
Citation: Huanca, D.H; Falcão D.M;

Bento, M.E.C. Transmission

Expansion Planning Considering

Storage, Flexible AC Transmission

System, Losses, and Contingencies to

Integrate Wind Power. Energies 2024,

17, 1777. https://doi.org/10.3390/

en17071777

Academic Editor: Adrian Ilinca

Received: 21 March 2024

Revised: 30 March 2024

Accepted: 6 April 2024

Published: 8 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Transmission Expansion Planning Considering Storage, Flexible
AC Transmission System, Losses, and Contingencies to Integrate
Wind Power
Dany H. Huanca , Djalma M. Falcão and Murilo E. C. Bento *

Department of Electrical Engineering, Federal University of Rio de Janeiro, COPPE,
Rio de Janeiro 21941-901, Brazil; dany.huanca@coppe.ufrj.br (D.H.H.); djalmafalcao@coppe.ufrj.br (D.M.F.)
* Correspondence: murilobento@poli.ufrj.br

Abstract: To meet future load projection with the integration of renewable sources, the transmission
system must be planned optimally. Thus, this paper introduces a comparative analysis and compre-
hensive methodology for transmission expansion planning (TEP), incorporating the combined effects
of wind power, losses, N-1 contingency, a FACTS, and storage in a flexible environment. Specifically,
the optimal placement of the FACTS, known as series capacitive compensation (SCC) devices, is
used. The intraday constraints associated with wind power and energy storage are represented by
the methodology of typical days jointly with the load scenarios light, heavy, and medium. The TEP
problem is formulated as a mixed-integer nonlinear programming (MINLP) problem through a DC
model and is solved using a specialized genetic algorithm. This algorithm is also used to determine
the optimal placement of SCC devices and storage systems in expansion planning. The proposed
methodology is then used to perform a comparison of the effect of the different technologies on
the robustness and cost of the final solution of the TEP problem. Three test systems were used to
perform the comparative analyses, namely the Garver system, the IEEE-24 system, and a real-world
Colombian power system of 93 buses. The results indicate that energy storage and SCC devices lead
to a decrease in transmission requirements and overall investment, enabling the effective integration
of wind farms.

Keywords: energy storage systems; N-1 contingencies; series capacitive compensation; specialized
genetic algorithm; transmission expansion planning

1. Introduction
1.1. Background

Integrating renewable energy sources (RESs) into modern energy systems imposes
a significant challenge when compared to conventional energy systems featuring steady,
forseeable, and controllable generation [1]. The intermittent nature of RESs is one of the
primary challenges, since most depend on the availability of sunlight and wind speed.
This intermittency introduces variability in the electricity supply, making it difficult to
match generation with load. However, this challenge would be lighter and more effective if
new elements were added to some buses, such as energy storage systems (ESSs), or if the
parameters of some lines were slightly modified using devices based on power electronics,
such as flexible AC transmission systems (FACTSs). Thus, it is necessary to introduce new
flexible assets that contribute to maintaining the balance between generation and load [2].

Storage systems are flexible assets that assume a crucial role in electrical systems
and are being widely installed in many countries. The global electricity market in 2026 is
expected to increase on a utility scale equal to 50 GW considering distributed ESSs. In the
United States alone, ESS installation is expected to reach 35 GW by 2025 [3]. ESSs also play
an important role in many areas, including (1) shifting energy in time from periods of over-
production of RESs to periods of under-production of RESs [4] and having the potential to
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alleviate peak loads, alleviate line saturation, and minimize necessary investments [5] and
(2) improving network congestion while building new lines [6]. Furthermore, ESS-based
technologies have also been proven to offer increased flexibility to networks with high levels
of non-conventional RESs, reduce transmission losses, and be used in auxiliary services,
such as frequency control, voltage control, and power oscillation damping [7,8].

The other tool is the placement of the FACTSs, which serve to better redistribute
power flow and enhance transmission capacity. Various types of FACTSs can be found
in the literature [9,10]. However, fixed series compensation (FSC) and series capacitive
compensation (SCC) devices may provide the simplest and most suitable transmission
technology to redistribute power [11,12]. SCC devices are deployed on transmission lines
to modify the overall reactance, thereby influencing power flows within the surrounding
network [13,14]. Likewise, in order to realistically model the operation of the power system,
the contingencies and power losses must be considered in the transmission expansion
planning to ensure a viable operation even if a transmission line is removed [15]. Therefore,
the TEP problem involving contingencies, power losses, ESSs, and SCC devices, alongside
the integration of renewable sources, is a topic of interest among planners to guarantee the
robustness, security, and stability of electrical systems.

1.2. Literature Review

In general, the primary aim of the transmission expansion planning (TEP) problem
is to identify the optimal plan for the expansion of the electrical system, which includes
determining the installation of new transmission lines with the lowest cost investment. The
TEP problem has been extensively studied and addressed by power system planners, who
consider a wide range of factors, such as load forecasting, network modeling, economic
analysis, risk assessment, and environmental aspects. Likewise, from the point of view of
the planning horizon, the TEP problem is divided into static and multistage planning [16].
Static planning (single stage) determines where and how many transmission line reinforce-
ments must be implemented, while multistage planning (several stages) determines where,
when, and how many transmission line reinforcements should be added to the electrical
network [17].

The TEP problem is considered a very complex problem since it is modeled as a
mixed-integer nonlinear programming (MINLP) problem, and this problem is multimodal
and non-convex, so it cannot be successfully solved using exact optimization techniques
when the system has large dimensions [18].

There are several mathematical models to represent the TEP problem; among them are
the DC and AC models. According to the characteristics of the TEP problem, the AC model
is considered ideal to represent the TEP problem. However, complexity due to inclusion of
nonlinear equations, phase angles, and reactive power increases computational effort and
leads to longer solution times, whereas the DC model includes linear equations without
phase angle or reactive power flows, which makes it more attractive, fast, and efficient in
solving the problem. Likewise, the most important factor in solving the TEP problem is
determining the transmission paths that the power flow must follow [19]. From this point
of view, the DC model (MINLP-type model) is considered the ideal model for long-term
planning [20].

