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Abstract: To achieve the energy transition, energy and energy efficiency are becoming more and
more important in society. New methods, such as Artificial Intelligence (AI) and Machine Learning
(ML) models, are needed to coordinate supply and demand and address the challenges of the energy
transition. AI and ML are already being applied to a growing number of energy infrastructure
applications, ranging from energy generation to energy forecasting and human activity recognition
services. Given the rapid development of AI and ML, the importance of Trustworthy AI is growing
as it takes on increasingly responsible tasks. Particularly in the energy domain, Trustworthy AI plays
a decisive role in designing and implementing efficient and reliable solutions. Trustworthy AI can be
considered from two perspectives, the Model-Centric AI (MCAI) and the Data-Centric AI (DCAI)
approach. We focus on the DCAI approach, which relies on large amounts of data of sufficient quality.
These data are becoming more and more synthetically generated. To address this trend, we introduce
the concept of Synthetic Data-Centric AI (SDCAI). In this survey, we examine Trustworthy AI within
a Synthetic Data-Centric AI context, focusing specifically on the role of simulation and synthetic data
in enhancing the level of Trustworthy AI in the energy domain.

Keywords: Trustworthy AI; synthetic data; Data-Centric AI; technical robustness; transparency;
explainability; reproducibility; privacy; fairness; sustainability

1. Introduction

Awareness of energy and energy efficiency is growing rapidly in the face of global
climate change, making the energy transition a major societal issue. To achieve the energy
transition, efficient, reliable and sustainable energy technologies are needed [1–3].

A basic measure of energy efficiency is first of all the ratio between the input and
output of a particular energy generation or conversion system. On the basis of this ratio,
further efficiency measures and performance indices can be defined that allow two systems
or different versions of a particular system to be compared. The aim is usually to increase
the efficiency of a given system. Sustainability plays an important role, as the energy
source should be based on renewable and environmentally friendly resources. Finally, there
is a strong, reciprocal relationship between reliability and efficiency, particularly in the
case of renewable energies. This is illustrated by the fact that performance measures for
photovoltaic systems include temporal and geographic factors (e.g., actual insolation) that
influence the practical efficiency of a system [4].

As demand and supply are becoming increasingly interlinked with the use of re-
newable energies, new methods are required to adjust supply and demand. Artificial
Intelligence (AI) and Machine Learning (ML) models are considered to be a key factor in ac-
complishing the energy transition [5–7] and are already widely used in various areas of the
energy sector. These areas include cybersecurity analysis and simulation for power system
protection [8,9], simulation-based studies on grid stability, reliability, and resilience [10–13],
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simulation and analysis of smart grid technologies and architectures [14,15], as well as
advanced simulation techniques for power system modeling and analysis [16,17]. Offer-
ing new and promising opportunities, AI technology continues to expand not only in
the energy sector [18–20] but also in many other domains such as healthcare [21,22] and
finance [23–25].

With the ongoing development and popularization of AI and ML models, these mod-
els are more and more used to perform highly responsible tasks. Since the functionality
of ML models is not always fully explainable and reliable—known as the black-box prob-
lem [26]—the topic of Trustworthy AI [27–29] is becoming increasingly important. When
AI approaches are used to improve the efficiency of applications in the energy sector, the
question of the reliability and trustworthiness of the AI approaches themselves becomes a
crucial issue.

In general, two primary approaches exist for establishing a certain level of trust in AI
(see Figure 1). On the one hand, we can focus on the ML algorithms themselves and work
towards achieving “fairness” for the models, also referred to as a model-centric approach
or Model-Centric AI (MCAI) [30]. On the other hand, we can analyze the data on which
these ML algorithms are trained, commonly known as the data-centric approach or Data-
Centric AI (DCAI) [31]. The DCAI approach is often disregarded in current AI research [32].
However, ML models require large amounts of data to become robust and functional [33,34]
and high-quality datasets are essential. Even the best ML models are unable to perform
well if trained on insufficient data [35]. As the interest in AI and ML models continues to
grow, the availability of large amounts of data is becoming increasingly important.

Because data are essential, the DCAI approach is a very promising method for en-
suring Trustworthy AI. Data are typically collected in real-time in the physical world.
However, collecting a sufficient amount of sensor data this way to be able to meaningfully
train ML algorithms is a time-consuming and cumbersome task. In addition, collected
data can contain gaps [36] or incorrect samples due to sensor measurement errors, the
data themselves or even the ground-truth data are not always annotated or there can be
inaccuracies in labeling [37]; data are biased in some way [38], or they cannot be collected
at all due to privacy regulations. Since data collection is cumbersome, alternative methods
of data collection are already being explored, such as the participatory collection of data
from people [39–41].

Simulations and synthetic data provide the potential to address and solve real-world
data collection problems. For instance, synthetic data allow for reduced data collection costs
or to compensate for biases in datasets [42]. Furthermore, synthetic data can be generated
fully labeled and annotated with ground truth, without any data gaps or sampling rate
variations [17]. As a result, simulations and the generation of synthetic data have grown in
popularity and are now utilized in various AI applications across various domains [43],
such as energy [44–46], healthcare [47–49], finance [50,51] or manufacturing [52,53].

However, developing simulations and generating synthetic data poses challenges.
Synthetic data are highly domain-dependent, as each domain has its own set of character-
istics that must be addressed in order for synthetic data to be sufficiently representative
and meaningful. The generation of unbiased synthetic data is a developing discipline and
requires further research to take full advantage of this technology [54].

Consequently, we examine the potential and impact of synthetic data in the energy do-
main from the perspective of Trustworthy AI and investigate the following research question:

Given that Trustworthy AI encompasses the aspects of efficiency, reliability and sus-
tainability, what benefits do synthetic energy data contribute to the development of these
aspects of Trustworthy AI in the energy domain?
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Figure 1. High-level comparison between the Model-Centric AI, Data-Centric AI and Synthetic
Data-Centric AI approach based on the graphic presented in [31].

Because synthetic data offer such high potential to improve Trustworthy AI, we
introduce the term Synthetic Data-Centric AI (SDCAI). As illustrated in Figure 1, the SDCAI
approach expands upon the Data-Centric AI approach. Using an SDCAI approach, a
developer or researcher attempts to enhance the performance of a ML model by generating
and refining the synthetic data used to train the model.

This survey is structured as follows: in Section 2, we first examine the different
definitions and aspects of Trustworthy AI and determine what we understand by this term.
We then provide a more detailed analysis of the individual aspects of Trustworthy AI,
including technical robustness and generalization in Section 4.1, transparency and explainability
in Section 4.2, reproducibility in Section 4.3, fairness in Section 4.4, privacy in Section 4.5 and
sustainability in Section 4.6. For each of these aspects, we will elaborate on how synthetic
data are able to contribute to increasing the level of trust in the energy domain. In Section 5,
we finally examine the key features of Trustworthy AI that contribute to improving the
quality of synthetic data and identify the areas in which synthetic data have the greatest
potential to enhance trust.

