhancement of peak energy extraction efficiency.
Barton et al. [14] developed and assessed a mechanical energy harvesting device using
a vibration table, excluding any fluid dynamic components. They incorporated magnets
to introduce nonlinearity into the restoring force. Their results demonstrated that the
inclusion of nonlinearity in the restoring force allowed the device to harvest energy over
a broader range of frequencies. The study of vortex-induced vibration (VIV) in cylinders
connected to nonlinear springs with either hardening or softening characteristics has only
gained attention among researchers in the relatively recent past [18–20]. It was observed
that vortex-induced vibration energy harvesters equipped with hardening stiffness exhibit
greater maximum voltage and displacement amplitudes compared to those with softening
stiffness. Using passive turbulence control (PTC) and piecewise continuous restoring forces,
Ma et al. [21] conducted a VIV study on a rigid cylinder. They found that the nonlinear
spring converter exhibited a significant performance improvement, achieving up to 76%
better efficiency compared to its linear counterpart.

From the literature review, it is evident that the majority of VIV analyses involving
non-linear spring systems have either been conducted as experimental studies or have
utilized low-Reynolds-number [9,22] numerical analysis. In this study, we use the dynamic
mesh method to conduct 2D simulations for an elastically mounted circular cylinder at
high Reynolds numbers. Consequently, there is a notable absence of comprehensive investi-
gations into VIV that consider the influence of nonlinear restoring forces. Therefore, in the
current study, computational investigation of vortex-induced vibration for a cylinder elasti-
cally supported by both linear and cubic springs is carried out at high Reynolds numbers.
The objective of the present study is to assess the impact of cubic stiffness nonlinearity on
frequency response, amplitude response, force coefficients, and vortex shedding modes.
The paper’s contents can be summarized as follows: Section 1 introduces the topic and
reviews the relevant literature, followed by a discussion in Section 2 regarding the formula-
tion and computational methods used to solve the interconnected solid–fluid equations and
numerical validation of our methodology with experimental reported work. The results
and findings are detailed in Section 3. Finally, Section 4 concludes our discussion.

2. Computational Modeling

This study utilized the Finite Volume-based solver ANSYS Fluent 2023 to carry out
the simulations. Within the computational domain, the mass and momentum equations,
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together with the SST k-ω turbulence model, were solved. A wall function was used in
the present model to connect the variations in flow variables between the viscous affected
near-wall region with the fully turbulent region. The value of y+ was maintained below
5 to ensure accurate prediction of flow variations. The flow behavior was considered to
be unsteady. In the study, all the simulations were performed using a pressure-based
solver. The PISO algorithm was used for pressure–velocity coupling in all the simulations.
The study utilized the Least Squares Cell-Based method for gradient calculations. For the
discretization of flow and turbulence parameters, a second-order upwind scheme was
applied. The time step used for the simulation was 0.001 to maintain the courant number
around one. In the simulated cases, convergence was achieved for all the residuals by
setting the maximal iterations of each time step to 50.

The equations used in the computational domain are as follows.
Continuity equation:

∇·u = 0, (1)

Momentum equation:

∂u
∂t

+∇·(uu) = −1
ρ
∇p + ν∇2u − 1

ρ
∇·τR, (2)

where τR = ρu′u′ = 2µTS− 2
3 ρkI, u represents the vector describing the velocity of the fluid,

‘S’ corresponds to the tensor indicating the average strain rate, µT denotes the turbulent
eddy viscosity, and τR represents the turbulent or Reynolds stress tensor. Additionally,
I signifies the identity tensor, while P and ρ refer to the pressure and the air’s density,
respectively.