In addition, several optimization techniques are proposed in the literature to solve
the TEP problem, such as exact methods and approximate methods (heuristic and meta-
heuristic techniques) [21]. Within the exact methods are mixed-integer linear programming,
nonlinear programming, branch and bound, branch and cut, dynamic programming, and
decomposition methods, and within the approximate methods are genetic algorithms [22],
ant colony optimization [23], and others [24].

On the other hand, the installation of storage systems and SCC devices in the special-
ized literature are presented separately. In [25], a high integration of renewable sources
in the TEP problem is presented together with the optimal sizing and location of photo-
voltaic (PV) sources, in which a particle swarm optimization algorithm is used to select
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the best location for PV sources. Storage systems, thermal generators, and high penetra-
tion of wind in transmission expansion planning are presented in [26] and were tested in
the Gansu provincial electric systems in 2017. The uncertainties of planning through a
stochastic optimization model are used to coordinate long-term transmission planning and
storage facilities in [27], which is to be tested in the energy systems of northwest China in
2030. In [28], the authors propose the Latin hypercube sampling method to solve the TEP
problem considering the uncertainties of wind sources.

Contingencies through the N-1 criterion and a genetic algorithm are introduced in [29].
That work only presents a mathematical model considering security constraints, and it ne-
glects the power losses and flexible assets indicated above. Furthermore, an approximation
using mixed-integer linear programming through the piecewise linearization technique to
solve the TEP problem is proposed in [30].

Optimal placement of ESSs and SCC devices simultaneously remains an open issue
that needs to be defined in power systems. In [14], a mathematical model is proposed to
solve the multistage TEP problem considering fixed series compensation placement and
contingencies. A mathematical model with the optimal placement of SCC devices and using
a high-performance hybrid genetic algorithm (HPHGA) to solve the static and multistage
TEP problems is presented in [13] and is presented with power losses in [31]. However, the
optimal placement of ESSs and contingencies is neglected.

An optimization methodology is proposed in [2] that incorporates an optimal mix of
flexible assets such as batteries and TCSC devices. Although flexible assets with power
losses are included in that work, contingencies were neglected. In [32], the TEP problem
with the optimal placement and the type and size of the storage systems are presented,
neglecting contingency and SCC devices.

Therefore, the installation of ESSs and SCC devices in expansion planning is a topic of
great interest for researchers and energy companies since they can improve the utilization of
the existing network and delay the construction of new lines. In contrast to [2,13–15,33], this
paper outlines a mathematical formulation that integrates the optimal placement of storage
and SCC devices simultaneously considering N-1 contingency and power losses. Due to the
complexity of the proposed method, a specialized genetic algorithm proposed by Chu and
Beasley is used.

Thus, the contributions of this paper are threefold:

1. A complete mathematical formulation to solve the TEP problem incorporating power
losses with security constraints. This formulation helps the planner to model the TEP
problem in a way that approximates the real world. Power losses are modeled using
the piecewise linearization technique.

2. Inclusion of ESSs and SCC devices in transmission expansion planning considering
contingencies and power losses simultaneously. This support scheme decides on the
adequacy of the transmission expansion and the optimal placement of the ESS and
SCC devices.

3. Intraday time constraints are included to represent the daily storage charge and
discharge cycle considering non-dispatchable renewable generation (wind farms).
In this context, 12 energy scenarios are used, which are represented as light load,
heavy load, and medium load on weekdays and weekends for winter and summer.
Furthermore, a specialized genetic algorithm is used to support expansion planning
and minimize the total investment cost of lines, ESSs, and SCC devices.

The structure of this paper is organized as follows. Section 2 illustrates the structure of
the planning model. Section 3 presents the mathematical models to solve the TEP problem as
well as the mathematical expressions used to represent the ESS and SCC devices. In Section 4,
the specialized genetic algorithm is presented. Section 5 presents the outcomes achieved
through the proposed methodology for three test power systems. Finally, conclusions are
outlined in Section 6.
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2. The Structure of the Planning Model

The outline of the planning model in this work addresses a coordinated TEP problem
involving intraday time constraints, transmission lines, storage, and series compensation
with losses and N-1 contingency. The structure of the proposed methodology is shown
in Figure 1, where planning programming seeks to minimize the optimal value of the
investment in the newly built facilities. Basically, the specialized genetic algorithm depends
on mathematical modeling, marked in green, where the objective function is separated
into fitness and unfitness functions. At this stage, the specialized algorithm proposes a
configuration or topology for long-term expansion planning, for example, 5 or 10 years (in
this paper the 12 scenarios marked in yellow and blue in Figure 1 are used). The specifics
of the genetic algorithm are provided in Section 4. In the lower-level optimization marked
in orange, the individuals proposed by the algorithm are solved using mathematical
modeling again to ensure the viability and optimality of the individuals. In this stage, the
configuration proposed by the algorithm for short-term operations planning is evaluated,
for example, days, weeks, or months. Note that at this stage, the cost of the unfitness
function must be equal to zero.
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The scenarios shown in Figure 1 (top) are used to illustrate the variability in load
growth and available wind production capacity. Thus, an approach based on energy
scenario curves and typical days is proposed for the TEP problem. The stepped demand
and wind power curves form the scenarios that will be considered in the formulation of
the TEP problem. The higher the level of detail is in this representation, the more accurate
the problem modeling will be. However, to maintain the computational effort required for
the model solution to be within reasonable limits, it is necessary to limit the number of
elements represented (scenarios, typical days, and curve levels). As an illustrative example
of this modeling, Figure 1 shows energy scenarios for summer (S), marked in yellow, and
winter (W), marked in blue, with attributes such as typical days (weekdays (Wd) and
weekends (We)) and load levels (light load (LL), medium load (ML), and heavy load (HL)).

