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Abstract: In this study, the decomposition of five different raw materials (maize, wheat and piney
biomass, industrial wood chips and sunflower husk) were investigated using the TG-FTIR method
to obtain raw data for model-based calculations. The data obtained from the thermogravimetric
analysis served as a basis for kinetic analysis with three different isoconversional, model-free meth-
ods, which were the KAS, FWO and Friedman methods. Afterwards, the activation energy and the
pre-exponential factor were determined, and no significant difference could be identified among the
used methods (difference was under 5%), achieving 203–270 kJ/mol of Ea on average. Thereafter, the
thermodynamic parameters were studied. Based on the TG-FTIR data, a logistic regression model
was fitted to the data, which gives information about the thermal degradation and the obtained com-
ponents with different heating rates. The FTIR analysis resulted in differential peaks corresponding to
the studied components that were detected within the temperature range of 350–380 ◦C. The primary
degradation processes occurred within a broader temperature range of 200–600 ◦C. Accordingly, in
this work, the use of logistic mixture models as an alternative to traditional kinetic models for the
description of the TGA process was also investigated, reaching adequate performance in fitting by a
validation data coefficient of determination of R2 = 0.9988.

Keywords: TG-FTIR; kinetics; logistic regression model; activation energy; biomass

1. Introduction

Nowadays, biomass as a renewable energy source is widely investigated, owing to its
wide availability, diversity, low price, low emissions and low heterogenic content. Moreover,
its utilization in thermochemical conversion processes aiming at liquid or gaseous products
is broadly studied [1,2]. During pyrolysis or gasification, the proper parameters and
understanding of the mechanisms that occur are really important for process optimization
and for the appropriate product distribution and quality [1,3]. Thermogravimetric analysis
is an adequate method for evaluating the thermal behavior and decomposition of the used
materials. Moreover, when connected with FTIR spectroscopy, it gives information about
the resulting components, identifying the compounds by their characteristic functional
groups. Nevertheless, based on the absorbance, the concentration can be determined by
calibration [1,4].

The utilization of differential isoconversional methods is applicable for estimating
kinetic parameters from experimental TGA data. However, as noted by several authors,
these methods may yield unreliable results in the presence of noise. Identifying the kinetic
parameters for overlapping TGA steps remains complex and typically requires non-linear
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optimization techniques. Consequently, alternative approaches such as machine learning
techniques and fitting non-linear process models have been suggested to describe thermal
degradation [5]. Additionally, the identification of the kinetic parameters for additively
overlapping TGA steps is a complex problem and, to the authors’ current knowledge, is
possible only through non-linear optimization techniques [6]. Therefore, alternatives have
been proposed to describe the thermal degradation of materials by using machine learning
techniques and the fitting of non-linear process models. For example, the use of KNN
regression and artificial neural networks has garnered increased attention for the estimation
of product composition in TGA experiments [7,8].

On the other hand, to model the temporal evolution of the thermal degradation
process, the use of logistic regression-based methods has become commonplace as they can
circumvent the use of numerical derivatives for kinetic parameter estimation and generally
fit the TGA data to a great extent due to their asymptoticity. Varying approaches have
been applied to the use of logistic regression models in TGA, with some being used to
estimate the kinetic parameters of Arrhenius kinetic models describing the degradation,
while others are used to directly estimate mass changes in the investigated material as
a function of time or temperature [5]. In the latter case, logistic mixture models have
been proposed to estimate thermal degradation as a time series process when multiple
overlapping degradation steps may be present [6,9].

X. Huang et al. investigated sodium lignosulfonate, calcium lignosulfonate and
de-alkalized lignin using the TG/DTG–FTIR/MS method [10]. They found that the compo-
sition and distribution of the products were diverse due to the distinct organic matters in
the materials; moreover, phenol was the main product owing to the high lignin content.
Nevertheless, high correlation coefficients were found in the case of the KAS and FWO
methods. J. Du et al. studied the co-pyrolysis of camphor wood blended with glycerol, with
the investigation of the kinetic parameters under non-isothermal conditions with different
heating rates (10–25 ◦C/min) by TGA-DSC [11]. They noted that the presence of glycerol
results in two individual peaks in the TG curve, and also that the decrement of the residue
can be achieved. Moreover, the calculated and experimental data showed similarity with
the Coats–Redfern method.

In the literature, many results can be found regarding biomass degradation studied
with TG-FTIR [12–14]. El-Sayed investigated the pyrolysis of municipal solid waste us-
ing the TG-FTIR method. Based on the results, the diverse thermal degradation stages
correspond to different MSW components, with cellulose decomposing at temperatures
ranging from 300 to 380 ◦C, hemicellulose at 180–300 ◦C and lignin at 250–550 ◦C. The
study quantifies the mass loss of different MSW components during the process, with
the following percentages: 16.6%, 23.8% and 28.9% (cellulose, hemicellulose and lignin,
respectively). Overall, TG-FTIR is identified as a comprehensive approach for studying
MSW pyrolysis and its complex thermal behavior [12].