The transport equations for k-ω SST model:

∂ρk
∂t

+
∂

∂xi
(ρuik) = GK − ρcµKω +

∂

∂xj

⌈(
µ +

µt

σk

)
∂k
∂xj

⌉
, (3)

∂ρω

∂t
+

∂

∂xi
(ρuiω) = α

ω

k
GK − ρβω2 +

∂

∂xi

⌈(
µ +

µt

σω

)
∂ω

∂xj

⌉
+ (1 − F1)

2ρ

σω,2

1
ω

∂k
∂xj

∂ω

∂xj
, (4)

where the turbulent viscosity is µT = ρa1
max(a1ω,SF2)

and second invariant of the strain rate

tensor S =
√

2SijSij.
Here, k and ω denote turbulent kinetic energy and turbulent specific dissipation rate,

respectively. In this context, GK symbolizes the production of turbulence kinetic energy
resulting from mean velocity gradients, and cµ, σK, α, β, σω , and σω,2 are parameters used
for tuning the model. F1 serves as the blending function. Moreover, there is another model
constant denoted as a1, and F2 represents a secondary blending function. More details of
the above equations can be found in reference [23].

The structural equation governing the vibration of the elastically mounted cylinder,
enabling transverse vibration in the y-direction, is as follows:

ms
..
y + c

.
y + k1y + k3y3 = FL

(
y,

.
y, t

)
= 0.5CLρAU2 (5)

where FL is the aerodynamic lift force, which is responsible for the cylinder’s motion and
can be determined by integrating the pressure distribution over the surface of the cylinder.
It is related to displacement y, lift force coefficient CL, velocity

.
y, density ρ of the fluid and

incoming wind speed U. The polynomial k1y + k3y3 represents the restoring force of the
cylinder suspension.

To investigate the VIV of the cylinder, a dynamic mesh solver is essential to capture the
displacement amplitude response accurately. Consequently, the simulations incorporated
ANSYS Fluent’s 6DOF solver, which was implemented using a user-defined function (UDF).
This UDF was employed to represent the physical properties of the cylindrical mass-spring-
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damper system and the net force acting on the cylinder. By utilizing the UDF and the
dynamic mesh solver, the study could effectively analyze the behavior of the cylinder under
VIV conditions.

2.1. Flow over a Fixed Cylinder

In the present study, the initial step involved examining the behavior of a stationary
cylinder subjected to cross flow, serving as a test case for evaluating the effectiveness of
the numerical modeling approach. The computational domain had a size of 40 D × 20 D,
as shown in Figure 1. The parameters used in this investigation were derived from the
experimental research conducted by Ma et al. [24]. The wake structures displayed a
distinctive shedding pattern of alternating vortices emanating from the cylinder, leading
to oscillating forces (Figure 2). The experimental conditions corresponded to a Reynolds
number of 10,000. When flow passes over a stationary cylinder, it triggers a vortex shedding
phenomenon due to the variations in pressure on the cylinder’s surface. These pressure
fluctuations result in alternating lift coefficients acting on the cylinder, thereby inducing
lateral oscillations referred to as vortex-induced vibrations.
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Figure 3 illustrates the force coefficients over time and power spectrum density of the
lift coefficient against the Strouhal number (St = f D/U), as calculated using the SST k-ω
model (here, ‘f ’ stands for the vortex shedding frequency when the cylinder is fixed). The
power spectrum analysis of the lift coefficient demonstrates that the lift force exhibited
fluctuations at a Strouhal number of St = 0.2, consistent with the findings reported by
Ma et al. From the numerical analysis, the calculated RMS value of the lift coefficient and
average value of the drag coefficient value were 0.312 and 1.09, which were calculated
and compared.
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2.2. Computational Domain and Mesh

In the initial stage of this study, a cylinder was allowed to move in a cross-flow
direction to examine the effects of vortex-induced vibrations. To analyze the lateral motion
of the oscillating cylinder, considerable effort is needed during the mesh generation phase.
Dynamic meshing is essential at every simulation step. The computational domain was
constructed to accommodate the cylinders’ motion while ensuring cell quality remains
uncompromised. The mesh generated for the simulation was with structured elements. The
left side of the computational domain was defined with a velocity inlet boundary condition,
while the right side was specified with an outflow boundary condition. The upper and
lower boundaries of the computational domain were designated as symmetry, while the
cylinder was defined with a wall boundary with no-slip condition.