Therefore, the model structure will be represented as in Figure 1, where the TEP
problem is modeled with twelve variable generation and demand scenarios. These stepped
curves are related to the CBGA, where for each scenario, mathematical modeling is executed
to find optimality and feasibility. The step curves are obtained from historical data by
applying the arithmetic mean of wind production and daily load.

3. Mathematical Model

In this section, the mathematical model for the TEP problem considering the optimal
placement of ESSs and SCC devices with N-1 contingency and power losses is
presented [13,15,27,30,34]. The integrated formulation of these concepts is listed below.

min

τl

[
∑

ij∈ΩLC

cijnij + ∑
ij∈ΩSCC

βijcij(no
ij + nij)

]
+ τe
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+ ∑
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1
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p
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∑
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∆θij,s,t,ℓ = θ+ij,s,t,ℓ + θ−ij,s,t,ℓ, ∀ij ∈ Ωl , ℓ = 1, . . . , L; ∀s, t = 1, 2, . . . , T (8)
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ij,s,t

L
; ∀ij ∈ Ωl , ℓ = 1, . . . , L, ∀s, t = 1, 2, . . . , T (9)
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mij,s,t,ℓ = (2ℓ− 1)
θmax

ij,s,t

L
; ∀ij ∈ Ωl , ℓ = 1, . . . , L ∀s, t = 1, 2, . . . , T (10)

θ+ij,s,t, θ−ij,s,t ≥ 0; ∀s, t = 1, 2, . . . , T (11)

| fij,s,t |≤ (no
ij + nij) f max

ij ; ∀(i, j) ∈ Ωl , and ij ∈ 1, 2, . . . , nl, ∀s, t = 1, 2, . . . , T (12)

| f p
ij,s,t |≤ (no

ij + nij − 1) f max
ij ; for ij = p, ∀ij ∈ Ωl ∀s, t = 1, 2, . . . , T (13)

YqPdis,min
q ≤ Pdis

q,s,t ≤ YqPdis,max
q ; ∀q, s, t = 1, 2, . . . , T (14)

YqPch,min
q ≤ Pch

q,s,t ≤ YqPch,max
q ; ∀q, s, t = 1, 2, . . . , T (15)

0 ≤ PGen
i,s,t ≤ PGen,max

i ; ∀i, s, t = 1, 2, . . . , T (16)

0 ≤ PWind
w,s,t ≤ Pf

w; ∀w, s, t = 1, 2, . . . , T (17)

0 ≤ rs,t ≤ ds,t; ∀s, t = 1, 2, . . . , T (18)

0 ≤ nij ≤ nmax
ij ; ∀ij ∈ Ωl (19)

∑
i∈Ωq

b

Yi,q ≤ Ymax (20)

Yq ∈ {0, 1}; ∀q ∈ Ωq (21)

[nij + n0
ij − 1] ≥ 0 and integer for ij = p (22)

nij ≥ 0 and integer ∀ij ∈ Ωl and ij ∈ 1, 2, . . . , nl and ij ̸= p (23)

θi,s,t, θ
p
i,s,t unbounded ∀i, s, t = 1, 2, . . . , T (24)

ij ∈ Ωl and p = 1, 2, . . . , nl,

where Equation (1) seeks to minimize the total investment cost expressed as the sum of the
investment cost in the build of the new line, plus the cost of the installation of the SCC de-
vices involving the number of lines in the base topology n0

ij, plus the cost of the installation
of the ESSs (which are related to the fixed storage cost, variable costs related to charge and
discharge power, and unit energy capacity), plus the cost of load shedding. Constraint (2)
represents Kirchhoff’s first law, which corresponds to the input/output power of the trans-
mission lines, power losses, thermal plant and wind production, and artificial generators.
Constraints (3) and (4) indicate Kirchhoff’s second law, which implicitly imposes nonlinear
constraints. Due to these constraints, the TEP problem is formulated as an MINLP problem,
where (3) is the constraint without contingency and (4) is the constraint with contingency
for each (i, j) = p ∈ 1, . . . , nl, knowing that nl is the number of paths. Constraint (5)
represents the energy limits for storage in each period and scenario, where S0

k denotes the
initial storage level starting the day, and S0

k + ∑tn
t=1(Pch

k,t ηch
k − Pdis

k,t /ηdis
k )∆t is the storage

level during tn, where the charge and discharge efficiency of the storage system in this
work are considered unitary. Constraint (6) denotes the storage energy balance per day. The
linearized losses computed by adding the linear functions through the piecewise lineariza-
tion method are expressed through constraints (7)–(11). Note that the model incorporates
loss linearization based on [35]. Constraints (12) and (13) represent the power flow limit
without and with N-1 contingency. Constraints (14) and (15) are discharging and charging
bounds for the ESSs. Constraints (16)–(18) establish the production bounds for thermal
plants, wind production, and load shedding. Constraint (19) ensures that the maximum
number of lines nmax

ij to be added in branch i − j is not exceeded.
The constraint (20) represents the maximum number of ESSs. Decision variables for

storage devices, number of circuits with and without N-1 contingency, and phase angle are
represented by constraints (21)–(24). It is worth noting that in this formulation, there are nl
sets of operational variables, with one set designated for each contingency, where all paths
are considered p = (i, j) ∈ Ωl .

To obtain the annual equivalent costs, the capital costs of the lines and ESSs in the
objective function are converted to annual values by multiplying by the annuity factors [36]
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τ =
x(1 + x)y

(1 + x)y − 1
, (25)

where x is the discount rate, while y denotes the lifespan in years. Although transmission
lines and ESSs incur considerable initial costs, their annual costs are relatively lower due to
their extended lifespan.

4. Specialized Genetic Algorithm

Genetic algorithms (GAs) are optimization techniques that utilize the principles of
natural selection and the evolutionary processes of species. GAs can solve highly complex
combinatorial optimization problems with an acceptable computational effort [15,24,37].

In this paper, the Chu and Beasley genetic algorithm (CBGA) proposed in [15] is slightly
modified to solve the TEP problem with the optimal placement of ESSs and SCC devices.

