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Abstract: This study proposes a multitype electrolytic collaborative hydrogen production model for
optimizing the capacity configuration of renewable energy off grid hydrogen production systems. The
electrolytic hydrogen production process utilizes the synergistic electrolysis of an alkaline electrolyzer
(AEL) and proton exchange membrane electrolyzer (PEMEL), fully leveraging the advantages of
the low cost of the AEL and strong regulation characteristics of the PEMEL. For the convenience of
the optimization solution, the article constructs a mixed linear optimization model that considers
the constraints during system operation, with the objective function of minimizing total costs while
meeting industrial production requirements. Gurobi is used for the optimal solution to obtain the
optimal configuration of a renewable energy off grid hydrogen production system. By comparing
and analyzing the optimal configuration under conventional load and high-load conditions, it
is concluded that collaborative electrolysis has advantages in improving resource consumption
and reducing hydrogen production costs. This is of great significance for optimizing the capacity
configuration of off grid hydrogen production systems and improving the overall economic benefits
of the system.

Keywords: renewable energy hydrogen production; collaborative electrolysis; planning optimization

1. Introduction

Hydrogen is considered one of the most promising clean energy sources, with the
characteristics of high energy density, zero emissions, and no pollution. It is an important
research object to solve the problems of increasingly depleted petroleum and petrochemical
resources and fossil fuel pollution and promote the development of green energy fields [1].
However, how to efficiently utilize electricity to produce hydrogen is an important issue
that hinders large-scale hydrogen production [2]. Utilizing renewable energy sources such
as wind and solar power to electrolyze water for hydrogen production is an important
means to solve this problem [3]. With the continuous infiltration of new energy sources
such as photovoltaics and wind power, the installed capacity of new energy continues
to expand [4]. Fully utilizing renewable energy sources such as wind and solar power
to electrolyze hydrogen can not only efficiently produce hydrogen but also improve the
consumption rate of new energy, achieving the goal of improving new energy consumption
and reducing the impact of new energy grid connection [5,6]. It is a powerful means to
reduce fossil energy consumption and carbon emissions [7]. At the same time, it is crucial
for the stable operation of the off grid hydrogen production system to reasonably allocate
the capacity of each subsystem in the system.

From the perspective of hydrogen production system topology, existing research on
off grid hydrogen production systems has delved into different energy storage perspectives
and hydrogen storage and transportation methods and calculated capacity configurations
through algorithms. Han et al. [8] constructed a wind hydrogen energy system with the
objective of minimizing system investment cost, operating cost, and maintenance cost
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for capacity optimization configuration. They analyzed the impact of different hydro-
gen purchase channels on capacity configuration and the impact of daily hydrogen load
changes on capacity configuration; Si et al. [9] studied the capacity configuration of wind
power hydrogen production systems considering thermal balance; Abuduvayiti et al. [10]
determine the Nash equilibrium point for maximizing the benefits of each game participant
in the hydrogen production system and solve the optimal system capacity configuration
under the target situation; Yang Zijuan et al. [11] optimized and calculated the capacity
configuration of the hydrogen energy system from the perspectives of rotating operation of
electrolytic cells and hydrogen production transportation when the pipeline transportation
of hydrogen meets the hydrogen blending ratio; Wan Yongjiang et al. [12] calculated the
economic benefits based on the capacity configuration of wind solar hydrogen electrolysis
cells under different typical days; Deng Zhihong et al. [13] studied the hydrogen production
efficiency characteristics of electrolytic cells and proposed an optimization method for wind
hydrogen system capacity configuration, considering the hydrogen production efficiency
characteristics, in response to the intermittent operation of electrolytic cells caused by
wind power hydrogen production; Huang Dawei et al. [14] analyzed the structure and
operational characteristics of wind power hydrogen production systems, with a focus
on proposing a hydrogen production capacity configuration method for the hydrogen
production system to absorb wind power curtailment, in order to improve the wind power
consumption rate. The above research, based on the perspective of hydrogen production
system topology construction, did not fully consider the safety of the system when the
onboard load is in a high-load state, and the topology construction did not consider the
factor of preventing collapse.

From the perspective of electrolytic hydrogen production, currently, alkaline water
electrolysis cells have the characteristics of low cost, mature commercial promotion, and
weak regulation ability. Proton exchange membrane electrolysis cells have the character-
istics of strong regulation ability but high cost [15]. Research is conducted on an off grid
hydrogen production system that combines the advantages of two types of electrolysis cells
to jointly participate in the electrolysis process, fully leveraging their advantages to make
up for shortcomings, reduce configuration costs, and improve fluctuation adaptability.