To ensure the accuracy of the results and avoid errors caused by the grid resolution, a
grid-independent study was conducted on the computational domains. The computational
domain was discretized with three different levels of grids: coarse, medium, and fine.
Independent mesh studies were conducted, in which reduced velocity Ur = 5.84, Mass
ratio = 11, and Reynold number, Re = 10,000, k3 = 0 (Linear case). Here, fn is the natural
frequency of the spring system, D is the diameter of the cylinder, and U is the wind speed.
The physical parameters required for the study were taken from the reported work of
Hover and Nguyen [25,26]. A uniform velocity of 0.3149 was used at the domain inlet.
The value of the amplitude ratio obtained from different grid levels are displayed in
Table 1. The study revealed that there was a marginal difference in the value of amplitude
ratio obtained from the coarse mesh in comparison to those obtained from the medium
and fine meshes. However, the results obtained on the medium and fine grids exhibited
nearly identical values. Consequently, it is evident that a medium-level grid refinement
is sufficient for accurately predicting the vortex-induced vibration (VIV) analysis of the
cylinder, and the solution on this domain can be considered grid-independent. Using a
medium grid resolution, we performed a time step verification by testing four different
time steps: 0.0005 s, 0.001 s, 0.002 s, and 0.005 s. The study indicated that a time step of
0.001 s is sufficient to achieve accurate solutions without requiring excessive computational
resources. Subsequently, to validate the current numerical dynamic model, the results
obtained from the present study were compared with those obtained from the experimental
study of Hover et al. [26] (Figure 4).
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Table 1. Number of elements contained in different grid levels.

Mesh Type Cells y/D
(Present Numerical Study)

y/D
(Experimental Study [26])

Coarse 38,400 0.866

1.002Medium 79,300 0.924

Fine 178,090 0.924
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2.3. VIV Analysis with Linear and Cubic Nonlinear Spring-Damper Systems

After the validation of flow around an oscillating cylinder, the study was extended to
a case study, in which the cylinder was allowed to move in the y-direction with both linear
and cubic nonlinear spring-damper systems (y and y3 components). Figure 5 illustrates
the schematic representation of an elastically supported 1DOF circular cylinder with a
mass (m) of 0.0078 kg, a linear spring constant (k1) of 26 N/m, a cubic spring constant
k3 = 30,000 N/m and a damping coefficient (c) of 0.0027 Ns/m. The length and diameter of
the cylinder were 0.09 m and 0.06 m, respectively. In the diagram, k1 symbolizes the effective
linear stiffness while c is the effective damping coefficient, including mechanical and
electrical dampers (via a piezoelectric effect), F is the lifting force and U is the wind speed.

The numerical methodology employed in this study was consistent with the validated
case described in the previous section. The simulations were carried out over a range of
flow velocities, from 1 to 10 m/s, corresponding to Reynolds numbers between 4200 and
42,000. The grid independent mesh used for the present simulation, with a medium size, is
shown in Figure 6.
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3. Results and Discussion
3.1. Amplitude Response and Response Regimes

In the present study, we performed numerical investigations to compare the response
amplitude of 1DOF VIV system with and without nonlinear spring by keeping the same
structural properties. The study employed the simplest form of a nonlinear spring, which
was characterized by a cubic position function. The strength of non-linearity was repre-
sented by k3. In the case of positive values of k3, the restoring force increased dispropor-
tionately as the spring was stretched, categorizing it as a hardening spring. Conversely,
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when k3 took on negative values, the restoring force decreased as the spring is stretched,
classifying it as a softening spring. In the case of a cubic spring, the natural frequency was
a function of vibration amplitude, unlike the constant value associated with a linear spring.
In the present study, the comparative results are presented with respect to wind speed
rather than reduced velocity or equivalent reduced velocity.