Mallick studied the co-pyrolysis of sawdust, rice husk and bamboo dust, where the
main result is that the solid residue can be efficiently reduced; however, the thermal stability
was low due to the high cellulose content. Also, increments in the heating rate help to shift
the thermal profiles to higher temperatures, while the amount of volatile matter delays the
peaks in the DTG curves [14].

The articles are focused on utilizing biomass for energy generation, demanding a thor-
ough knowledge of thermochemical conversion processes. While conventional techniques
like thermogravimetric analysis coupled with Fourier Transform Infrared Spectroscopy
provide valuable insights, precise parameter estimation remains a challenge. Therefore,
alternative methodologies such as logistic regression models are gaining a key role, owing
to their potential to overcome inherent limitations. These models offer a pathway to robust
predictions, particularly in scenarios with overlapping degradation steps or noisy data. By
embracing these advanced modeling techniques, the research aims to enhance understand-
ing and optimize biomass utilization strategies for sustainable energy production. This
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article emphasizes the importance of comparative analyses and innovative approaches in
the field.

The comparison of different types of biomasses is quite significant, especially the
thermal behavior, kinetic and thermodynamic parameters. The mentioned data can provide
information about the process parameters and the type of reactor and can also be helpful in
the case of the raw material selection. The present study compares the thermal behavior of
different materials, namely, maize, wheat and piney biomass, industrial wood chips and
sunflower husk. During the measurements, three different heating rates were used (5, 20
and 50 ◦C/min). Based on the results, the kinetic (activation energy, pre-exponential factor)
and thermodynamic (enthalpy, Gibbs free energy, entropy) parameters were calculated,
with three different isoconversional, model-free methods. Moreover, the obtained gaseous
product was analyzed by the FTIR method as a function of time and temperature. After-
wards, a logistic regression model was fitted onto the gained data, providing an alternative
to traditional kinetic models for the description of the TGA process. The logistic regression
modeling was conducted in MATLAB2020 and the fitting was carried out with the use of
the Broyden–Fletcher–Goldfarb–Shanno algorithm.

2. Materials and Methods
2.1. Raw Materials

During the thermogravimetric analysis, the following different types of biomasses
were used as raw materials: wheat, maize and piney biomass, industrial wood chips and
sunflower husk. At each measurement, a 10–35 mg sample was weighed into the sample
cup of the TG-FTIR instrument. Before the experiments, the raw materials were pre-treated.
Representative amounts (100 g) of them had been dried for 1 month at room temperature;
then, they were meshed into fine powder.

It is important to determine the physical characteristics of the raw materials, such as
volatility, moisture/water content (external and internal), ash and fixed carbon, as well
as the elemental composition. Moreover, the lignocellulose content of each biomass was
investigated [15]. The main properties of the used raw materials (mean of three parallel
measurements) are summarized in Table 1.

As can be seen, the piney biomass contained the highest moisture content, which
decreases the heating value and has a negative effect on the rate of combustion. However,
the lowest value appears in the case of the industrial wood chips, while on average the
moisture content is between 6 and 8.5%. The other properties, such as ash and volatile
content, have a significant effect during the thermal conversion of the biomass. The
industrial wood chips and the wheat contained the most volatile components, which
influences the amount of char and the ignition; thus, these components determine the
amount of the generated gaseous product. Moreover, the ash content indicates the non-
combustible mineral content, such as oxides from alumina or silica and alkaline earth
metals. Regarding the elemental composition, all of the materials had a low H/C ratio and
a high amount of carbon and oxygen, while the sulphur content was negligible. Concerning
the lignocellulose content, the extractive content gives information about the non-structural
components such as fats or lipids. In most cases, the hemicellulose content was the
highest of the materials (29.7–48.2%), except in the case of the sunflower husk, where
the lignin content was notable. The highest cellulose content was observed in the case of
the piney biomass (36.6%), while in the case of the other materials it was 22.2–32.3% [15].
Furthermore, the elemental composition of the residues was investigated. As can be seen,
the main component is the carbon; however, in small composition metals, alkali metals and
halogens can be found in the residue.
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Table 1. The main properties of the used raw materials.