To employ the CBGA in the mathematical model of the TEP problem in this work, the
objective function is divided into two sub-functions, namely the fitness function (circuits
and ESSs costs) and the unfitness function (identifies the unfeasibility of the individual, i.e.,
the load shedding ri > 0).

The characteristics of CBGA are described below.

4.1. Codification

The coding proposal is based on the representation of a candidate solution integrating
lines, SCC devices, and ESSs simultaneously. This representation is the most important
aspect in structuring the GAs. Coding and integrating equipment may either simplify or
complicate the implementation of genetic algorithm mechanisms. Two types of encoding
are used in this paper. The first uses decimal coding to represent a proposed solution for
lines and SCC devices, and the second uses binary coding to represent a proposed solution
of the ESS. The individual is a proposed solution to the problem; that is, it constitutes the
topology comprising all the lines, lines with SCC devices, and buses with ESSs added to the
corresponding system with an investment proposal. In this work, the CBGA individual is
represented by three vectors. The first vector corresponds to transmission lines, the second
corresponds to lines with SCC devices, and the third corresponds to buses with ESSs.
Each element of this vector is related to a branch of the system under analysis. Figure 2
depicts the coding scheme adopted in this work that is applied to the Garver system, where
the complete topology vector, branches i − j, and decision variables are represented as
chromosome, allele, and gene, respectively. In Figure 2, branches 1–2, 1–4, and 4–6 have
one, two, and four new lines (see line vector) with SCC devices of types 2, 1, and 0 (see
line vector available for SCC devices) and with two storage systems, one in bus 2 and
another in bus 5 (see vector of storage systems). Note that in each vector, the zero indicates
that no element (lines, ESS and/or SCC devices) has been placed. The approach proposed
in this work does not require that the coding for buses with ESSs be binary, since it can
be represented by a vector that indicates the types of ESSs (similar to the coding of SCC
devices) according to their power and energy storage capacity.
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4.2. Initial Population

According to the specialized literature, there are two methods to initialize the pop-
ulation of CBGA lines. The first is random and the second uses a constructive heuristic
algorithm. For the initial population of the CBGA of this work, the Villasana Garver con-
structive heuristic algorithm is employed. The initial population for optimal placement of
SCC devices is decimal random with serial compensation device types, while for storage
systems, it was chosen by a binary random population.

4.3. Selection

There are different selection methods for genetic algorithms, such as roulette selection,
tournament, ranking, steady-state, elitism, and Boltzmann selection. In this paper, tourna-
ment selection is used. This step consists of randomly selecting ksr individuals from the
current population to generate two groups. Once the two groups are generated, they are
sent to a competition between individuals. This is performed with the objective of selecting
the two best individuals from each group, who will be named parent 1 and parent 2.

4.4. Recombination

This genetic operator allows the exchange of genes or information between individuals.
In this solution, single-point recombination is utilized, wherein a single recombination
point is randomly selected, and two offspring are generated for each element. In traditional
genetic algorithms, the offspring from all three elements may be incorporated into the
population of the succeeding generation. However, in the CBGA, only one individual from
each of the elements can be part of the population. Figure 3 shows the recombination for
the Garver system. The random point is chosen in corridors 1–3 for lines and SCC devices,
whereas for ESSs, the random point is chosen in bus 2. Note that the randomly chosen
points for lines and lines with SCC devices are the same. Once the information for the two
individuals (parents) has been exchanged, two offspring are generated.
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Figure 3. Single-point recombination.
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4.5. Mutation

This mechanism of the genetic algorithm allows the current population to have greater
diversity and prevents the algorithm from remaining in local minima. Furthermore, the
mutation allows the creation of new qualities in the individuals of the current population.
Figure 4 shows the mutation process, where branches 1–4 for SCC devices decide to change
from type 1 to type 3, while branches 4–5 decide to add a line in the configuration of lines,
and for the configuration of ESSs, bus 5 decides to install a storage system. This procedure
is contingent upon a mutation rate denoted by km, typically falling within the range of 5%
to 10% [38].
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Figure 4. Mutation process.

4.6. Local Improvement of an Individual

A new individual emerges after the processes of selection, recombination, and mutation.
This individual may be either feasible or infeasible (non-zero load shedding). Therefore,
since the objective function of the CBGA is divided into the unfitness function and a
fitness function, local improvement is achieved for both functions, and they are described
as follows.

4.6.1. Improving the Unfitness Function

To improve the unfitness function and transform the infeasible individual into feasible
(load shedding equal to zero), the constructive heuristic algorithm (CHA) in [39] is used.
In this CHA, the capacity limits of the power flows of the circuits are ignored and the
DC model presented in [40] is executed to obtain the power flows in each branch. Once
the power flows are determined, transmission lines are added to the branch with the
highest power flow (overload circuits). This procedure is repeated until there are no more
overloaded branches. Completing this process, the individual becomes feasible.

4.6.2. Objective Function Improvement

After using the constructive heuristic making the individual feasible and performing
the selection, recombination, and mutation mechanisms, the individual may contain excess
elements (lines or storage systems) causing a higher investment cost. Therefore, at this
stage, excess elements are eliminated based on the costs of the lines and ESSs without
altering the feasibility of the individual.

4.7. Population Substitution

To carry out this process, the procedure introduced in [31] is employed, where the
individual that aspires to be part of the current population and replace another individual of
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the population must follow the acceptance criteria, such as (1) ensuring that the individual
differs in kc features from each member of the current population, where kc represents the
diversity factor. This value is computed using a diversity rate defined in the reference [38],
and (2), if the fitness function of the offspring demonstrates superior quality compared to
the fitness function of the worst individual in the current population, then the offspring
replaces that individual.

4.8. Stop Criteria

In the specialized literature, there are various stopping criteria, such as the number
of iterations, when the incumbent does not improve for several generations when the
configurations are very similar and when there is practically no diversity of individuals in
the populations. Therefore, this paper opts for the number of iterations criterion.