In response to the above research, the contributions of this study are as follows:

(1) This study proposes an optimized configuration model for a renewable energy off
grid hydrogen production system using an alkaline water electrolysis tank and proton
exchange membrane electrolysis tank for synergistic electrolysis;

(2) This study constructed a renewable energy off grid hydrogen production system
topology, combined with the operating characteristics of subunits such as electrolysis
cells, fuel cells, energy storage, and hydrogen storage, and analyzed the operating
characteristics of proton exchange membrane electrolysis cells and alkaline water
electrolysis cells, which jointly participated in the electrolysis process;

(3) Based on the optimization model, this study uses the Gurobi solver for solving, taking
into account two types of scenarios: conventional load and high load, to verify the
effectiveness of topology in ensuring stable system operation. Through comparative
analysis, the economic benefits and effectiveness of the proposed method in this study
are effectively confirmed.

The remainder of this paper is as follows: Section 2 introduces the modeling of the off
grid hydrogen production system, Section 3 introduces the optimization model, Section 4
conducts case analysis, and Section 5 summarizes the article.

2. Modeling of Off Grid Hydrogen Production System
2.1. Structure of Renewable Energy Off Grid Hydrogen Production System

Building a reasonable and reliable off grid hydrogen production system topology
is an important prerequisite for efficient utilization of renewable energy for hydrogen
production. As shown in Figure 1, the source side of the hydrogen production system is
composed of wind turbines and photovoltaic power generation, and energy storage is used
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as a power regulating device to participate in smoothing fluctuations and maintaining
system operation. Fuel cells are used to burn hydrogen for energy supply when the source
side and energy storage cannot meet the load requirements under extremely high load
conditions. In this study, the energy consumption of the electricity load in the auxiliary
system is relatively low and easy to analyze compared to the aforementioned units, and
the electricity load is simplified.
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Figure 1. Schematic diagram of off grid hydrogen production structure.

2.2. Mathematical Model of Off Grid Hydrogen Production System

(1) Wind turbine and photovoltaic model: Wind turbines and photovoltaic arrays convert
renewable energy into electricity. When photovoltaic power cannot be generated
normally without sunlight at night, wind turbines can be used to generate electricity
and supply electricity, and their output determines the power supply of the entire
system. The mathematical model of the output power of a wind turbine can be
represented by Formulas (1)–(4):

Pwind
t =


0, 0 < ω ≤ ωin(

a1 + a2ω + a3ω2)Pwind
r , ωin < ω ≤ ωe

Pwind
r , ωe < ω ≤ ωout

0, ω > ωout

(1)

a1 =
ωin(ωe + ωin)− 4ωeωin

(
ωe+ωin

2ωe

)3

(ωin − ωe)
2 (2)

a2 =
4(ω e+ωin)

(
ωe+ωin

2ωe

)3
− (ωe + 3ωin)

(ωin − ωe)
2 (3)

a3 =
2 − 4

(
ωe+ωin

2ωe

)3

(ωin − ωe)
2 (4)

where ωin denotes the cut-in wind speed; ωe denotes the rated wind speed; ωout denotes
cut-out wind speed; Pwind

r denotes rated output power of wind turbines.
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The mathematical model of photovoltaic power generation can be represented by the
following formula:

Ppv
t = ηpvSpv

t Apv (5)

where Ppv
t denotes the output power of the solar panel; ηpv denotes the photovoltaic

conversion rate; Spv
t denotes the solar irradiance; Apv denotes the illuminated area of the

solar panel.

(2) Electrolytic cell output model

The process of hydrogen production by electrolysis in an electrolytic cell is a nonlinear
function of the current and power of the electrolytic cell [16,17], represented by f . The
specific process is related to the electrochemical reaction process [18], and the hydrogen
production efficiency shows a nonlinear relationship with the input power of the electrolytic
cell [13,19,20], defined as Equation (7):

IEL
n,t = f

(
PEL

n,t

)
(6)

ηEL
n,t = ηF Utn

UEL
n,t

(7)

where ηF denotes the Faraday efficiency; Utn denotes the thermal neutral voltage; Un,el
t

denotes the electrolytic cell voltage.
The hydrogen production rate in the electrolysis hydrogen production process [11]

can be expressed as:

HEL
n,t = ηEL

n,t
PEL

n,t

qEL (8)

where qel denotes the power consumption per unit of hydrogen gas; Pn,el
t denotes the power

of the electrolytic cell.
The hydrogen production efficiency of the electrolytic cell can be represented by seg-

mented linearization [21], which facilitates the construction of a mixed linear optimization
model, as shown in Formulas (9)–(14).