Sunflower
Husk

Industrial
Wood Chips Wheat Maize Piney

Biomass

Fixed carbon *, % 5.2 2.1 4.2 1.7 3.0
Volatile matter, % 64.9 77.7 75.5 66.9 51.8
Moisture content, % 8.4 4.7 6.2 7.1 10.7
Ash, % 21.5 15.5 14.1 24.3 34.5

C, % 52.3 48.8 46.9 48.5 45.1
H, % 5.9 5.9 6.1 6.3 5.6
N, % 1.2 0.2 0.5 0.5 2.0
S, % <1 <1 <1 <1 <1
O *, % 40.7 45.1 46.6 44.7 47.3
H/C ratio 0.1 0.1 0.1 0.1 0.1
Extractive content, % 9.4 9.1 10.1 9.3 9.5
Lignin content, % 41.7 21.7 17.7 24.5 24.1
Hemicellulose content, % 24.0 36.9 48.2 44.0 29.7
Cellulose content *, % 22.2 32.3 24.0 22.2 36.6

Residual composition, %
C 91.9 90.8 78.9 94.0 87.1
Al 2.0 2.9 2.4 0.9 2.7
Si 1.6 2.7 9.3 3.2 4.3
K 2.4 0.7 6.5 0.6 0.6
Ca 0.8 1.1 1.3 0.4 3.8
Fe 0.4 1.1 0.5 0.4 0.7
Cl 0.2 0.2 0.6 - 0.1
Mg 0.5 0.1 0.2 0.3 0.5
Ti - 0.2 - 0.1 0.1
P 0.1 - 0.1 0.1 0.1
S 0.1 0.2 0.2 - -

* On basis of weight difference.

2.2. Product Analysis

The thermogravimetric analysis of the raw material was carried out by a Netzsch
(Germany) TG 209 F1 Libra thermogravimetric analyzer. During the measurement, a
nitrogen atmosphere was used, with a 5, 20 and 50 ◦C/min heating rate until 800 ◦C was
reached. The resulting gases were analyzed by a Bruker-type FTIR connected to the TGA.

The C, H, N and S contents of the samples were monitored using a Carlo-Erba EA
1108 CHNS-O elemental analyzer (Erba Science GES M.B.H. (United Arab Emirates)).
Measurements were carried out in tin capsules using a quartz combustion reactor operating
at 1020 ◦C, a 10 mL oxygen loop, helium as a carrier gas and a sulfanilamide standard for
calibration. The resulting gases were separated on a stainless steel gas chromatography
column (2.5 m) and quantified using a thermal conductivity detector (TCD) (measurement
time: 15 min, range: 100 ppm–100%).

The composition of the residue was investigated with an energy dispersive X-ray fluo-
rescence spectrometer (Shimadzu (Japan) EDX-8100) equipped with a high-performance
SDD detector, optimized hardware that resulted in a high level of sensitivity. The equip-
ment has a ruthenium X-ray tube, with a helium atmosphere. Each measurement took
place for 300 sec and with 15 kV voltage.

2.3. Kinetic and Thermodynamic Studies

The determination of the kinetic parameters provides significant information for the
parameters used during scale-up, as well as for the selection of appropriate catalysts, calcu-
lating the energy requirement and a better understanding of the reaction process. Moreover,
the activation energy (Ea), the pre-exponential factor (A), and the kinetic and thermo-
dynamic characteristics, such as the heat of the reaction, Gibbs free energy and entropy,
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provide information on many properties during the thermal degradation of individual
substances [16,17].

The kinetic parameters of the decomposition reactions were calculated with three
different model-free, isoconversional methods as follows: the KAS (Kissinger–Akahira–
Sunose), FWO (Flynn–Ozawa–Wall) and Friedman methods. The mentioned methods are
also suitable for estimating the activation energy without evaluating the reaction model.
Their advantage is simplicity and the avoidance of errors related to the selection of specific
reaction models. The thermal degradation of biomass is a complex process that can be
explained by its varied composition and the fact that many simultaneous reactions take
place within a sub-unit in thermal degradation. Therefore, the precise definition of the

mechanism of the reactions is difficult; it can generally be described as follows: Biomass
k (t)⇒

volatile components (gas + particles) + residue.
The above-mentioned model-free methods can be originated from the Arrhenius

equation, if it is assumed that the conversion of the raw material into a product is a one-step
process, where the conversion is considered in t reaction time. Moreover, the heating rate is
included and is essential in the case of the kinetic calculations. The main steps for the final
form of the equations can be found in many prior studies [18–22]. In the case of the KAS
method, the results are ln

(
β

T2

)
vs. 1

T vs. 1/T plotted as a function of 1/T, while those of

the FWO are ln(β) vs. 1
T vs. 1/T and, with the Friedman method, ln

(
dx
dt

)
vs. 1

T vs. 1/T
gives the results. The activation energy can be calculated from the slope of the lines, while
the pre-exponential factor can be calculated from the intersection point [23,24].