Figure 5 shows the CBGA procedure with SCC and ESS devices. In this flowchart, it
is initialized specifying control parameters, such as kps, ksr, kmr, kdr, k′, kmax. It is worth
mentioning that several studies were carried out on the selection of the levels of each CBGA
parameter; thus, it is suggested to start with the following parameters: kps = [20, 200],
ksr = [3, 5], kmr = [5, 10]%, and kdr = [2, 10]%; α = USD 10, 100, and/or 1000/MW. Here,
smaller values represent solving small-sized systems, while larger values represent solving
large-sized systems, which are also mentioned in the References [31,38].
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Figure 5. Flowchart of the CBGA with storage and SCC devices.
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5. Test and Critical Analysis of the Results

The mathematical formulation presented in Section 3 was developed and successfully
applied in Matlab programming language using a personal computer with an Intel pro-
cessor with 16GB RAM. Garver’s 6-bus test system, the IEEE 24-bus test system, and the
modified Colombian system were tested. The electrical data for these systems can be found
in [13,15]. All N-1 line-outage contingencies are taken into consideration. The load and
wind profiles for winter and summer are shown in Figure 6.
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Figure 6. Representative daily demand profiles.

It is assumed that the daily demand is variable according to Figure 6, which establishes
12 demand intervals called scenarios. Table 1 provides the demand coefficients for each
scenario. The first six rows correspond to the winter scenario, and the second six rows
correspond to the summer scenario. Furthermore, within these scenarios, there are Wd
and We classified into LL, HL, and ML. Some nodes with generators installed in the base
system will be assumed as wind farms, which will vary according to the following scheme:
winter weekdays and weekends (LL-50%, HL-100%, and ML-85%) and summer weekdays
and weekends (LL-55%, HL-100%, and ML-80%). It is important to note that this scheme
is replicated twice to work with the twelve scenarios in Table 1. Then, using the Weibull
distribution, the wind production curve shown in Figure 6 is generated since wind power
depends on wind speed.

Table 1. Characteristics of each scenario.

Seasons Day Scenario Demand Coefficient (%) Load Description

Winter

Wd
1 66 LL
2 97 HL
3 83 ML

We
4 67 LL
5 97 HL
6 82 ML

Summer

Wd
7 61 LL
8 98 HL
9 80 ML

We
10 69 LL
11 96 HL
12 85 ML
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Tables 2 and 3 show the data for the installation of ESS and SCC devices, respectively,
which are taken from [13,32].

Table 2. Storage device characteristics.

System Pdis,max
k /Pch,max

k /(MW) Pdis,min
k /Pch,min

k /(MW) Smin
k (MWh) Smax

k (MWh)

Garver 30 0 10 400
IEEE-24 60 0 20 900
Colombian 500 0 70 6000

Table 3. SCC device types.

Type Compensation Rate Compensation Cost
(Line Reactance) (Lines Cost)

1 0.30 0.10
2 0.40 0.15
3 0.50 0.20

A candidate storage system is taken into account at each node. The fixed cost of each
of them is USD 6/kWh to avoid the decisions of ESSs that are too small. In converting
the capital costs into annual equivalents, a discount rate of x = 10% is assumed, and the
lifespans of the transmission lines and ESSs are defined as 30 and 15 years, respectively.
The variable investment cost parameters, such as the unit cost of power capacity, unit
cost of energy capacity, and cycle efficiency, are assumed as follows: ξp = $500/KW,
ξq = $3000/MWh, and µ = 75% [36].

The six cases listed in Table 4 are compared.

Table 4. Cases to compare the results.

Case No. Description

Case I TEP with contingency
Case II TEP considering contingency and power losses
Case III TEP with contingency and SCC devices
Case IV TEP with contingency, SCC devices, and power losses
Case V TEP considering contingency, SCC devices, and storage
Case VI TEP with contingency, SCC devices, storage, and power losses

5.1. Garver Electrical Test System

The initial test is conducted on the Garver system, featuring six buses, 15 branches, a
load demand of 760 MW, a generating capacity of 1110 MW, and a maximum allowable
number of additional circuits per branch set at four. Initially, it has five nodes and six lines
connecting them, with the sixth node remaining disconnected from the rest of the system.
The base topology and parameters of the existing and candidate lines are referenced in [41].
Two wind farms are placed, one in bus 3 and the other in bus 6, as shown in Figure 7a; each
of them varies according to the scheme presented above.

The control parameters of the CBGA for this system in the six cases are: kps = 50,
ksr = 4, kmr = 10%, kdr = 2%, and kmax = 500.

The planning outcomes for case VI are depicted in Figure 7a. Six new lines are
planned, with an installation cost of USD 160.0 million. A storage system is built in bus
4 with fixed and variable installation costs of USD 2.4 and USD 3.66 million, respectively,
and a compensated line is added in branches 2–4 type 2, with an installation cost of USD
6.0 million, whereas Figure 7b shows the planning outcomes in case II with seven new lines
planned and an installation cost of USD 190.0 million. Values in red indicate power losses.

Figure 8 shows the power flow comparison of three cases for the Garver system. Fur-
thermore, a comparison of the number of lines and power losses for each case is illustrated.
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It can be observed that when SCC devices are installed, the power losses decrease, but if both
the SCC and ESS devices are installed simultaneously, the power losses tend to decrease
even more.
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Figure 8. Results for three cases.

The results of all cases are presented in Table 5 with load shedding equal to 0.00 MW.
Furthermore, this table shows the construction of new lines to the base topology and
investment costs for lines, storage and SCC devices; power losses; the resolved linear
programming (LP) numbers; the number of blocks of the piecewise linearization of power
losses; and the computational time. Column 8 represents the subtotal cost of transmission
lines plus the cost of SCC devices and the fixed cost of storage systems. The cost for case I
is equal to the optimal solution reported in [15]. It can be seen that when power losses are
considered, the investment cost increases. However, the investment cost tends to decrease
when SCC devices and storage are added, even considering losses. For example, comparing
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case II and case VI, case VI is 9.44% cheaper than case II. Thus, when only SCC devices are
added, the investment cost is slightly reduced (see cases III and IV). However, when ESS
and SCC devices are installed together in the expansion planning, the investment cost is
cheaper (see cases V and VI).