f
(

PEL
n,t

)
=

Ns

∑
λ=1

αλPEL
n,t,λ + βλδt,λ (9)

αλ =
f
(

PEL
λ+1
)
− f

(
PEL

λ+1
)

PEL
λ+1 − PEL

λ+1
, λ = 1, 2, . . . , Ns (10)

βλ = f
(

PEL
λ+1

)
− αλPEL

λ , λ = 1, 2, . . . , Ns (11)

PEL
λ δn,t,λ ≤ PEL

n,t,λ ≤ PEL
λ+1δn,t,λ, λ = 1, 2, . . . , Ns (12)

PEL
λ =

Ns

∑
λ=1

PEL
n,t,λ (13)

Ns

∑
λ=1

δn,t,λ = 1, δn,t,λ ∈ {0, 1} (14)

where Ns denotes the total number of segments; αλ and βλ denote the coefficients and
constant terms of each segment’s first-order term; PEL

λ denotes the inflection point of each
independent variable in each segment; δ denotes the corresponding state variable in each
segment, and piecewise linearization can be solved in the solver.
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3. MILP Optimization Model Construction
3.1. Objective Function

The objective function consists of construction cost CAPEX and operating cost OPEX,
and the specific expression of the objective function is as follows:

ming = CAPEX + OPEX

CAPEX = ∑
i∈Ω

Nimax

∑
n=1

γi,nccap
i,n

OPEX = ∑
i∈Ω

Nimax

∑
n=1

γi,ncopex
i,n +

∑
t∈T

Nmax

∑
n=1

un,tcSU
n + vn,tcSD

n +

∑ cbatchσbatch + cbatdchσbatdch

(15)

where Ω denotes different types of components in the system; ccap
i,n denotes the investment

cost per unit capacity; copex
i,n denotes the maintenance cost per unit capacity; γi,n denotes the

device capacity; cSU/SD
n denote the start-up cost and shutdown cost; un,t and vn,t denote

the start-up and shutdown status; cbatch/batdch denotes the cost of battery charging and
discharging losses.

3.2. Constraints

The constraints include system energy and hydrogen balance, battery, fuel cell, hydro-
gen storage, electrolytic cell, photovoltaic and wind power generation constraints:

(1) Electric and hydrogen energy balance constraints: The electric and hydrogen energy
balance constraints of the system at any time are expressed as follows:

Pwind
t + Ppv

t + Pbatdch
t + P f c

t = Pbatch
t + PEL

t + Pload
t (16)

where Pwind
t denotes the wind power generation power; Ppv

t denotes the photovoltaic
power generation power; PEL

t denotes the power consumption of the electrolytic cell; P f c
t

denotes output power for fuel cells; Pbatdch
t denotes discharge energy storage; Pbatch

t denotes
charge energy storage; Pload

t denotes electricity load.

HEL
t + Hhstdch

t = Hhstch
t + H f c

t (17)

where HEL
t denotes the hydrogen production of all electrolytic cells; Hhstdch

t denotes the
release of hydrogen gas; Hhstch

t denotes the storage of hydrogen gas; H f c
t denotes the

consumption of hydrogen gas by fuel cells.

(2) Electrolytic cell constraints:

xn,tRELminPEL
r ≤ PEL

n,t ≤ xn,tPEL
r , ∀n ∈ NEL (18)

xn,tPEL
r ≤ PEL

n,t ≤ xn,tRELmaxPEL
r , ∀n ∈ NEL (19)

PEL
n,t − PEL

n,t−1 ≤ xn,t φEL
up PEL

r , t ≥ 2, ∀n ∈ NEL (20)

PEL
n,t−1 − PEL

n,t ≤ xn,t φEL
downPEL

r , t ≥ 2, ∀n ∈ NEL (21)

xn,t − xn,t−1 = un,t − vn,t, t ≥ 2, ∀n ∈ NEL (22)

where PEL
r denotes the rated power of the electrolytic cell; RELmin denotes the minimum

rated power coefficient allowed to ensure safety; RELmax denotes the maximum allowable
overload coefficient; φEL

up denotes the uphill rate of the electrolytic cell; φEL
down denotes the
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downhill rate of the electrolytic cell; xn,t denotes the 0–1 variable, indicating the start/stop
status of the electrolytic cell.