Figure 7 illustrates both the linear and nonlinear response amplitude achieved, with
cubic term-springs at different wind speeds. For VIV with a cubic spring, the range of
velocity widened, for which significantly larger amplitudes were observed. In the linear
case, frequency synchronization was observed within the wind velocity range of 2.25 m/s
to 5 m/s. The appearance of this region is due to nonlinear air–bluff body interaction.
However, the response frequency was the same as the natural frequency for the linear spring
mass oscillator. Conversely, in the case of cubic nonlinearity, frequency synchronization
was detected across a broader wind velocity range, specifically from 2.75 m/s to 7 m/s.
The maximum displacement amplitude was recorded as 27 mm for the linear spring
and 31.8 mm for the nonlinear spring. It is evident from Figure 6 that the nonlinear
spring systems exhibited a significantly broader range of wind speeds at which they could
vibrate compared to the linear spring system. In linear spring, the maximum displacement
amplitude occurred when the wind speed was at 4.5 m/s (Ur = 8.15). Beyond a wind
speed of 5.5 m/s (Ur = 10), displacement amplitude decreased gradually, indicating the
presence of a desynchronization region. On the other hand, the addition of non-linearity
steadily increased the vibration amplitude until the wind speed was 7 m/s (Ur = 12.68),
beyond which it abruptly decreased. This phenomenon was in contrast to the standard
VIV system, where the vibration amplitude gradually diminishes as the cut-out speed
is approached. In this case, the nonlinear spring induces a frequency broader-resonance
(synchronization) region.
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occurred when the cylinder moved upwards. It was observed that vortex shedding fre-
quency was aligned with the natural frequency of the system when the wind velocity ap-
proached the upper branch, leading to a lock-in phenomenon. In both scenarios, the vor-
tex shedding displayed a double-row configuration due to the increased vibration ampli-
tude. It was observed that the presence of 2P mode in the flow resulted in the generation 
of high-amplitude oscillations.  

Figure 7. Variations in the cylinder response amplitude with wind velocity for linear and
nonlinear springs.

3.2. Vortex Shedding Patterns

The amplitude of oscillation and reduced velocity are the main source of vortex
formation in the wake of the vibrating cylinder. The pattern of vortices formed behind the
cylinder for linear and nonlinear cases for different wind velocities at time 20 s are depicted
in Figures 8 and 9, respectively. In both cases, a single-row vortex street (2S mode) is
observed in the initial branch, characterized by a small response amplitude. As the cylinder
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moved downwards, it released vortices in a clockwise direction, and the opposite occurred
when the cylinder moved upwards. It was observed that vortex shedding frequency was
aligned with the natural frequency of the system when the wind velocity approached the
upper branch, leading to a lock-in phenomenon. In both scenarios, the vortex shedding
displayed a double-row configuration due to the increased vibration amplitude. It was
observed that the presence of 2P mode in the flow resulted in the generation of high-
amplitude oscillations.
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Figure 8. Vorticity contours at selected wind velocities for a linear spring force.

In the linear case, the 2P mode was observed within a wind velocity range of 2.25 m/s
to 5 m/s, while in the case of the nonlinear cubic spring, the 2P mode was observed within
a wind velocity range of 2.75 m/s to 7 m/s. Further increasing the wind velocity to the
desynchronized region caused a decrease in vibration amplitude, resulting in the narrowing
of the wake behind the cylinder into a single-row configuration (2S mode) for both cases,
as depicted in Figures 8 and 9. In the cubic nonlinear spring case, at a wind velocity of
8 m/s, falling within the lower branch, the second vortex appeared significantly weaker in
its position and shed rapidly. A similar occurrence was noted in the linear case when the
wind speed surpassed 5 m/s.