Table 5. Results for the solution of different cases of the Garver system.

Cases New
Lines

Line SCC
(Type)

ESS Node
(MW)

Million USD Losses
(MW) LPs L Time

(min)Lines SCC ESS Subtotal Total

I

n2−3 = 1,
n2−6 = 1,
n3−5 = 2,
n4−6 = 3

- - 180 - - 180 - - 152 - 0.065

II
n2−6 = 2,
n3−5 = 2,
n4−6 = 3

- - 190 - - 190 - 40.8 715 10 0.559

III
n2−6 = 2,
n3−5 = 2,
n4−6 = 2

n0
2−4(3) - 160 8 - 168 168 - 1617 - 0.726

IV
n2−6 = 3,
n3−5 = 2,
n4−6 = 1

n0
1−4(3),

n0
2−4(1),

n0
2−6(2)

- 160 29.50 - 189.5 189.5 28.87 2867 20 2.830

V

n2−3 = 1,
n2−6 = 1,
n3−5 = 1,
n4−6 = 2

n0
1−5(2),

n2−4(3)
1(30),
5(30) 130 11 10.12 145.8 151.12 - 1625 - 0.862

VI
n2−6 = 2,
n3−5 = 2,
n4−6 = 2

n0
2−4(2) 4(30) 160 6 6.06 168.4 172.06 25.32 2100 10 1.731

Using the representative daily profile curves shown in Figure 6, Figure 9 illustrates
a comparison of case VI with and without storage on a weekday in winter. For case VI,
when there is no line outage, that is, N-0, the operation of the system is balanced between
generation and variable demand, while when a line is disconnected in branches 4–6, storage
is necessary. The findings indicate that the storage system effectively mitigates fluctuations
in wind power at nodes 3 and 6. It charges during periods of high wind power output
under light load conditions and discharges when wind power output is low during heavy
load conditions. It is worth noting in Figure 9 that the power at each hour of the day is the
equivalent power of the entire system.
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Figure 9. Energy balance between variable generation and variable demand in the Garver system.

5.2. IEEE 24-Bus Test System

This system has 24 buses and 41 branches and a limit of five circuits that can be added
in each branch. The generation capacity is 10,215 MW and the demand is 8550 MW. Two
wind farms are placed, one in bus 13 and the other in bus 18. The optimal solutions of the
planning problem for cases I, II, V, and VI, using the CBGA control parameters, namely
kps = 50, ksr = 2, kmr = 10%, kdr = 1%, kmax = 106, and α = 100, are listed below, with
each test with load shedding equal to 0.00 MW.

Test 1: The optimal solution to the TEP problem in case I is USD 441 million, which is
equal to the optimal solution presented in [15]. This optimal solution is found after running
441 LPs with the following topology: n1−5 = 1, n3−24 = 1, n4−9 = 1, n6−10 = 2, n7−8 = 2,
n10−11 = 1,n11−13 = 1, n14−16 = 1, n15−24 = 1, and n16−17 = 1, and with a computational
time of 3.67 min.

Test 2: The optimal solution in case II is USD 485 million, with the following base
topology n1−5 = 1, n3−24 = 1,n4−9 = 1, n6−10 = 2,n7−8 = 2, n9−11 = 1, n10−11 = 1,
n11−13 = 1,n14−16 = 1, n15−24 = 1, and n20−23 = 1. This optimal solution is found after
running 3556 LPs with a computational time of 36.58 min. The power losses is 177.23 MW
with the number of blocks of the piecewise linearization L = 10.

Test 3: Taking into account the optimal placement of both ESS and SCC devices in case
V, the best solution found has a total investment cost of USD 438.7 million. The investment
cost of the lines is USD 419 million with the following topology: n2−4 = 1, n3−24 = 1,
n6−10 = 2, n7−8 = 2, n10−11 = 1, n11−13 = 1, n14−16 = 1, n15−24 = 2, and n20−23 = 1
and a cost of USD 7.5 million for an SCC device of type 2 installed in n0

2−6 and a storage
installed in bus 5 with fixed and variable installation cost of USD 5.4 and USD 7.16 million,
respectively. This optimal solution is found after running 29,451 LPs with a computational
time equal to 83.2 min.

Test 4: Considering power losses for case VI and the optimal placement of the ESS
and SCC devices to solve the TEP problem, the best solution found has a total cost of USD
480.72 million. The investment cost of the lines is USD 447 million with the following
base topology: n1−5 = 2, n3−9 = 2, n4−9 = 1, n6−10 = 1, n7−8 = 2, n9−11 = 1,n10−11 = 1,
n11−13 = 1, n14−16 = 1, and n20−23 = 1, and investment cost of type 1 and 3 of the SCC
devices installed in branches n0

3−24 and n0
11−14 is equal to USD 16.6 million, and two storage

systems are in placement in buses 1 and 2 with fixed and variable installation costs of USD
10.8 and USD 6.32 million, respectively. This optimal solution is found after executing
133,300 LPs with a computational time equal to 21.83 h. The power loss is 209.23 MW with
the number of blocks of the piecewise linearization L = 10. The solution diagram for this
system is illustrated in Figure 10.

Comparing the results only for cases II and VI, the solution obtained in case VI is
0.88% cheaper than case II.
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Figure 10. Optimal TEP solution considering case VI for the IEEE-24 system.

5.3. Practical Application on the Colombian System

The findings detailed in this section are based on a modified Colombian system,
consisting of 45 hydroelectric units, four wind farms, 192 transmission lines, and 93 buses.
The 14.559 GW loads and 14.559 generation units in the Colombian system are included,
together with 12.173 GW from hydro units and 2.386 from wind farms.