(3) Energy storage and hydrogen storage: Battery energy storage is used for energy
storage, while hydrogen storage is used for hydrogen storage. The specific constraint
model is represented as follows:

SOCbat
t = SOCbat

t−1 +

(
Pbatch

t ηbatch −
Pbatch

t
ηbatdch

)
∆t, t ≥ 2 (23)

0 ≤ Pbatch
t ≤ σbatchCapbat (24)

0 ≤ Pbatdch
t ≤ σbatdchCapbat (25)

0 ≤ σbatch + σbatdch ≤ 1 (26)

SOCbat
min ≤ SOCbat

t ≤ SOCbat
max (27)

where SOCbat
t denotes the state of charge at t time of energy storage; ηbatch and ηbatdch

denote the charging and discharging efficiency of the energy storage system; Capbat de-
notes the capacity of the energy storage system; Pbatch

t denotes the charging power of
the battery; Pbatdch

t denotes the discharging power of the battery; σbatch and σbatdch de-
note the 0–1 variable, so that the charging and discharging states of the battery cannot
occur simultaneously.

SOChst
t = SOChst

t−1 +

(
Hhst

t ηhstch −
Hbatch

t
ηhstdch

)
∆t, t ≥ 2 (28)

0 ≤ Hhstch
t ≤ σhstchCaphst (29)

0 ≤ Hhstdch
t ≤ σhstdchCaphst (30)

0 ≤ σhstch + σhstdch ≤ 1 (31)

SOChst
min ≤ SOChst

t ≤ SOChst
max (32)

where SOChst
t denotes the hydrogen storage state at t time of hydrogen storage; ηhstch and

ηhstdch denote the efficiency of hydrogen storage and release; Caphst denotes the capacity
of hydrogen storage; Hhstch

t denotes the hydrogen storage power; Hhstdch
t denotes the

hydrogen release power; σhstch and σhstdch denote the 0–1 variable, so that the storage and
release states of the hydrogen storage tank cannot occur simultaneously.

(4) Fuel cells: Fuel cells use the generated hydrogen to generate electricity, with the
following constraints:

P f c
t = η f c H f c

t
µ f c (33)

0 ≤ P f c
t ≤ P f c

r (34)

where P f c
t denotes the power generated by the fuel cell; P f c

r denotes the rated power of the
fuel cell; H f c

t denotes the hydrogen consumption; η f c denotes the operational efficiency
of the fuel cell; µ f c denotes the hydrogen gas consumed per unit of electricity in fuel
cell production.

(5) Constraints for wind and photovoltaic power generation:

0 ≤ Pwind
t ≤ Pwind

r (35)

0 ≤ Ppv
t ≤ Ppv

r (36)
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where Pwind
t denotes the operating power of the wind turbine; Pwind

r denotes the rated
operating power of the wind turbine; Ppv

t denotes the operating power of photovoltaic
power generation; Ppv

r denotes the rated output power of the solar power generation set.
Based on the optimization model and constraints, Gurobi is used to solve.

4. Example Analysis

This article includes a typical day in Inner Mongolia, China, which requires a daily
hydrogen production of no less than 1000 kg. The optimization configuration is carried
out separately in the electrolysis cell for collaborative electrolysis, the PEMEL for separate
electrolysis, and the AEL for separate electrolysis, and the differences are further analyzed.

4.1. Configuration of Off Grid Hydrogen Production System under Conventional Load

Based on typical daily data of regional wind and solar resources and hydrogen pro-
duction requirements, the capacity configuration of off grid hydrogen production system
unit components was carried out. Three types of electrolysis were considered: mixed
electrolysis of the PEMEL and AEL, AEL electrolysis, and PEMEL electrolysis. The results
are shown in Tables 1 and 2:

Table 1. Main parameter values.

Parameters Value/CNY Parameters Value/CNY

PEMEL/MW 12,000,000 Battery/MW 1,600,000
AEL/MW 4,000,000 Fuel cell/MW 2,000,000

Table 2. Comparison of Optimal Configuration under Conventional Load.

Co-Electrolysis PEMEL AEL

Cost/×104CNY 15,291.89 16,877.33 14,723.43
Num PEMEL 1 7 /

Cap per PEMEL/MW 0.31 0.9 /
Num AEL 5 / 5

Cap AEL/MW 2.5 / 2.5
PV/MW 3.36 3.36 3.36
WT/MW 8.91 7.57 9.19
BA/MW 6 5.99 7
HST/Kg 1117.64 117.64 1117.64
FC/MW 0 0 0

The specific analysis of three different types of electrolysis is as follows:
Type 1: AEL electrolysis.
As shown in Table 2, when using the AEL for hydrogen production, although the

total investment is lower than the cost of two types of electrolytic cells for collaborative
electrolysis, due to the low regulation rate and high start-up power of AEL electrolytic cells,
the power generation system has a higher energy storage configuration to store electricity
loads. When energy storage cannot store electricity loads, a higher curtailment rate will
occur, which is not conducive to improving the consumption of renewable resources.
Considering the penalty of power abandonment, the overall revenue of the system is
lower than that of the mixed electrolysis configuration of two types of electrolysis cells
(Figures 2–4 and Table 3).