With the determination of the activation energy and the pre-exponential factor, the
thermodynamic parameters can be calculated. The thermodynamic parameters include
enthalpy (dH), Gibbs free energy (dG) and entropy (dS), where the values contain a lot
of information about the nature of the reactions during the processes. The mentioned
parameters can be determined separately for each model-free kinetic method for different
conversion values [22,25]. Presuming that the enthalpy values are positive, it is concluded
to be an endothermic reaction; moreover, the smaller the difference between the activation
energy and the enthalpy value, the easier the formation of the product(s) during the process
is assumed to be. The Gibbs free energy provides information on the required amount
of energy for the generation of the activated complex, while the entropy, in the case of a
positive value, indicates that the activated complex in the system is in a disordered state,
differing from thermodynamic equilibrium. However, if the derivative of the entropy is
also positive, the resulting final products are in a more disordered state than the starting
materials in the system [19,26].

2.4. Logistic Regression Model Fitting

In this work, the application of logistic mixture models as an alternative to traditional
kinetic models for the description of the TGA process was also investigated. Let the function
that describes the weight percentage compared to the initial weight of a given sample at a
specified point in time be denoted as m(t). The function m(t) is approximated by using the
formula shown in Equation (1) [6].

m(t) =
c

∑
i=1

wi fi(t) (1)

where c refers to the number of components in the logistic mixture model, wi is the weight
of each logistic function in the mixture and fi is the standard logistic or sigmoid function,
as shown in Equation (2).

f (t) =
1

1 + e−α(t)
(2)



Energies 2024, 17, 1875 6 of 15

The function α(t) is a general polynomial function of time, as displayed in Equation (3)
with a polynomial order of n and corresponding fitting parameters p.

α(t) =
n

∑
j=0

pjtj (3)

For each fitting instance, the model has c(n + 2) degrees of freedom stemming from
the weighting factors and parameters of the chosen polynomial function of the order n.
The fitting was conducted using MATLAB R2020a and the parameters were optimized
by minimizing the sum of the squared errors between the measured and predicted TGA
profiles by using the Broyden–Fletcher–Goldfarb–Shanno algorithm.

To estimate the composition changes during the TG analysis, an autoregressive model
with exogenous inputs (ARX) was proposed in the form of Equation (4).

y(t) =
=
Ay(t − n) +

=
Bu(t − p) (4)

The ARX model utilizes previous instances of the observed output variables (y) and
the exogenous input variables (u) to predict future values of the output [17]. The linear

model utilizes the parameter matrices
=
A and

=
B to describe the relationships between past

inputs and outputs and future outputs. The matrices are determined using parameter
fitting through the ordinary least squares technique. The variables n and p denote the order
of the linear model in regard to the number of past inputs and outputs utilized for the
prediction. In this case, the absorbance values corresponding to the various components
obtained from the TG-FTIR of the maize data set were output values to be predicted for the
model, while the input variable was the known change within the observed material.

3. Results
3.1. TG Analysis

Thermogravimetric analysis provides significant information about biomass thermal
behavior. The DTG curves give information about the decomposition steps; multiple peaks
suggest several decomposition steps. Based on the literature, moisture content removal
takes place under 200 ◦C, while devolatilization takes place under 600 ◦C and cracking
or decomposition take place at higher temperatures of over 600 ◦C [25]. The TG and
DTG curves of the used materials with a 5, 20 and 50 ◦C/min heating rate are depicted
in Figure 1.
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Figure 1. The TG and DTG curves of (a) sunflower husk, (b) industrial wood chips, (c) wheat biomass,
(d) maize biomass, (e) piney biomass with different heating rates.
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Focusing on the curves, it can be concluded that multiple steps appeared only in the
case of the maize and piney biomass. Regarding the effect of the heating rate, a lower
heating rate provides a higher decomposition rate and more ash. Moreover, the peak
maximums were increased by almost 20 ◦C in each case with the increment in the heating
rate. However, the lowest residual values were obtained with the 5 ◦C/min heating rate,
which can be explained by the longer residence time, resulting in better heat conductivity;
thus, the thermal degradation was more effective. The moisture content of the materials
was eliminated in the following temperature ranges: 45–179 ◦C, 45–167 ◦C, 45–190 ◦C,
45–185 ◦C and 45–192 ◦C (in the same order as appears in the case of Figure 1). According
to the results, the piney biomass contained the highest physisorbed moisture content.
The decomposition of the volatilities took place in the ranges 167–566 ◦C, 167–528 ◦C,
190–553 ◦C, 185–538 ◦C and 192–615 ◦C, respectively, which gave the highest decomposition
rate due to the high cellulose and hemicellulose content of the used materials. Above 600 ◦C,
in the decomposition zone with char formation, a slight mass loss can be observed with
different heating rates. The main parts of the lignocellulosic biomass decompose at different
temperatures in the following order: hemicellulose (220–315 ◦C), cellulose (300–400 ◦C)
and lignin (150–900 ◦C) [27]. Based on the mentioned phenomenon, in the case of the maize
(Figure 1d) and piney (Figure 1e) biomass, the first peak indicates the hemicellulose, while
the second indicates the cellulose content in the devolatilization zone. In the case of the
piney biomass (Figure 1e), between 600 and 800 ◦C, a small peak appears, indicating the
cracking or decomposition of the carbonaceous matter, which can be originated from the
lignin content.