The electrical data of this system are found in [13]. In this test system, cases I and V are
simulated. To demonstrate the potential benefits of the ESS and SCC devices in transmission
expansion planning in the future and to prevent computational burden, power losses were
intentionally not considered. The optimal solution of the planning problem for cases I and
V and using the CBGA control parameters, namely kps = 150, ksr = 11, kmr = 5%, kdr = 2%,
kmax = 105 and α = 10, 000, are listed below, where each system has a load shedding of
0.00 MW.

Test 1: The investment cost necessary to solve the TEP problem considering case
I is equal to USD 1185.65 million, with the addition of the following lines to the base
topology: n52−88 = 1, n43−88 = 2, n25−29 = 1, n13−14 = 1, n14−31 = 1, n14−60 = 1, n2−4 = 2,
n2−9 = 3,n9−83 = 2, n15−18 = 1, n15−76 = 2, n37−61 = 1, n37−68 = 1, n40−68 = 1, n27−80 = 2,
n56−81 = 1, n7−78 = 2, n30−64 = 1, n30−65 = 1, n57−84 = 1, n55−84 = 3, n56−57 = 1,
n1−3 = 1, n55−62 = 2, n47−52 = 1, n40−42 = 1, n69−70 = 1, n9−69 = 1, n16−18 = 1,
n16−23 = 1, n31−33 = 1, n1−71 = 1, n1−11 = 1, n19−58 = 1, n27−28 = 1, n26−27 = 1,
n27−29 = 1, n19−66 = 2, n73−74 = 1, n29−64 = 1, n8−71 = 1, n48−63 = 2, n39−68 = 1,
n28−29 = 1, n6−10 = 1, n62−73 = 1, n49−53 = 1, n45−81 = 2, n64−74 = 1, n60−62 = 1,
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n19−82 = 1, n82−85 = 1, n68−86 = 1, and n11−92 = 1; that is, 65 transmission lines are
needed to satisfy the demand. This optimal solution was found after executing 6,662 LPs
with a computational time of 24.80 min.

Test 2: Considering case V, the best solution identified by the CBGA considering the
optimal placement of the ESS and SCC devices and N-1 contingency has a total investment
cost of USD 1063.95 million. The investment cost of the lines is USD 878.79 million with the
following topology: n52−88 = 1, n43−88 = 2, n8−67 = 1, n13−14 = 1,n13−23 = 1, n15−18 = 1,
n61−68 = 2, n56−81 = 1, n57−84 = 2, n55−84 = 2, n56−57 = 1, n55−62 = 2, n46−51 = 1,
n19−58 = 1, n27−64 = 2, n19−66 = 1, n73−74 = 1, n4−34 = 1, n62−73 = 1, n45−81 = 1,
n64−74 = 1, n19−82 = 2, n82−85 = 1, and n68−86 = 1 and a cost of USD 84.64 million for SCC
devices with the following topology: n0

13−14 = 2 (type 1), n0
19−61 = 2 (type 3), n0

38−68 = 1
(type 2), n0

27−80 = 1 (type 3), n0
56−81 = 1 (type 2), n0

45−50 = 2 (type 2), n0
10−78 = 1 (type 1),

n0
30−72 = 2 (type 2), n0

55−57 = 1 (type 1), n0
31−34 = 1 (type 3), n0

31−60 = 2 (type 3), n0
4−36 = 2

(type 2), n0
27−64 = 1 (type 3), n0

34−70 = 2 (type 3), n0
8−9 = 1 (type 3), n0

79−87 = 1 (type 1),
n0

62−73 = 1 (type 2), n0
40−41 = 1 (type 1), and n0

54−56 = 3 (type 3) and two storage systems
are in placement in buses 45 and 60 with fixed and variable installation costs of USD 72.0
and USD 29.16 million, respectively. This solution was found after solving 494,631 LPs with
a computational time of 11.70 h.

The scheme of case V is shown in Figure 11. The generators at nodes 25, 29, 67, and 81
are wind farms. According to the optimization results, ESSs have been deployed at nodes
45 and 60.
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Figure 11. The case V scheme in Colombian system.
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Comparing the results of cases I and V obtained for the Colombian system, in case V it
is only necessary to add 31 lines to satisfy the demand. Therefore, it presents an investment
cost 10.27% cheaper than case I.

The representative daily curves of wind variation and load demand on the weekend
in different seasons are depicted in Figure 6. The power output of different units in cases
I and V are contrasted in Figure 12 on a typical winter weekend day. It is obvious that
the output of wind energy increases due to charging of ESSs during wind blowing times
at light load, and if a line on branches 62–73 is disconnected, the output of hydro units
decreases due to the discharging of the ESS during wind weakling time.
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Figure 12. Power output of units in Colombian system.

Table 6 shows the comparison of annual costs for the three test systems. It can be seen
that the annual cost gradually tends to decrease when adding storage and SCC devices
simultaneously. In some cases, the construction of new lines decreases. When comparing
case I and case V for the Colombian system, the number of built lines decreases from 65 to 31.

Table 6. Annual cost results for the three test systems.

Description

Cases

Garver IEEE-24 Colombian

II VI II VI I V

Number of new lines 7 6 13 13 65 31
Number of added ESS - 1 - 2 - 2
Annual line and lines
with SCC devices M USD 20.15 17.60 51.46 49.18 125.77 102.19

Annual ESS cost M USD - 0.79 - 2.25 - 13.29

Total annual investment, M USD 20.15 18.39 51.44 51.43 125.77 115.48

Table 7 shows a comparison of the time and cost of installation in new transmission
lines for the traditional TEP problem without contingency. The TEP problem can be con-
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verted into a mixed-integer linear programming (MILP) problem and can be efficiently
solved using a commercial solver. However, according to Table 7, the TEP problem for-
mulated as an MINLP problem and solved using the CBGA is more efficient than the TEP
problem formulated as an MILP problem.

Table 7. Comparison of cost and time to solve traditional TEP problem without contingency.