Table 3. AEL electrolysis curtailment.

Total/MW Curtailment/MW Curtailment Rate

82.84 13.18 15.91%
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Table 5. Collaborative electrolysis curtailment.

Total/MW Curtailment/MW Curtailment Rate

80.96 11.40 14.09%

Based on the above analysis, the synergistic electrolysis of hydrogen production
using the PEMEL and AEL can leverage the advantages of the low cost of AEL and strong
dynamic performance of the PEMEL, improve the consumption rate of renewable resources,
and reduce investment costs.

4.2. Configuration of Off Grid Hydrogen Production System under High Load

When the system has a high-load state, renewable energy generation cannot meet the
electrical load requirements. In order to meet the electrical load requirements, the system
uses energy storage, fuel cells, etc. to supply electricity. When the energy storage cannot
meet the electrical load requirements of the system, the system uses hydrogen gas that
has already been electrolyzed from the fuel cell combustion part to generate electricity to
meet the electrical load requirements of the system. The configuration results are shown
in Table 6:

Table 6. Comparison of Optimal Configuration under High Load.

Co-Electrolysis PEMEL AEL

Cost/×104CNY 22,124.23 22,212.34 21,098.20
Num PEMEL 3 9 /

Cap per PEMEL/MW 1 0.97 /
Num AEL 6 / 8

Cap AEL/MW 2.5 / 2.5
PV/MW 3.36 3.36 3.36
WT/MW 12.09 10.71 13.52
BA/MW 6 6 8
HST/KG 1397.33 1397.33 1291.38
FC/MW 2.31 2.31 1.59
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When there is a high-load period in the system, the specific situations of the three
types of electrolysis are as follows:

Type 1: AEL electrolysis (Figures 11–14).
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Type 2: PEMEL electrolysis (Figures 15–18).
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equipped with high power generation and electrolysis power. The hydrogen production
system will increase the hydrogen production rate during the period when the system load
requirements have been met to ensure that the total hydrogen production requirements are
met while dealing with the hydrogen consumption state of the fuel cell operation.

The three types of electrolysis all increase the electrolysis power of the electrolysis cell,
and the abandonment rate of the AEL for hydrogen production alone is relatively high
(Table 7). When using the PEMEL alone for hydrogen production, due to its high cost,
although the consumption of renewable resources is considerable, the overall construction
cost is relatively high. Therefore, using the PEMEL alone for hydrogen production does
not have an overall advantage.

Table 7. Comparison of electrolytic curtailment rates under high-load conditions.

Total/MW Curtailment/MW Curtailment Rate

PEMEL 93.12 2.23 2.40%
AEL 112.12 23.71 21.14%

Co-electrolysis 102.48 7.86 11.4%

The synergistic electrolysis of the AEL and PEMEL can fully combine the advantages
of the two types of electrolysis tanks, which can reduce production costs and promote the
consumption of renewable resources.

5. Conclusions

This article proposes a collaborative electrolytic capacity optimization configuration
model for renewable energy off grid hydrogen production systems. The study compre-
hensively considered the operating characteristics of various subsystems in the renewable
energy off grid hydrogen production system, such as an electrolyzer, battery, hydrogen
storage, wind turbine and photovoltaics, and fuel cell, and established an optimization
model. The optimal configurations to ensure the stable operation of the auxiliary system
under conventional load and high-load conditions are discussed. Using typical daily data
testing and analysis, the conclusions are as follows:

(1) The optimization model proposed by the research can fully consider production
needs and regional resource characteristics to optimize the capacity allocation of subsys-
tems for renewable resource off grid hydrogen production systems. For conventional
and high-load conditions, configuring the capacity of each subsystem effectively ensures
the safe and stable operation of the system and prevents the collapse of the hydrogen
production system.

(2) The combined electrolysis of the PEMEL and AEL proposed by the research can
fully leverage the advantages of the low cost of the AEL and fast response speed of the
PEMEL, improve the consumption of renewable resources, and reduce production costs.

The joint electrolysis optimization model proposed by this research can effectively improve
the consumption rate of new energy and reduce the cost of hydrogen production systems.
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