2. Trustworthy AI

While a final definition for Trustworthy AI has not yet been established, the proposals
converge in several aspects that are crucial for fostering user acceptance of reliable AI
systems. The European Commission’s High-Level Expert Group on AI (HLEG-AI) with
the “Assessment List for Trustworthy Artificial Intelligence (ALTAI)” [55] as well as other
experts and institutions defined several factors [56–62]. As mentioned, these definitions for
Trustworthy AI overlap in various factors and can generally be divided into technical and
non-technical (ethical and other) factors (see Figure 2).
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Figure 2. Schematic view on Trustworthy AI and the involvement of the Synthetic Data-Centric
AI approach.

This survey approaches the topic of ensuring Trustworthy AI using synthetic data
from a technical perspective, as we are convinced that this is where synthetic data have the
most potential to improve the level of trust. In our understanding, enhancing efficiency,
reliability, and sustainability requires technical considerations as well. Therefore, these
aspects are the most suitable for improvement by using synthetic data.

Figure 3 illustrates the technical facets of Trustworthy AI from an SDCAI perspec-
tive. In total, we extracted eight key aspects from the previously mentioned definitions:
technical robustness, generalization, transparency, explainability, reproducibility, fairness, privacy
and sustainability.

Figure 3. Eight key aspects of the Synthetic Data-Centric AI approach for enhancing Trustworthy AI.
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Technical robustness refers to the ability of ML models to provide accurate results even
when faced with data that differ from the training data. To accomplish this, ML models
require high-quality training data, which involves several factors, such as the availability of
ground truth data, the absence of data gaps, and appropriate data labeling (see Section 4.1).

Generalization is closely linked to the aspect of technical robustness and refers to the
ability of ML models to perform effectively on unseen data given a limited amount of
training data (see Section 4.1).

The principles of transparency and explainability are closely interrelated and emphasize
the need for comprehensive visibility and the ability to understand the behavior of an AI
system. Transparency, as well as explainability, are also highly dependent on data quality
since these factors can only be guaranteed if the training data sufficiently represent the
underlying real-world data (see Section 4.2).

If the data quality is inadequate, issues may arise with the reproducibility of experiments
and studies (see Section 4.3). Reproducibility requires that ML models developed in
scientific work, but also commercial ML models, can be replicated by other researchers
at any point in time. Ideally, the experiments described should yield comparable or
identical results.

The aspect of fairness is also an essential part of data quality, as imbalanced and biased
data may hinder the creation of robust ML models that require balanced datasets (see
Section 4.4).

Further, it is important to ensure privacy and security as components of data quality to
prevent personal data from being traced back from synthetic data (see Section 4.5).

Sustainability in the context of Trustworthy AI focuses on specific aspects of the overall
concept of sustainability, in the sense of renewable and environmentally friendly resources.
In this survey, sustainability refers to the fact that AI systems and ML models should be
trained and refined on data that are collected/generated under the most environmentally
friendly conditions possible, e.g., by using renewable energy resources.

Naturally, the quality of the training data is a critical factor for the optimal functioning
and robustness of ML models (see Section 1). As part of the DCAI approach, it is crucial to
comprehend the requisite data quality for effective and efficient ML training. Providing
high-quality datasets for training ML models is at least as crucial as improving the algo-
rithms themselves. If the data contain biases, it is practically impossible for the trained
algorithms to be unbiased.

Therefore, if ML models are to be improved through understanding and optimizing
data using the DCAI approach, it is crucial to ensure the data meet certain quality standards.
This involves labeling the data, eliminating data gaps, preventing and minimizing bias, and
ensuring an adequate quantity is available. Improving dataset quality is a crucial aspect
addressed by Trustworthy AI.

Almost all of the technical cornerstones that we have defined to ensure Trustworthy
AI are closely related to the quality of the data.

The problems associated with the DCAI approach for ML using real-world data
prompted an investigation into whether synthetic data have the potential to reasonably
extend this approach in the context of Trustworthy AI. Synthetic data have the ability to
provide answers to various issues in several areas related to Trustworthy AI, such as data
augmentation for robustness, private data release, data de-biasing and fairness [54].

We are convinced that synthetic data have the potential to be a key enabler in the
development of Trustworthy AI. Therefore, this survey focuses on understanding how
synthetic energy data can contribute to ensuring Trustworthy AI. To this end, we introduce
the new term Synthetic Data-Centric AI (SDCAI) approach, which is an extension of the
DCAI approach (see Figure 1). The SDCAI approach addresses the question of how to train
ML algorithms on synthetic datasets in a meaningful and reliable way.

In this contribution, we focus specifically on the energy domain. As argued before,
there exist serious technological challenges that can be addressed by using ML and AI
systems. Among these challenges are the storage and distribution of energy through
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grids, which play a crucial role in attaining a reliable energy supply in the future. The
energy domain is a suitable application example for Trustworthy AI because it shares many
characteristics with other domains, which allows the findings of this survey to be widely
applicable beyond this particular field into other domains.

To the best of our knowledge, no study has specifically addressed the advances,
challenges, and opportunities of synthetic data for the development of Trustworthy AI in
the energy domain. Ref. [63] provide a review of advances, challenges, and opportunities
in generating data for some aspects of Trustworthy AI [63], but the authors do not address
key aspects that we consider in this survey, such as explainability, reproducibility, and
sustainability. Furthermore, we are not aware of any research exploring a Data-Centric AI
approach for Trustworthy AI, specifically in the energy sector, nor referencing a Synthetic
Data-Centric AI approach.

3. Synthetic Data

To explore synthetic data and the SDCAI approach, it is essential to have a clear
understanding of the concept of synthetic data. The idea of synthetic data reaches back at
least as far as to the Monte Carlo Simulation [64] and can be defined as follows [54]:

Definition 1. “Synthetic data are data that have been generated using a purpose-built mathematical
model or algorithm, with the aim of solving a (set of) data science task(s).” [54].

In the energy domain, the amount of image data processed is not as large as in other
domains, such as the healthcare domain [65,66]. The majority of the data that are processed
in the context of the energy domain are time-series data, specifically consumption data for
different types of energy, including electricity, wind, water, and solar. Additionally, there
are time-series data collected from sensors that monitor variables such as temperature,
humidity, or motion.

There are many approaches to synthetically generate time series data in the energy
domain, e.g., based on using ML models and different neural architectures [44,67–71]. This
includes AI applications that make decisions, such as an energy forecast for distribution
grids that controls energy supply and demand. This enables the determination of the
amount of energy allocated to households and buildings.

The methods that can be used to generate synthetic data, especially in the energy
domain, are discussed further in Section 3.2. However, it is necessary to collect and prepare
real and synthetic data before generating data.

3.1. Data Preparation

Data preparation is an important component for all types and uses of synthetic data,
but especially for ensuring Trustworthy AI principles, and thus for the Synthetic Data-
Centric AI approach as we define it.