System
Using CBGA

This Paper
Using Commercial [42]
Solvers (Cplex-GAMS)

Cost (M USD) Time (min) Cost (M USD) Time (min)

Garver 110.0 0.016 110.0 0.001
IEEE-24 152.0 0.020 190.0 0.073
Colombian 560.42 1.55 996.63 30.56

On the other hand, to perform a sensitivity analysis, Table 8 shows different solutions
for the IEEE 24-bus system for case VI under different discount rates and lifespans of the
technologies. Thus, the proportional increase in total annual cost is observed; that is, if the
lifespan of the technologies increases, the discount rate will also increase.

Table 8. Solutions for IEEE 24-bus system under different x and y in case VI.

Discount Rate (%)
Lifespan (Years)

Annual Cost
Lines with SCC Storage

10 30 15 51.43
15 30 15 73.53
20 40 20 96.28
25 40 20 120.23

According to the results presented in this work, it is suggested that, in practice,
batteries be used as energy storage systems with investment costs closer to reality. Likewise,
batteries currently present problems related to high maintenance requirements and high
investment costs. However, it is expected that future technological advances will allow
batteries to be integrated more frequently into transmission networks.

6. Conclusions

This work presents a methodology for TEP that integrates the optimal positioning of
transmission lines, storage facilities, and SCC devices in power systems with a portion of
wind power. Several scenarios are employed to depict the long-term uncertainty, and the
daily charging and discharging cycles of storage systems and their interactions with wind
farms are shown under intraday time constraints. The mathematical model of expansion
planning is solved using a specialized genetic algorithm that considers both storage and
serial compensation.

In addition, transmission expansion planning considering losses and contingencies is a
more complex problem because when withdrawing a line in the configuration proposed by
the CBGA, the load shedding for each type of operation must be evaluated. Therefore, it
presents not only a higher investment cost but also a high computational time. However, it
should be noted that expansion planning with losses and contingencies constitutes a more
accurate, robust, and real representation of the network functioning, resulting in different
expansion plans than those obtained when losses and contingencies are neglected. Although
the investment cost of planning with power losses and contingencies is higher, the results
show that the installation of SCC and storage in all cases allows for delaying the building of
some lines and consequently reduce the investment cost by saving of 15.78%, 7.84%, and
25.88% for the newly built transmission lines to the Garver system, the IEEE-24 system,
and the Colombian system, respectively. This is an important aspect since the building of
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new lines takes a long time. Furthermore, considering the energy scenarios of winter and
summer in light, heavy, and medium loads, the injection of the charging and discharging
power of the storage could be observed when the TEP problem considers SCC devices,
power losses, and contingencies.
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Nomenclature

Indices are as follows:
ℓ Piecewise linear functions
b Nodes
i Thermal generators
ij Transmission lines from i to j
l, e Obtained annual equivalent cost of lines and storage systems
p, k Contingencies
q Storage systems
s Scenarios
t Time periods
w Wind farms

Sets of

ΩLC Candidate lines
ΩSCC All lines with SCC devices
ΩS Scenarios
Ωq Storage systems
Ωq

b Storage systems placed at node b
ΩG

b Thermal plants placed at node b
ΩW

b Wind farms placed at node b
Ωr Artificial generators
Ωl Candidate and initial network circuits

Constants

Cij Cost of transmission lines i − j (USD)
CStorage

q Fixed cost of storage system q
ξp Charge and discharge variable cost incurred only at the time of ESS (USD/MW)
ξq Investment cost of unit energy capacity
gij Conductance of line i − j
µ Cycle efficiency of the ESSs
α Penalty parameter linked to load shedding(USD/MW)
γij Transmission lines susceptance i − j (p.u.)
n0

ij Number of existing transmission lines
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nmax
ij Maximum capacity of lines in branch i − j

PGen,max
i Power output capacity of thermal plant i

P f
w,s,t Predicted power output of wind plant w during time t of scenario s

Pdis,max
q Upper and lower power for discharging of

Pdis,min
q storage system q

Pch,max
q Upper and lower power for charging of

Pch,min
q storage system q

f max
ij Capacity of line i − j

Smax
q Upper and lower bounds of the energy level

Smin
q of system q

db,s,t Demand at node b during time t of scenario s
T Count of time intervals
L Count of blocks in the piecewise linear approximation of power losses
θmax

ij,s,t Maximum angle difference across a line i − j equal to π/4 during time t of scenario s
Ymax Maximum number of ESSs in the entire electrical system
ηch

q , ηdis
q Charge and discharge efficiency of storage system q

kdr Diversification rate (%)
kmr Mutation rate (%)
kps Maximum number of individuals (population size)
ksr Selection rate, defined as the size of the tournament utilized in the selection process
kmax Maximum capacity of iterations

Variables

S Transposed incidence matrix representing branches/nodes within the power system
PGen

i,s,t Power flow output of thermal plant i during time t of scenario s
PWind

w,s,t Power flow output of wind farms w during time t of scenario s
S0

q Starting energy level of storage system q
Sq,s,t Storage system q power output during time t of scenario s
Pch

q,s,t Charging power flow of storage system q during time of scenario s
Pdis

q,s,t Discharging power flow of storage system q during time of scenario s
f p
ij,s,t, Power flow with and without contingency p of

fij,s,t line i − j during time t of scenario s
nij Number of circuits added in the branch i − j
rk

i,s,t Artificial generator in node i with contingency k during time t of scenario s (MW)
rs,t Artificial generators vector with elements rk

i,s,t corresponding to the artificial
generation during time t of scenario s (MW)

θ+ij,s,t, Non-negative slack variables used to replace θij

θ−ij,s,t during time t of scenario s
∆θij,s,t,ℓ Voltage angle variable associated with the ℓth number of piecewise linear functions

during time t of scenario s
mij,s,t,ℓ Slope of the ℓth piecewise linear block during time t of scenario s
k′ Counter of iterations
Yi,q Binary decision variable for storage system q at node i
θ

p
i,s,t, Phase angle in node i during time t of scenario s with

θi,s,t and without contingency p
βij Percentage (between 0 and 1) of the cost of installing SCC devices in branch i − j
λij Percentage (between 0 and 1) of the reactive compensation in branch i − j
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