3.2. FTIR Analysis

The gases obtained during the TG analysis can be seen in Figure 2, as a function of
temperature. The studied components are the carbon dioxide, carbon monoxide, H2O,
methane, aldehydes and ketones, alcohols and esters. The mentioned compounds can
be identified as C=O (2400–2250 cm−1), C-O (2250–2000 cm−1), O-H (4000–3400 cm−1),
C-H (3000–2842 cm−1), C=O (1800–1684 cm−1) and C-O-H (1131–1058 cm−1) functional
groups [28]. Observing the FTIR spectra, it was noted that the individual peak temperatures
appeared around 350–380 ◦C; moreover, the main degradation occurred between 200 and
600 ◦C, resulting in a great number of organic volatiles in the devolatilization/pyrolysis
zone. Based on the results, it can be concluded that the carbon dioxide had the high-
est absorbance. The mentioned phenomenon can be explained by the breaking of the
C-O and C-H chemical bonds, as well as the decarboxylation and decarbonylation of the
hemicellulose units.
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esters in the case of different biomasses with 50 ◦C/min heating rate.
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Regarding the CO2, the peak intensity roughly follows the hemicellulose content of
the raw materials as follows: sunflower husk ~ wheat > maize > industrial wood chips >
piney biomass. It should be mentioned that carbon dioxide was also generated at higher
temperatures with the piney biomass and sunflower husk. Concerning the CO, at lower
temperatures, especially in the case of the piney biomass, it can be originated from the ether
and carbonyl groups (phenylpropane units with weak internal linkages), while at higher
temperatures it can be originated from the carboxyl and C-O groups of lignin together with
char decomposition [29]. The appearing H2O peaks between 45 and 192 ◦C represent the
moisture content, while at over 205 ◦C they can be generated from the decomposition of the
glycosidic hydroxyl groups of the hemicellulose and cellulose units. During the thermal
degradation, methane mainly originated from the side chain and aromatic ring fracture
of the lignin, as well as from the secondary reactions, which was remarkably abundant
in the case of the piney biomass above 379 ◦C [30]. The aldehydes, ketones and acids can
be originated from the cellulose and hemicellulose units, released mainly from the latter.
Based on data in the literature, after the intramolecular dehydration of hemicellulose units,
enol-keto tautomerization can occur from the glycosidic linkages between the monomer
units, resulting in intermediates that can form acids, ketones and aldehydes during arom-
atization, decarboxylation reactions and intramolecular condensation [30,31]. Alcohols
and esters are mainly produced from cellulose degradation, where the bonds between
the β-1,4-glycosidic bonds broke, resulting in cellulose with a decreased polymerization
degree and different monomers. The generated monomers after the rearrangement mostly
form levoglucosan, alcohols and esters, which all appear at the same wavelength range
(1131–1058 cm−1) [30,31].

3.3. Kinetics and Thermodynamics

Firstly, the kinetic plots were obtained in the case of the different raw materials
(Figure 3), where the data with 5, 20 and 50 ◦C/min heating rates from the thermogravimet-
ric analysis were used. In Figure 3, the data obtained from the maize biomass are depicted;
with different raw materials, the figures showed similar tendencies. Afterwards, the acti-
vation energy (Table 2) and the pre-exponential factor were calculated, with conversion
values of between 0.1 and 0.9. The activation energy occurred from the slopes, while that of
the pre-exponential factor was calculated from the increment in the slope with the different
model-free methods that were mentioned earlier. Regarding the correlation coefficients,
it can be noted that all the values were above 0.95, except the 0.1 (maize biomass and
industrial wood chips) and 0.9 (wheat, maize and piney biomass) conversion values.
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Figure 3. Fitting of parameters with different model-free methods (a) KAS, (b) FWO, (c) Friedman, in
the case of maize biomass.

Based on the results, the reliability and comparability of the used methods is appropri-
ate, owing to the negligible difference between the methods (in the case of the activation
energy, its value is lower than 5%). Concerning the activation energy, it can be noted that it
has a decreasing value with each method, with the exception of those conversion values
where the correlation was under 0.9. Focusing on the average of the activation energy,
the relation is the following: piney < wheat < sunflower husk < maize < industrial wood
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chips. Nevertheless, lower activation energy can occur due to free radicals, which can be
generated from, e.g., aromatic groups of lignin. The range of the pre-exponential factor at
different conversion values is relatively wide (109–1030 s−1), which can be explained by the
thermal degradation of the biomass, which indicates several complex chemical reactions.