Data Preparation can be divided into two general sub-areas: data collection
(Section 3.1.1) and data preprocessing (Section 3.1.2) [72].

3.1.1. Real-World Data Collection

ML models frequently lack a sufficient amount of labeled data for training [33]. Con-
sequently, collecting real-world data is an essential task in the development of such models.
As previously mentioned in Section 1, collecting data in the real world causes many
problems in principle, but especially in the energy domain due to its cumbersome and
time-consuming nature.

The majority of the energy data collected are about electricity in private house-
holds, but other sensor data are also collected in a household, such as gas, temperature,
or humidity.

Freely available real-world datasets are often published without appropriate documen-
tation, making them difficult to use [73]. These datasets often suffer from the fact that the
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data are not fully labeled and there is no guarantee that the labels are correct. Specifically,
the ground-truth data can lack annotations or labels [37] or even be non-existent. However,
ground-truth data are indispensable for numerous supervised learning problems, such
as Non-Intrusive Load Monitoring (NILM) algorithms [74]. In particular, freely available
real-world energy data suffer from the fact that never all the ground truth data that make
up the smart meter data are available. Various datasets exemplify this problem, such as
REFIT [75], GeLaP [76], ENERTALK [77], GREEND [78], IEDL [79], UK-DALE [80] or [81].

The IDEAL dataset contains electrical and gas data for private households, including
individual room temperature and humidity readings and temperature readings from the
boiler [82]. The available sensor data are augmented by anonymized survey data and
metadata including occupant demographics, self-reported energy awareness and attitudes,
and building, room and appliance characteristics. Energy data were collected for both
consumption and PV generation [83]. Indoor climate variables such as temperature, airflow,
relative humidity, CO2 level and illuminance were also collected.

The majority of the available datasets listed contain metadata, but the metadata
are incomplete. In some cases, for example, device types are available, but there is no
information about a manufacturer or year of construction. All of the datasets listed are
systemically biased in some way (see Section 4.4) since they were all collected locally in
a single country, or at least on a single continent. Each country has people with their
own country-specific habits, population groups and consumer behavior, which ultimately
results in their own energy consumption. Furthermore, publicly available datasets pose the
issue of representing only a small subset of a population. Due to the large amount of effort
involved in collecting the data, such a dataset typically contains only a few households over
a short period of time, which leads to statistical bias. To substantially reduce both systemic
and statistical biases, it is necessary to obtain data from a larger subsample of a population
that is more representative. For example, the dataset should include information from a
wider range of countries, population groups, and ethnicities. However, this is challenging
to achieve in practice and would require a considerable amount of time.

Synthetic data could help in this case. Simulation tools such as [84–86] for electricity
or heating [87–91], allow the simulation of all sorts of human behavior and habits and thus
also the generation of synthetic energy consumption data. If generated using a simulation,
synthetic data have the advantage over collected real-world data of being fully labeled and
ensuring “ground truth” for all appliances used without the existence of data holes [17].
However, this human behavior is very complex to simulate, making human behavior one of
the most critical parameters in energy models. Nevertheless, there are a number of works
that propose and develop concepts for the simulation of human behavior within the energy
domain, such as [92–94].

Irrespective of the methods used to generate synthetic data, a key challenge in using
synthetic data is evaluating the quality of the data and how accurately the synthetic data
represent the real data (see Section 4.1). The quality of the synthetic energy data must be
guaranteed because it is pointless to generate synthetic energy data that do not adequately
reflect the domain (see Section 3.2).

3.1.2. Data Preprocessing

The amount of effort needed for data preprocessing is growing and is already a very
large part of the ML model development process, consuming over 80 percent of the time
and resources before the actual model can finally be developed [95].

The data preprocessing steps include all steps that are necessary before data can be
fed into an AI system and thus used for training or testing ML models. These steps include
a number of aspects such as data cleaning, anomaly detection, data anonymization, and
data privacy [72].

When discussing the individual aspects of Trustworthy AI throughout this survey
(see Section 4), we will occasionally encounter data preprocessing steps, which will be
addressed in more detail in that specific aspect.
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3.2. Data Generation

There are basically three ways to generate synthetic data: based on real data, without
real data, or as a hybrid combination of these two types [96]. These approaches can be
applied to the energy domain as well, resulting in synthetic data derived from any or all of
the three methods.

For example, ML models can be trained on pure real-world temperature or electricity
time series data, which in turn, generate synthetic data [97–100].

With different simulations, it is also possible to generate synthetic data using both real
and synthetic data. For instance, in an electricity simulation of a household, the human
behavior of the residents is not generated based on real data, but randomly [84–86]. This
means that residents randomly turn on and off appliances in an apartment and whenever
an appliance is turned on, the simulation uses the real power consumption of the appliance
to calculate the total power consumption of the apartment.

It is also possible to generate synthetic energy data without the direct use of real-world
data. For example, a simulation can be used to customize the human behavior of residents
when turning on appliances, as well as to synthetically generate the energy consumption of
individual appliances [101–103].

The utility, i.e., the extent to which a synthetic dataset is an exact substitute for real
data, depends on the fidelity of the underlying generation model [96]. There is no universal
method for measuring the utility of synthetic data [104], instead, there are two different
concepts, referred to as general and specific utility measures [105]. A general utility
measure concept for synthetic data that is most frequently described is the propensity
score [105,106]. This involves developing a classification model that distinguishes between
real and synthetic data. If the model cannot distinguish between the two datasets, the
synthetic data have a high degree of utility. Since synthetic data are ultimately intended to
be used to train and test ML models, it should be ensured that this type of model can be
trained and tested on these data. [17] describes a methodology that ensures the quality of
the synthetic data by using ML models. The authors use exemplary NILM models trained
on both synthetic and real data and then compare their results. They demonstrate that ML
models trained on synthetic data can even outperform models trained on comparable real
data. Specific measures for the utility of synthetic data are confidence interval overlap [107]
and standardized bias [108], which work with statistical methods.

However, there are also risks in using synthetic data to train AI systems such as data
quality (including data pollution or data contamination), bias propagation, security risks
and misuse [42]. This survey is well aware of the risks of synthetic data, and therefore,
addresses these risks for the conditions in the energy domain and develops and presents
solutions for them.

In the following sections, the opportunities for using synthetic data to develop Trust-
worthy AI in the energy domain are discussed in more detail for each of the aspects of
Trustworthy AI considered in this survey.

4. Aspects of Trustworthy Synthetic Data-Centric AI

In the following, we consider the individual aspects that are required for an AI
application to be considered trustworthy. For each aspect, we will discuss in more detail
how synthetic data can be used to improve these aspects of Trustworthy AI (see Section 2)
and thereby develop trust in AI (SDCAI approach).

The content of the different aspects under consideration often overlaps, as they are
interdependent and partially cover related topics. Figure 4 illustrates a graphical represen-
tation of the literature fields discussed in this review, visualized by VOSviewer, a tool for
constructing and visualizing bibliometric networks (VOSviewer: https://www.vosviewer.
com/, accessed on 15 April 2024).

https://www.vosviewer.com/
https://www.vosviewer.com/
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Figure 4. Graphical representation of the literature fields discussed in this review, visualized
by VOSviewer.