In the desynchronized region, under the presence of resonance, the oscillation inten-
sified gradually, resulting in the merging of vortices with the same sign and leading to a
disordered wake pattern. This disorderliness in the wake resulted in a decrease in the lift
force, causing a reduction in the oscillation amplitude. As the vibration amplitude dimin-
ished, the wake returned to its regular state, and the cycle of growth–decay recommenced.
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3.3. Effects on Force Coefficients

In the frequency synchronization phenomenon, the vibrating cylinder energizes pa-
rameters such as the coefficient of lift, coefficient of drag and amplitude. The lift coefficient
exhibited a decline from its maximum to minimum value at a wind speed of 2.25 m/s
(Ur = 4) in the linear case while in the cubic nonlinear case, this decline occurred at 2.75 m/s.
It was noted that the lift coefficient was minimum at the starting of lock-in for both the cases.

Subsequently, it showed a consistent rise in value up to the upper branch. In the initial
branch, the maximum root-mean-square (RMS) value of the lift coefficient was 1.451 for
the linear case and 1.673 for the cubic nonlinear case. It was observed that there was a
slight increment during desynchronization; as the wind velocity further increased, the
lift coefficient began to decrease once again. Similar to amplitude response, the RMS lift
coefficient moved towards a higher wind speed range when the VIV system operated with a
nonlinear spring system. This phenomenon is clearly shown in the root-mean-square values
of CL against the wind speeds (Figure 10a). The average values of the drag coefficient
obtained for both cases were in the same trend, as shown in Figure 10b.

Figures 11 and 12 depict the time histories of the lift and drag coefficients recorded at
various wind speeds. As demonstrated in the figures, the beating phenomenon observed
in the initial branch was effectively captured for both cases. This phenomenon is depicted
in Figure 11a,b for the linear system (velocities below 2.25 m/s) and in Figure 12a,b for the
nonlinear system (velocities below 2.75 m/s).
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Figure 12. Time histories of lift coefficient with various wind speeds (cubic nonlinear system),
(a) 2 m/s. (b) 2.5 m/s, (c) 3 m/s, (d) 4 m/s, (e) 5 m/s, (f) 6 m/s, (g) 7 m/s, & (h) 8 m/s.

The lock-in region was characterized by wind velocities ranging from 2.25 m/s to
5 m/s in the linear case and from 2.75 m/s to 7 m/s in the nonlinear case, respectively.
Within this range, resonance occurred with a continuous increase in the drag coefficients due
to the presence of high-intensity turbulence eddies, as shown in Figures 11c–f and 12c–g.
Within the lock-in wind speed range, there was an initial increase in the lift coefficient
followed by a subsequent decrease as the wind speed continued to rise. Desynchronization
can be clearly observed in Figures 11g,h and 12h.

The Fast Fourier Transforms for the lift coefficient at various wind speeds were com-
puted and are illustrated in Figures 13 and 14. In the linear system, within the lock-in region,
only one dominant frequency occurred, where the vortex shedding frequency locked with
the natural frequency. It was observed that, at lower wind velocities, the cylinder vibration
spectra exhibited two distinct peaks. One peak corresponded to the natural frequency of
the system, while the other peak corresponded to the shedding frequency. As the wind
speed increased, these two peaks merged into a single peak, and the oscillating frequency
centered around the natural frequency. This observation is clearly depicted in Figure 13a,c,
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which shows the plot of frequency spectrum of lift coefficients for wind speeds of 1.5 m/s
(below lock-in) and 3 m/s (lock-in) for the linear case.
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Figure 14. Power spectrum density of coefficient of lift for various wind speeds V (cubic nonlinear
system) versus frequency (Hz), (a) 2.5 m/s, (b) 3 m/s, (c) 4 m/s, (d) 5 m/s, (e) 6 m/s, (f) 7 m/s,
(g) 8 m/s, & (h) 10 m/s.