Table 2. Activation energy in kJ/mol with different model-free methods.

Conversion
(α)

Maize Sunflower Husk Industrial Wood Chips Wheat Piney Biomass

KAS FWO Friedman KAS FWO Friedman KAS FWO Friedman KAS FWO Friedman KAS FWO Friedman

0.1 349.4 158.9 98.2 115.9 101.8 199.6 264.7 242.9 266 98.8 82.1 96.8 34.9 26.7 39.5
0.2 269.1 144.1 141.4 287.6 282.3 286.2 288.6 283.3 288.1 245.7 223 244.8 72.1 67.5 73.4
0.3 237.8 174.6 173.6 242.7 237.9 242 210.8 209.6 210.5 321.1 314.7 321.1 70.8 68.5 70.6
0.4 184.7 221.6 223.1 184.5 184.6 184.1 233.5 231.4 233.5 234.3 232 234 68.4 66.6 68.3
0.5 442.7 429.6 441.9 196.4 195.9 196.1 233.5 228.8 230.7 222.3 220.4 221.9 61.8 61 61.8
0.6 223.9 184.9 192.2 193.9 193.7 193.8 211.3 210.7 211.5 213.8 212.2 213.3 89.6 89.6 89.4
0.7 174.6 235.5 237.8 201.8 201.5 202 189.7 190.4 190.2 190.1 189.5 189.3 87.4 87.8 87.7
0.8 142.8 265.5 268.7 286.7 264.5 285.8 172.9 174.5 173.5 144.5 145.8 143.3 125.3 121.3 125.5
0.9 157.2 321.1 347.9 183.5 162.1 181.1 624.1 603.8 624.9 188.3 186.6 185.8 218.6 194.9 215.8

Phuakpunk investigated corn cob pyrolysis with the TGA method, calculating the
kinetic parameters with the FWO and Friedman methods. It was found that the activation
energy was 110–250 kJ/mol, reaching the highest value at a 0.5–0.7 conversion value,
which are the same values as in the case of the maize biomass that was investigated in
this article [32]. With different heating rates of 10 ◦C, 20 ◦C and 30 ◦C, P. Thenmozhi
investigated the pyrolysis of corn cob, where the activation energy changed between 95.7
and 169.0 kJ/mol, reaching the highest values at a 0.5 conversion value [33]. Regarding
degradation, in both articles it occurred in two or three different steps.

Rathore investigated the kinetic analysis and thermal degradation of wheat straw
with KAS, FWO and Starink methods, utilizing 900 ◦C end temperature with 20 ◦C/min,
30 ◦C/min and 40 ◦C/min heating rates. It was noted that the main degradation step was
occurred between 180 and 430 ◦C. Regarding the Ea, the main values were 125–193 kJ/mol
obtained from FWO, KAS and Starink models in the conversion range of 0.1–0.8 [34].

The thermodynamic parameters (Table 3) such as enthalpy, Gibbs free energy and
entropy were determined from the activation energy and the pre-exponential factors.
Regarding the enthalpy, it can be noted that the average difference was relatively low, which
can be explained by the easy product formation. The Gibbs free energy gives information
about the formation of active complex, whose value was commonly in a narrow range
except at the 0.1 and 0.9 conversion values, where the correlation was not adequate.

Table 3. Thermodynamic parameters with different model-free methods (KAS, FWO, Friedman), in
the case of maize biomass.

KAS FWO Friedman

Conversion
(α)

dH,
kJ/mol

dG,
kJ/mol

dS,
J/molK

dH,
kJ/mol

dG,
kJ/mol

dS,
J/molK

dH,
kJ/mol

dG,
kJ/mol

dS,
J/molK

0.1 183.2 155.2 45.5 181.5 80.1 164.8 180.6 131.0 80.6
0.2 139.4 186.2 −76.2 140.7 113.0 45.0 138.2 158.7 −33.4
0.3 185.0 187.5 −4.1 184.4 112.0 117.5 184.2 208.5 −39.5
0.4 208.7 190.0 30.3 207.0 113.3 152.3 208.1 158.4 80.9
0.5 217.2 194.8 36.3 215.3 117.7 158.7 216.8 162.1 88.9
0.6 229.1 199.9 47.5 226.9 122.2 170.2 228.9 166.2 101.9
0.7 316.0 206.4 178.1 309.6 124.4 301.1 316.0 171.9 234.1
0.8 240.6 118.5 198.6 217.9 172.5 73.8 239.7 153.6 140.0
0.9 93.7 119.5 −42.0 77.0 180.7 −168.7 91.7 155.1 −103.1