4.1. Technical Robustness and Generalization

To ensure trustworthiness and to prevent and minimize unintended malfunctions,
AI systems should have an appropriate level of technical robustness. The term ’technical
robustness’ of AI systems is broad and covers many aspects. Among other things, it refers
to the ability of ML models to perform on unseen data or robustness against samples that
are not very similar to the data on which a model was trained [109]. The concept of technical
robustness is an important cornerstone for ensuring Trustworthy AI. The improvement of
balanced and robust training techniques and datasets can enhance not only fairness (see
Section 4.4) but also explainability (see Section 4.2) [110].

The aspect of generalization is closely related to the aspect of technical robustness
and represents the ability of an AI system to make accurate predictions about unknown
data based on limited training data [72]. It is preferable for ML models to maximize
generalizability while minimizing the amount of training data required, as data collection
is both time-consuming and resource-intensive (see Section 4.6).

Although both concepts of technical robustness and generalization are closely related,
there is still no general consensus on whether greater robustness is beneficial or disadvan-
tageous for the ability of ML models to generalize. In the literature, there are arguments
both in favor and against such an argumentation [111–113].

Data design is able to ensure the technical robustness, reliability and generalizability
of an AI model trained on those data [114]. It is well understood that variant data with
different distributions and different scenarios are important for robustness since training
an AI model without such data can seriously affect its performance [72].

Synthetic data offer the powerful advantage of allowing the generation of hypothetical
scenarios, such as critical scenarios. AI systems and data-driven models should perform
effectively in situations that do not occur sufficiently often in real-world data, such as
critical situations, to be considered trustworthy [54]. Including situations that may occur in
the real world but are extremely rare and should not be intentionally induced is extremely
important, because ML models should be trained and tested with every possible situation
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that could occur in the real world in order to achieve maximum robustness and reliability.
For instance, an AI assistance system designed to assist elderly individuals in private
households using various sensor data cannot learn how to behave appropriately in a
critical situation if such a scenario is not included in the training data. Moreover, it is
not possible to test and verify the performance of the system in such a situation without
adequate testing data. Synthetic data have already been applied across multiple domains
to increase the robustness of AI systems, including visual machine learning [115] and churn
prediction [116]. Synthetic data are also used in other domains, such as covering nuclear
power plant accidents [117], ensuring safe drone landings [118], and generating critical
autonomous driving situations to improve AI-based systems. A number of techniques
have already been used to generate safety-critical driving scenarios, such as those based
on accident sketches [119], based on a search algorithm that iteratively optimizes behavior
action sequences of the surrounding traffic participants [120], based on influential behavior
patterns [121] or based on reinforcement learning [122]. The approaches mentioned here for
representing critical situations are domain-specific. The exact definition of what constitutes
a critical situation is typically dependent on a particular domain. It remains an open
question whether the creation of these critical situations with the methods mentioned can
be transferred to other domains. Furthermore, it has not yet been clarified how many
and what kind of critical situations must be present in a dataset for ML models to be
considered trustworthy.

Especially in the energy domain, it is essential for ML models to be both technically
robust and generalizable in order to achieve a high level of transferability. This characteristic
is particularly important for ML models, like assistance systems or NILM models, that
are trained and developed based on a restricted sample of households but required to be
functional and robust in other households [123,124]. In this context, transferability refers
to the ability of ML models to be both robust and highly generalizable. This means that
the model is able to produce accurate results on households that were not included in the
training dataset of the model [125].

However, to be effective in training ML algorithms, synthetic data must be of consis-
tently high quality without bias. Previous research has demonstrated that biased data can
negatively impact the generalization properties of ML algorithms [126–128]. For instance,
if an energy consumption prediction model is only trained using energy data collected
from private households in Europe, the model will have difficulties accurately predicting
the energy consumption of households in South America or Asia. The energy consumption
patterns in these regions are different, as people there have other relevant characteristics,
such as different consumer behaviors, different climatic conditions, and different appliances
in their households, which result in other forms of energy consumption.

Also, in the energy domain, synthetic data can enhance the robustness and generaliz-
ability of ML models by producing a multitude of diverse training datasets. Simulations
are capable of generating substantial amounts of high-quality energy data from a variety of
demographic groups such as denomination, nationality, gender, age, occupation, income,
and different life circumstances (see Section 3.2). This allows ML models to be better
prepared for real-world scenarios and substantially enhances the accuracy of predictions
and outcomes of AI systems.

In an ideal world, the data for all the described scenarios would be freely available as
benchmark datasets. Once available, these datasets can be used to train and test ML models,
increasing their robustness and generalizability. The objective of benchmark datasets,
which are already used in the ML domain, is to represent the real world as reliably as
possible [127] and can also be generated synthetically. The idea of synthetic benchmark
datasets is closely related to the concept of transparency and explainability and is, therefore,
described in more detail in the following Section.
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4.2. Transparency and Explainability

Another key factor in achieving Trustworthy AI is ensuring the transparency, ex-
plainability and accountability of ML models and the data used to train and test them.
In academic literature, the term transparency is typically understood in the sense that all
components of an AI system should be visible and explainable, including the training
data [55].

Definition 2. Transparency can also be defined “as any information provided about an AI system
beyond its model outputs.” [129].

The concept of transparency is one of the key topics addressed by Explainable AI
(XAI) [130]. The purpose of XAI is to enable individuals to understand precisely and in
detail why and on what basis an AI system has or has not made a decision [131]. Ensuring
the transparency of the data utilized for training and testing ML models is an important
aspect of XAI.

ML models and the data on which they are trained often suffer from a lack of trans-
parency and explainability. For instance, achieving transparency and explainability in black-
box models, which are generative ML algorithms where the input and output are known
but the functionality is unknown [132], poses significant challenges [133]. Understandably,
the unknown nature of the functionality does not encourage trust in the algorithms.

The use of synthetic data can be beneficial since it allows black-box models to be
trained on specifically designed data. Training black-box models on high-quality, unbiased
data can increase the level of trust in the results of the models [134].

As mentioned previously, a key challenge in generating synthetic data is to evaluate
the quality of the data and the accuracy with which it represents the real data. In essence,
it is necessary to measure the utility of the data [96] (see Section 3.2). There are a number
of XAI methods that allow to measure the extent to which the synthetic data represent
real-world scenarios [135]. Auditing methods need to be developed to determine the
reliability and representativeness of synthetic data in the energy domain. To achieve this,
techniques such as dimensionality reduction [136] or correlation analysis [137] can be used.

To ensure maximum transparency and explainability, it is necessary to carefully con-
sider the methods used for generating synthetic data. The use of generative black-box
models to create synthetic datasets can lead to a lack of trust in the generated data, as it
is not possible to fully understand and reconstruct how exactly the synthetic data were
generated. There are methods and metrics that can be used to evaluate synthetic data
generated by black-box models [138].