In this study, the value of the frequency ratio obtained during the lock-in period was
1.1. It is worth noting the presence of multiple frequencies during the beating phenomenon
(Figure 13a) and at the beginning of desynchronization (Figure 13f).
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On the other hand, in the cubic nonlinear system, two frequencies were obtained in the
lock in period, as depicted in Figure 14b–f. In a nonlinear cubic spring system, the natural
frequency of the structure becomes dependent on the amplitude of oscillation. As the wind
speed increases within the lock-in region, the system may undergo amplitude modulation
(12.69 Hz to 16.09 Hz), causing variations in the vibration amplitude. These variations can
lead to the emergence of multiple frequencies in the system’s response. Figure 15 represents
the corresponding frequency response obtained at various wind speeds for linear and
nonlinear systems.
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4. Conclusions

In this study, we investigated the fluid forces, vortex structure, and vibrational re-
sponse characteristics of an elastically mounted circular cylinder with linear and non-linear
systems. The cylinder underwent flow-induced vibrations within a Reynolds number
range of 4200 to 42,000. The cylinder exhibited small-amplitude oscillations at shedding
frequency below natural frequency. As wind velocity increased, there was a notable rise
in oscillation amplitude, signifying the onset of the lock-in regime. During lock-in, the
frequency of oscillation aligned with the natural frequency of the spring-mass system. A
further increase in flow velocity led to the termination of the lock-in range, transitioning
into a desynchronization region. While all these phases were observable in both linear
and non-linear cubic systems, the range of wind speed varied in each phase when com-
paring non-linear cubic systems to linear ones. The results revealed that in the linear
spring case, a single predominant natural frequency emerged, leading to resonance and an
increase in cylinder response amplitude. The frequency ratio obtained was 1.1. However,
in the cubic nonlinear spring system, the natural frequency varied with the amplitude
of vibration, resulting in multiple frequencies in the lock-in region and a more complex
frequency spectrum compared to a linear spring system. The results also indicate that
incorporating a nonlinear spring significantly extends the range of wind velocities, in which
significant energy extraction through vortex-induced vibration is achievable. This suggests
the potential for enhanced energy harvesting capabilities in VIV systems with nonlinear
spring configurations. The results highlighted that, when considering an energy extraction
device functioning in realistic flow conditions, the extended range of flow speeds offered by
nonlinear cubic spring systems is expected to offer a significant advantage. While the power
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generated by the vortex-induced vibration energy harvester (VIVEH) with a single cylinder
system is relatively small compared to systems with non-linear spring arrangements or
multiple cylinder setups, it still holds promise for powering small sensors or miniature
devices. Note that in this paper, we discussed the mechanical energy absorbed by the
nonlinear mechanical resonator while the electrical power would appear through linear
piezoelectric coupling placed along the cantilever beam support of the cylinder (Figure 5)
to the final electrical circuit [20]. To maximize the power output, careful consideration of
various parameters such as mass, natural frequency, the Reynolds number, damping factor,
and lateral distance between cylinders is essential. Additionally, exploring alternative
setups like multiple cylinder arrangements, or various type non-linear springs, can enhance
power generation [27]. It is worth noting that the main limitation of linear spring-damper
systems is their narrow operational range, restricted to specific wind speeds.
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Nomenclatures

C Damping coefficient
CD Drag coefficient
CL Lift coefficient
D Cylinder diameter
f/fn Frequency ratio
f Shedding frequency
fn Natural frequency of the system
k1, k3 Spring constants for linear and cubic spring potential
m* Mass ratio (m* = ms

π
4 ρD2 )

m Mass of the cylinder
Re Reynolds Number (Re =ρUD

µ )
St Strouhal number (St = f D/U)
U Wind speed

Ur Reduced velocity
(

Ur = U
fnD

)
y Displacement of cylinder in y-direction
y/D Dimensional cylinder displacement
µ Dynamic viscosity
ρ Fluid density
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