Concerning the entropy, negative values can be found at different conversion values,
which leads to a molecular structure that is more organized compared with the original
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ones [29]. Regarding the thermodynamic parameters, with different model-free methods,
the enthalpy values have a maximum of 10% difference in the case of the different raw
materials at 0.1–0.9 conversion values. However, the calculation of Gibbs free energy
requires not only the activation energy, but the pre-exponential factor and also the Planck
and the Boltzmann constant. Moreover, the value of the pre-exponential factor is relatively
wide, which results in different Gibbs free energies. The entropy can be evaluated with
the enthalpy and Gibbs free energy, giving quite different entropy values in the case of the
diverse model-free methods.

The kinetic and thermodynamic data of the different raw materials with a wide range
(0.1–0.9) of conversion values give information on the thermochemical conversion processes
during the degradation; they also provide data for the scale-up processes.

3.4. Modeling of TG Process and Temporal Evolution of Gas Composition

As mentioned previously, the logistic mixture and ARX models will be presented for
the prediction of TG-FTIR profiles as well as the gas composition, as shown in Section 2.4.
The results will be showcased using the data set of the maize TGA but can be generalized
for all the investigated materials. The experimental and predicted TGA profiles using the
logistic mixture model detailed in Section 2.4 and can be seen in Figure 4a with c = 2 and
n = 1. The fit managed to achieve a corrected R2 score of over 0.99. The two component
logistic functions used to create the mixture model are displayed as well. It can be seen
that the model accurately captures the TGA tendencies and the two components may be
indicative of overlapping processes during the degradation.
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(b) at the three investigated heating profiles).

The fit accuracy as a function of the component number and polynomial order was
investigated to establish the optimal model structure. The average R2 scores of the three
registered TGA curves were compared to make a choice. The average R2 scores of the
fit to the maize data set were used under a different mixture model component number
and polynomial order. When the polynomial order = 1, 2, 3, the number of the mixture
model component can be changed similarly between 1 and 3, where the average of R2

scores is increased by the higher polynomial order, reaching 0.9997–0.9998, while in the
case of the lower values the fitting is more imprecise (0.9339–0.9873). As the results showed,
the mixture model with a component number of 2 and a polyonimal order of 1 produced
fit scores of over 0.99 on average; further increments in either the polynomial order or
component number did not result in significant increments in the fitting accuracy. Therefore,
for the maize data set, the parameters c = 2 and n = 1 were chosen for all the heating profiles,
resulting in a simple but accurate model structure of the process.

The fitting results for the three investigated heating rate cases are shown in Figure 4b.
In order to predict the impact of the heating profile on the TGA results, a second-order
polynomial equation has been fitted to the optimized parameters. This way, a link between
the heating speed and the parameters of the logistic mixture model was obtained and can
be used to predict the heating profiles of the intermittent heating rates. The optimized
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parameters of the logistic mixture model as a function of the heating rate are displayed in
Figure 5, with the addition of the fitted polynomial function.
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The parameters of the polynomial equations to estimate the components of the logistic
mixture model are provided in Table 4. For each parameter (p0, p1, w1 and w2), there
are a constant, a linear and a quadratic value for the calculations. In the case of all the
components, wi is the weight of each logistic function in the mixture, while pi is the
corresponding fitting parameter.

Table 4. Polynomial equation parameters for estimation of the logistic mixture model components.

Parameters of the Logistic Mixture
Model Components Constant Linear Quadratic

Component 1
p0 10.93 −1.62 0.0260
p1 −0.34 0.07 −0.0009
w1 2660 −184 2.6400

Component 2
p0 −17.49 1.50 −0.0222
p1 0.29 −0.02 0.0003
w2 1280 291 −5.1530

As mentioned above, the fitting of the ARX model was controlled by MATLAB R2020a,
where the optimized parameters were minimized by the sum of the squared errors using
the Broyden–Fletcher–Goldfarb–Shanno algorithm.

The absorbance values of CO2, CO and CH4 have been fitted using an ARX model,
which can be seen in Figure 6a. The fitted model was a sixth-order ARX model with good
fit accuracy (R2 = 0.9988). For the modeling, the data were separated in a 70–30% cut into
training and test data; the cut-off is denoted by a red line in Figure 6a, with the validation
data being the later registered absorbance values.

The model order was chosen by observing the distribution of the fit error auto-
correlation function. The auto-correlation function of the fit error can be seen in Figure 6b.
At a model order of 6, the distribution of the error auto-correlation function corresponded
mostly to a white noise sequence, pointing to a good fit with small bias and variance.
Further increments in the model order resulted only in small changes within the error
auto-correlation function and an increment in fit result variance and were thus omitted.
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The parameters of the optimized ARX model are summarized in Table 5. The AR
components (previous instances of component absorbance) as well as the exogeneous
components (sample weight instances) are listed and their weighting parameters is given.