Another attempt to ensure transparent synthetic energy data is to utilize a human-in-
the-loop approach from a data perspective [139]. Involving humans at various stages of
data generation can be useful in many different processes, such as data extraction, data
integration, data cleaning, data annotation, and iterative labeling [95]. Thus, this approach
can also contribute to the development of synthetic data. When using simulations to
generate synthetic data, a human-in-the-loop approach is often necessary anyway. This is
because the data must be generated by an expert, or at least consulted by one, to achieve
high data quality since simulations often require knowledge that a non-expert user does
not necessarily possess. However, involving humans in the development process can also
introduce risks, such as multiple errors during annotation or data extraction, which can
lead to serious consequences for synthetic datasets. These types of risks caused by humans
are known as human bias [61] (see Section 4.4).

Another essential component to ensure transparency in data science, in general, and
synthetic data, in particular, is the provision of metadata [140]. Synthetic data should always
be made publicly available in order to achieve maximum transparency. This includes the
synthetic data themselves and all information related to the generation of the data, which
is also essential for the reproducibility of the generation process (see Section 4.3). The
metadata for a synthetic dataset should describe, among other things, what data were used
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to generate the dataset, where the original data used came from, how and when the data
were collected, what methods and techniques (or ML models) were used to generate the
synthetic data and other relevant specifics. It is important to be able to reconstruct where
synthetic data originated from and what methods and concepts were used to generate
it [141]. Therefore, it is essential to describe exactly how the data are constructed and what
data were utilized to generate it. Furthermore, it is critical to explain and publish the data
that served as the source for the synthetic data.

Ensuring the quality of this metadata is crucial since this meta information is not useful
if it can be misinterpreted or if it is incorrect. Inaccurate or missing meta information can be
harmful, but even correct metadata have the potential to cause harm. For example, metadata
for synthetic data generation that include information about the ethnicity of the original
data can lead to discriminatory behavior [142]. Therefore, the content of metadata should
be carefully considered. Since sensitive meta information requires adequate protection,
there are techniques available to protect its confidentiality [143].

Besides their beneficial qualities for technical robustness and generalizability (see
Section 4.1), synthetic benchmark datasets are a promising approach to ensure both trans-
parency and XAI aspects. Such benchmark datasets allow independent developers of
ML algorithms to effectively evaluate and compare the performance of their models on
a transparent database [144]. In addition to testing, benchmark datasets allow for the
training of ML models. It is particularly important that benchmark datasets maintain a
high quality. Any data gaps (see Section 4.1), biases (see Section 4.4), or privacy violations
(see Section 4.5) in such datasets would compromise the quality of any ML models trained
on them. However, creating high-quality benchmark datasets is typically complex and
time-consuming. Thus, it is crucial to make such datasets freely available for public use in
order to maximize accessibility to a broad audience [144].

Synthetic benchmark datasets are a relatively new idea with a growing presence
across diverse domains, such as geoscience [145], face recognition [146], visual domain
adaptation [147], and nighttime dehazing [148]. Nevertheless, benchmark datasets with
available ground truth data, referred to as attribution benchmark datasets, are still rare [145].
This is also problematic for the development of Trustworthy AI systems in the energy
domain since ground truth data are necessary for the evaluation of different XAI methods
as well as for the development of diverse ML models such as NILM [74].

As a result, it would be highly desirable to have synthetic benchmark datasets available
for the energy data domain as well. For instance, potential datasets could include energy
consumption data alongside reliable ground truth data from households or industry, or
energy consumption data stemming from solar, wind, or hydropower plants. To avoid the
risk of data bias, these synthetic benchmark datasets should be as diverse as possible. This
means that different ethnic groups should be represented, as well as different demographic
groups (denomination, nationality, gender, age, occupation, income, etc.) and different
standards of living. Further research would be needed to provide high-quality synthetic
benchmark datasets for different areas of the energy domain, as to our knowledge no work
has been conducted in this domain yet. We are only aware of datasets that consist of real
data (see Section 3.1).

4.3. Reproducibility

A further key aspect of Trustworthy AI is the reproducibility of AI systems, which is
closely related to the concepts of transparency and Explainable AI (see Section 4.2).

The purpose of reproducibility is to ensure that scientific work and publications can
be replicated by other scientists at any given time. Furthermore, it is desirable that the
experiments described are capable of producing the same or comparable outcomes.

Reproducibility can be defined as follows:

Definition 3. “Reproducibility is the ability of independent investigators to draw the same conclu-
sions from an experiment by following the documentation shared by the original investigators” [149].
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Although reproducibility is an essential issue in the scientific community, it is unfortu-
nately becoming increasingly difficult to replicate experiments in science in general [150].
In ML research, in particular, it is becoming increasingly difficult to replicate experiments
presented and conducted in scientific publications without discrepancies [151,152]. When
presenting the results of a trained ML model, there can be a number of reasons for a lack
of reproducibility, such as not having access to the training data, not having the code to
run the experiments publicly available, or not having conducted a sufficient number of
experiments to be able to draw a robust conclusion [151].

The concept of reproducibility can be divided into two categories: the reproducibility
of methods and the reproducibility of results [153]. From the perspective of the DCAI
approach, the category of methods can include, for example, the reproducibility of data
collection and data preprocessing. Reproducibility of results is more likely to be considered
on the model side, including, for example, the reproducibility of model settings such as
parameters and weights.

Synthetic data are capable of ensuring the reproducibility of data and have already
been used for this purpose, for example, by replacing missing or sensitive data with sim-
ulated data and then analyzing these data alongside the original data [154]. A variety of
techniques are available to reconstruct missing data in time series data. For example, artifi-
cial intelligence and multi-source reanalysis data were used to fill gaps in climate data [155],
ML methods were used to fill gaps in streamflow data [156] and a multidimensional
context autoencoder was used to fill gaps in building energy data [157]. Synthetic data
have also been used in other domains to increase reproducibility, such as in biobehavioral
sciences [158], in the health data [159], and in synthetic biology [160].

According to [161], an important reproducibility standard is that datasets are trans-
parent and should be published (see Section 4.2). When synthetic datasets are publicly
available, researchers are able to ensure that their results are reproducible [158]. This
highlights the importance of developing and providing synthetic benchmark datasets, as
outlined in Section 4.2. In some cases, however, publication is not possible due to privacy
constraints [151]. The use of synthetic data could help in the anonymization of datasets,
which will be discussed in more detail later (see Section 4.5).

As already mentioned, also in the energy domain, synthetic data are mainly developed
and generated to train and test ML models (see Section 3). Nonetheless, reproducing the
outcomes of these ML models can be challenging as they may produce distinct results
despite using identical parameters and data for training. This phenomenon is observed for
non-intrusive load monitoring models, for example, [17]). Therefore, when measuring the
quality of synthetic data using ML models, these inconsistent results of ML models should
be explicitly taken into account. One way to address the issue of unstable results of ML
models is by running them multiple times and calculating the average of all the results.
This approach provides a reasonable level of certainty that the mean value of the results is
stable [17]. The number of times experiments must be repeated to achieve a certain level of
confidence can be calculated by using Cochran’s sample size [162].