Table 5. Regression coefficients of the ARX model.

Model
Parameters CO2 CO CH4

X component

p0 1.58 × 10−4 7.01 × 10−4 6.57 × 10−5

p1 −1.06 × 10−5 6.92 × 10−4 −5.11 × 10−5

p2 −2.23 × 10−4 −0.01 −1.27 × 10−4

p3 1.62 × 10−4 2.72 × 10−4 1.43 × 10−4

p4 −2.33 × 10−4 7.00 × 10−4 1.38 × 10−5

p5 2.53 × 10−4 2.12 × 10−4 −3.38 × 10−5

p6 −9.48 × 10−5 −2.72 × 10−4 −1.05 × 10−5

p7 0.11 0.24 0.17

AR component

x0 0.03 0.06 −0.11
x1 −0.07 0.99 −0.02
x2 −0.19 −0.02 −0.19
x3 −0.04 0.04 0.50
x4 −0.02 −0.53 0.07
x5 −0.27 −0.13 0.03
x6 0.02 −0.22 0.02
x7 0.01 −1.27 0.52

4. Discussion

During the decomposition of the five different biomass with TG-FTIR, the individual
peaks of CO2, CO, H2O, CH4, aldehydes and ketones, alcohols and esters were studied,
with an investigation of the kinetic parameters and model fitting. The thermogravimetric
analysis gave insights into the biomass thermal behavior, where diverse decomposition
steps were observed, resulting in multiple peaks with the indication of various degradation
stages. Moreover, the moisture content removal and volatility decomposition temperatures
were defined, providing valuable information on the biomass composition and behavior.

Throughout the FTIR spectroscopy, the peak temperatures for the component decom-
position and highlighting of the main degradation ranges were identified. The dominance
of carbon dioxide could have originated from the decarboxylation reactions. Addition-
ally, the FTIR spectra help to identify the various functional groups associated with gas
production, considering the chemistry of biomass decomposition.

The kinetic analysis revealed temperature-dependent activation energies and pre-
exponential factors. Despite the minor divergence among the different model-free methods,
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the isoconversional methods produced similar data. The logistic mixture and ARX models
are introduced for predicting the TG-FTIR profiles and gas composition, with the results
demonstrated using the maize TG data but applicable to all the studied materials. The
logistic mixture model achieved a corrected R2 score exceeding 0.99, accurately capturing
the degradation tendencies with two indicative components. Additionally, a second-order
polynomial equation connects the heating rate to the logistic mixture model parameters,
promoting the prediction of the TG results for different heating rates.

5. Conclusions

In this study, the decomposition behavior of various biomass samples was investigated
using TG-FTIR up to 800 ◦C, with heating rates of 5, 20 and 50 ◦C/min. A shift in peak
maximums was observed by approximately 20 ◦C with the increment in heating rates.
The DTG curve analysis revealed distinct decomposition patterns, especially in the case
of the maize and piney biomass, which resulted in two decomposition peaks. During the
FTIR analysis, individual peaks of the studied components between 350 and 380 ◦C were
identified, with primary degradation occurring broadly between 200 and 600 ◦C. These
temperature ranges offer insights into the underlying mechanisms that are significant in
optimizing the thermochemical conversion processes and the quality of products.

Regarding the alternative kinetic modeling, the logistic mixture models exhibited
promising fitting performance, with R2 = 0.9988 values for the validation data. This suggests
their potential as a robust tool for characterizing complex degradation processes, opening
opportunities for future research into biomass utilization. The kinetic and modeling
results help to understand the decomposition of biomass through techniques like TG-
FTIR, which inform the development of efficient thermochemical conversion processes.
Moreover, they give an insight into kinetic modeling, promoted with logistic mixture
models, enhancing the predictive capabilities for further process optimization, with the
minimizing of environmental impacts.
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Nomenclature

ARX Autoregressive Model with Exogenous Inputs
Ea Activation Energy
dS Entropy
dG Gibbs Free Energy
dH Enthalpy
DSC Differential Scanning Calorimeter
DTG Derivative Thermogravimetric
EDX Energy Dispersive X-ray Fluorescence Spectrometer
FTIR Fourier Transform Infrared Spectroscopy
FWO Flynn–Ozawa–Wall
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KAS Kissinger–Akahira–Sunose
KNN k-nearest neighbors
MS Mass Spectrometry
MSW Municipal Solid Waste
TCD Thermal Conductivity Detector
TGA Thermogravimetric Analysis
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