4.4. Fairness

The aspect of fairness is also a fundamental part of Trustworthy AI and is closely linked
to the concepts of transparency and explainable AI.

However, the term ’fairness’ of a dataset is not clearly defined. Numerous definitions
of fairness exist, including those presented in [163–165]. Nonetheless, it is nearly impossible
to simultaneously satisfy all constraints mentioned in the literature [166]. For this survey,
we understand fair data to be data that are not biased in any way.

Due to their functionality and characteristics, in general, ML models inherit biases
from their training data [167–171]. This means that without fair data, it is very difficult
to develop fair ML models. Therefore, research was conducted on the creation of fair
data [172–174].
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Bias in data can be understood as an unfairness that results from data collection,
sampling, and measurement, whereas discrimination can be understood as an unfairness
arising from human prejudice and stereotyping based on sensitive attributes, which can
occur intentionally or unintentionally [114]. This Section focuses on discussing data fairness.
However, other works consider discrimination theory in much greater detail [175–178].

There are numerous types of biases in data that, when used for training ML algorithms,
may result in biased algorithmic outcomes. These biases include measurement bias, omitted
variable bias, representation bias, aggregation bias, sampling bias, longitudinal data fallacy, and
linking bias [114]. According to [61], AI bias can be divided into three main categories:
human bias, systemic bias and statistical/computational bias. Human bias is a phenomenon that
occurs when individuals exhibit systematic errors in their thinking, often stemming from
a limited set of heuristic principles. Systemic bias arises from the procedures of certain
organizations that have the effect of favoring certain social groups and disfavoring others.
Statistical and computational biases are biases that occur when a data sample is not a
reasonable representation of the population as a whole.

Many instances exist wherein biased systems have been evaluated for their ability to
discriminate against specific populations and subgroups, such as facial recognition [179]
and recommender systems [180]. There are numerous instances of data biases, including
datasets like ImageNet [181] and Open Images [182], which are used in the majority of
studies in this field and consequently exhibit representation bias [183]. Additionally, there
exist facial datasets like IJB-A [184] and Adience [185], which lack balance in terms of race,
resulting in systemic bias [171].

When creating synthetic data based on real data, there is of course the risk that
biases of the real data are unintentionally transferred to the synthetic data [47,169]. For
example, if a real-world energy dataset consists only of European energy data, the synthetic
households will also reflect the characteristics of European households. This is referred to
as the out-of-distribution (OOD) generalization problem [186], a well-known challenge when
working with synthetic data [187]. The OOD problem describes a situation where the data
distribution of the test dataset is not identical to the data distribution of the training dataset
when developing ML models. Synthetic data allow augmenting data, thus, reducing the
OOD problem [187].

The problem of unfair datasets is known in the literature, and there are already
existing approaches for generating high-quality, fair synthetic data from ‘unfair’ source
data [169,188,189]. Methods like the one described in [169] achieve fairness in synthetic
data by removing edges between features. This approach can be applied to time series data,
but adapting it to image data is challenging.

When generating synthetic data, it is crucial to prevent data bias caused by the absence
of underprivileged groups in simulator development. It is also essential to avoid perfor-
mance degradation when an AI model trained on synthetic data is applied to real-world
data. Synthetic datasets were already used in different domains to reduce bias in datasets,
including face recognition [190], robotics [191] and healthcare [43].

The design of the data, in general, and thus synthetic data, is crucial for minimizing
bias and increasing trustworthiness. There are several ways to avoid data bias and en-
sure the generation of a fair dataset. These methods involve providing comprehensive
documentation of metadata for dataset creation, including the techniques used to produce
the dataset, its motivations, and its characteristics [141,192]. This metadata should also
include the information about where the data originate and how they were collected [193].
There is also the idea of using labels to better categorize datasets [193] or using methods to
detect statistical biases such as Simpson’s paradox [194,195]. To eliminate bias in a dataset,
also various preprocessing techniques can be used, including suppression, massaging the
dataset, reweighing, and sampling [196].

In general, it is challenging to identify biases in synthetic data during post-processing.
Therefore, efforts should be made during pre-processing to ensure that synthetic data are
not generated with bias. This can be achieved, for example, by ensuring that the underlying
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data are unbiased and that the methods for data generation are also unbiased. Nevertheless,
biases in synthetic data can also be addressed, for instance, through human checkers who
oversee the data generation process [197], or with the assistance of data augmentation
techniques [54,198]. There are also approaches that measure the fairness of synthetic data,
such as using a two covariate-level disparity metric [199].

4.5. Privacy

Strictly speaking, privacy is not a purely technical aspect of Trustworthy AI. However,
technical methods and concepts, particularly on the data side, can substantially contribute
to privacy. Hence, we also included this aspect in this survey.

Developing robust and effective AI requires large amounts of data [33], which is
not always straightforward to obtain due to data protection regulations. The majority
of datasets contain people’s personal information, which is justifiably strictly protected
in many countries. Furthermore, the collection of real-world data is generally under
strict protection. As exemplified by the collection of facial datasets, privacy concerns
can be incredibly complex [200]. Privacy regulations pose a challenge due to differing
implementations across countries, necessitating specialized legal expertise for any privacy
assessment. In academic research, it is recognized that there exists a known issue regarding
the possible disclosure of attributes in datasets. To address this concern, concepts and
approaches have already been proposed, such as described in [201,202].

Synthetic data have the potential to provide a solution to the privacy problem de-
scribed. Nonetheless, it is a widespread misconception to assume that synthetic data
always satisfy privacy regulations [54]. If synthetic data are derived from real-world data,
they may disclose information about the original data that underlie it, potentially due to
comparable distributions, outliers, and low-probability incidents. As a result, producing
synthetic data that ensures privacy requires considerable effort.

In general, two objectives can be distinguished for synthetic data and privacy: gener-
ating synthetic data to enhance privacy and ensuring privacy in synthetic data.

Privacy in synthetic data can be achieved by using certain techniques, such as data
anonymization [203] or data concealment [201]. By synthesizing data, data anonymization
can be achieved by removing or anonymizing personal information from the original
real-world data to protect privacy [204]. When generating synthetic data, they can often be
useful to hide certain information in the data to protect sensitive or confidential data.

According to [205] there are privacy-enhancing technologies exist that allow for legally
compliant processing and analysis of personal data, such as federated learning (FL) [206] and
differential privacy (DP) [207].

The concept of FL was originally designed and developed to enable the training of ML
algorithms while adhering to privacy regulations [208]. FL attempts to protect the security
and privacy of local raw training data by maintaining it at its source or storage location,
without ever transferring it to a central server [209].

In the energy domain, this means that one way to comply with privacy regulations
would be to create synthetic energy data at the edge, such as in a private household or
in an industrial building itself. In order to be able to create synthetic data on the edge,
the framework used to create it must run on the edge as well. Moreover, the framework
should have the capability to store and save the synthetic data within the edge environ-
ment. However, not only would the synthetic data need to remain in this environment,
but also the ML models that are trained or refined on this synthetic data. ML models
such as Non-Intrusive Load Monitoring disaggregation [74], energy forecasting [210] or
human activity recognition models [211] would then be trained and fine-tuned by using FL
concepts [212–214]. As a result, the original real-world data, the synthetic data themselves,
as well as the ML models used can remain within the edge environment.

However, there are potential risks associated with utilizing FL systems, as the trained
ML models may become vulnerable to attacks if exported from the edge environment [215].
Although this does not allow access to the actual model data, it is still possible to obtain the
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parameters and weights of the trained ML models [216]. To improve security, FL can be
combined with other privacy-enhancing technologies such as differential privacy [217].

Differential Privacy (DP) is a mathematical concept of ensuring privacy by adding noise
to data in order to protect personally identifiable information [202]. Increasing the amount
of noise added makes it increasingly difficult to recognize the original data, resulting in
a greater protection of privacy. The concept of DP has been well-established and applied
to the concept of FL [218–220]. DP has also been utilized for various use cases involving
synthetic data [221–224].

A major challenge in ensuring privacy is the reliable evaluation of whether the synthe-
sized data are sufficiently anonymous after implementing concepts such as DP, i.e., whether
personal data can be derived. Controversial opinions exist in the literature regarding
this matter.

According to [225], there are no robust and objective methods to determine whether
a synthetic dataset appears sufficiently different from its real-world counterpart to be
classified as an anonymous dataset.

Despite this opinion, there are also studies that propose criteria to determine the
quality of synthetic data in terms of privacy. According to [226], there are different criteria
to measure the quality of the synthetic data in terms of privacy, including the exact match
score, the neighbors’ privacy score, and the membership inference score.

The exact match score indicates whether the synthetic data contain any copies of the
real-world data [227]. A score of zero implies that there are no duplicates of the authentic
data in the synthetic data. However, this score is problematic when synthetic data are
generated based on real-world data. For example, if real energy data from freely available
datasets are used to create synthetic data, the exact match score will be very high due to
the (intended) copies of the real-world data within the synthetic data. However, if the
real-world data are anonymized, the synthetic data will also be anonymous, even if the
exact match score is high.

Related to the previous score is the neighbors’ privacy score, which measures whether
there are similarities between the synthetic data and the real data. Although these are
not direct copies, they are potential indicators of information disclosure. For generating
synthetic energy data based on real-world data, the neighbors’ privacy score potentially
encounters similar issues as those previously addressed in relation to the exact match score.

A membership inference attack aims to uncover the data used for generating synthetic
data, even without the attackers having access to the original data [228–230]. The membership
inference score represents the probability that such an attack will be successful. A high score
indicates that it is unlikely that a particular dataset was used to generate synthetic data.
Conversely, a low score indicates that it is likely that a particular dataset was used to
generate synthetic data. If a dataset is identified by such an attack, private information
could be exposed. Despite this, freely available energy datasets have been usually protected
by omitting any direct personal information [231–234].

Before synthetic data can be widely utilized in the energy domain, it is necessary
to carefully consider all relevant privacy concerns that have been previously discussed.
Moreover, it is important to understand the relative positioning of the produced synthetic
data with respect to the original data in relation to the information it potentially reveals.

When generating synthetic energy data using real-world data, the energy consumption
data of machines or devices can be included. Depending on the extent to which synthetic
data permits inferences to be drawn from real data, there are privacy regulations that
must be followed. If the energy consumption patterns of machines cannot be linked to
humans, it is likely that data protection regulations are met. On the other hand, if it is
possible to identify and reconstruct when the machines were activated, it is possible to
draw conclusions about human behavior from the real data. For instance, it is feasible
to ascertain how an individual behaves at their home based on their usage of electronic
devices in their personal space, or even to determine if an individual is at home at all.



Energies 2024, 17, 1992 17 of 29

However, human behavior is protected by a much higher level of data privacy, which is
very strict and well-protected by data protection regulations in most countries. For instance,
as stated in Article 4 (1) of the EU’s General Data Protection Regulation (GDPR) [235],
personal data is understood as “any information relating to an identified or identifiable
natural person”.

When generating synthetic energy data, it is crucial to ensure that no data protection
regulations are violated. This involves preventing the derivation of human behavior that
could be traced back to any specific individual based on the synthetic data. If synthetic
energy data are generated independently of the behavior of a real individual, and cannot
be traced back to a specific person, then they generally do not violate any privacy rights.
For instance, to prevent the disclosure of human behavior in synthetic data, it can be
anonymized or randomized in a way that maximizes the difficulty of tracing it back to
the original real data. Furthermore, the behavior of simulated individuals designed to
generate data for critical situations that do not occur in the real world can be entirely
custom-built and not based on real behavior. Therefore, the behavior of a real individual
cannot be disclosed.

The use of synthetic data in combination with the strong privacy protection of the
underlying original data allows a balance between transparency (see Section 4.2), data
protection and research objectives [236].

4.6. Sustainability

The concept of sustainability can be considered as a technology part of AI, including
the methods to train AI and the actual processing of data by AI [237].

The field of AI sustainability can be divided into two categories: on the one hand,
AI methods and concepts that aim to reduce energy consumption and emissions, and on
the other hand, the development of environmentally friendly AI itself [237]. This survey
focuses on the second category of sustainability, hereafter referred to as the concept of
sustainability of AI.

Definition 4. “Sustainability of AI is focused on sustainable data sources, power supplies, and
infrastructures as a way of measuring and reducing the carbon footprint from training and/or tuning
an algorithm.” [237].

AI systems generally require a lot of computing resources over a long period of time
to achieve robustness and provide valuable outcomes (see Section 4.1). Large models, such
as natural language processing models, are dependent on large-scale data centers, which
consume vast amounts of energy and resources and thus emit considerable amounts of
CO2 [238]. For instance, training the complex architecture of the ChatGPT model requires a
considerable amount of computing resources like GPUs over a period of months [239].

The purpose of the concept of sustainability of AI is to highlight these previously
mentioned issues and to ensure sustainable and environmentally friendly AI development.
With the transition towards sustainable energy and the growing scarcity of resources, it has
become crucial to focus on reducing energy and computational resource usage. Therefore,
there is a necessity to develop model architectures and training techniques that are more
energy-efficient [239]. The carbon footprint of developing and training ML models should
be in a healthy proportion to its benefits.

In order to develop more environmentally friendly ML models, understanding the
amount of energy, resources, and CO2 emissions consumed in the model development
process is crucial. This also covers the emissions of the server during the model training,
including the energy consumption of the hardware and the energy grid of the server [240].
There are methods and frameworks available for tracking emissions [240,241]. To achieve
sustainability of AI, researchers and developers should publish the energy consumption
and carbon footprint data of their ML models [242]. This would enable other researchers
and developers to compare the energy usage of their models, which would encourage
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healthy competition and also be an important contribution to the transparency aspect of
Trustworthy AI (see Section 4.2).

There are already some concepts that address how AI systems, and computer sys-
tems, in general, can become more environmentally friendly and thus ultimately consume
fewer resources. These include green AI [243], cloud computing [244], and power-aware
computing [245].

Synthetic data can contribute substantially to the advancement of sustainable devel-
opment and sustainability itself by reducing the need for data collection in the real world,
which can cause numerous problems. Especially in the energy domain, data collection
is not only time-consuming but also resource-intensive (see Section 3.1). This is due to
the fact that acquiring data in this domain primarily involves the utilization of hardware
such as sensors, which consume energy themselves [246] as well as requiring considerable
amounts of cost and resources for their production [247,248].

If synthetic data are sufficiently well designed and generated, many of the time- and
resource-consuming steps involved in preparing and preprocessing real-world data can be
eliminated. These include various steps such as filling gaps in data, annotating data with
human assistance, or debiasing data (see Section 4.4).

Following the arguments presented throughout this survey, synthetic data, if gener-
ated appropriately, offer the potential to develop more robust and effective ML models.
Consequently, this could potentially lead to process improvements, ultimately resulting
in energy and resource efficiencies in the long term. This includes ML models focused on
improving energy efficiency and sustainability. For instance, there are models designed to
enhance sustainability in the food [249] and smart cities domains [250], as well as energy
prediction models for buildings [251].

However, the development of simulations and thus the generation of synthetic data
is initially associated with development efforts and costs energy and resources [252–254].
The greater the amount of data generated via an established simulation framework, the
greater the benefit compared to real data. However, this is only valid if the synthetic data
prove to be sufficiently useful.

Therefore, it is crucial to ensure that generating synthetic data consumes less energy
than collecting data in the real world. This applies to the entire process, including both the
development of the simulation framework used to generate the data and the generation
of the synthetic data themselves. If it can be ensured that generating synthetic data
consumes less energy than collecting real-world data, then synthetic data will be a powerful
cornerstone to improving the sustainability and environmental friendliness of AI systems.

5. Discussion: Open Issues and Further Directions

This survey focused on analyzing how synthetic data can contribute to accelerating
the development of efficient, reliable, and sustainable aspects of Trustworthy AI in the
energy domain. To address the trend of using synthetic data for training ML models,
we introduced the term Synthetic Data-Centric AI (SDCAI) as an extension of the DCAI
approach. Further, we analyzed different aspects of Trustworthy AI, selected technical
factors, and considered them from the perspective of the SDCAI approach. We examined
the potential(s), opportunities and risks of synthetic data in the energy domain for each
of the technical aspects of Trustworthy AI mentioned in more detail. Although this work
focuses on the energy domain, we are convinced that many of the results are transferable
to other domains due to their characteristics.

Altogether, we identified a total of eight technical factors in the areas of efficiency,
reliability and sustainability that should be satisfied in order for data and the resulting
ML models trained on those data to be classified as trustworthy: technical robustness and
generalization (see Section 4.1), transparency and explainability (see Section 4.2), reproducibility
(see Section 4.3), fairness (see Section 4.4), privacy (see Section 4.5) and sustainability (see
Section 4.6). Table 1 summarizes the literature and the main potentials of synthetic data
identified in this review to improve the considered technical aspects of Trustworthy AI.
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Table 1. Overview of the literature and the main potentials of synthetic data identified in this review
to improve the considered technical aspects of Trustworthy AI.

Technical Aspect Literature Potentials by Using Synthetic Data

Technical Robustness
and Generalization [54,72,109–128]

Data of critical and unusual situations
Divers training and testing datasets

Synthetic Benchmark datasets

Transparency [55,61,74,95,96,129–148]
Training Black Box Models

and Explainability Provision of Metadata
Synthetic Benchmark datasets

Reproducibility [17,149–162] Replacing missing data
Synthetic Benchmark datasets

Fairness [43,47,54,61,114,141,163–199] Data augmentation
Fair Data design

Privacy [33,54,74,200–236]
Federated Learning
Differential Privacy

Data anonymization and randomization

Sustainability [237–254]
Reducing Real-World Data Collection
Reducing real-world Data Preparing

and Preprocessing

Considering the results of our analysis, a general and essential feature of synthetic data
is their configurable nature and the control afforded by the design-to-generation process,
which distinguishes them from real-world data that are only collectible. The circumstances
under which real-world data are recorded are often not transparent and reproducible in
retrospect. In contrast, due to the controllability of the design-to-generation process, the
production of synthetic data is reproducible in structure, repeatable, and widely accessible.
This is crucial as synthetic data that are generated properly are not only technically accurate
but also transparent and reliable, ensuring key attributes such as correct annotation and
labeling of data.

Generating synthetic data allows ML models to be trained and tested on theoretically
any amount of data with high variability, resulting in increased technical robustness. In
particular, carefully designed synthetic data enable the generation of critical situations
that do not occur in real-world data but are essential for achieving a high generalization
capability. If generated properly, synthetic data can be used to improve the performance of
ML models in the energy domain, thus increasing the technical robustness as well as the
generalizability [17].

Additionally, synthetic data enable the development of transparent and more explain-
able black-box models. The reason for this is that properly designed synthetic datasets have
a high level of transparency because it is possible to understand exactly what methods were
used to generate them. In general, more transparent and explainable data can increase trust
in the ML models trained on these data [134], thus making them more reliable. Synthetic
benchmark datasets offer improved transparency by providing completely labeled and
annotated data without issues such as data gaps or differing frequencies. Specifically, syn-
thetic benchmark datasets allow for improved ML model reproducibility as transparent and
publishable data are a necessary prerequisite for reproducibility [161]. As a consequence, it
would be highly desirable to have synthetic benchmark datasets available for the energy
data domain as well.

Fairness can be improved through the use of synthetic data and thoughtful data
design, which allows avoiding the biases that are often present in real-world datasets. One
approach to conducting this is to design data that are representative of a wide range of
ethnic and demographic groups. Moreover, synthetic data can also be used to protect
privacy by removing or anonymizing personal information from real datasets [204].
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Synthetic data allow for minimizing data collection in the physical world, as fewer
sensors are required to collect data. Moreover, synthetic data can foster the development of
more resilient ML models that are designed to optimize processes to advance sustainability.

Due to the objective of this survey, the aspects of Trustworthy AI considered have a
strong technical perspective and are not exhaustive. There are additional non-technical
aspects of Trustworthy AI that were not addressed in this survey due to their diminished
relevance to synthetic data. Moreover, synthetic data may only be partially effective in
addressing non-technical aspects of Trustworthy AI, if effective at all.

The development of methods and concepts for generating trustworthy synthetic data
is an ongoing process, and further research is needed to fully exploit the potential of this
emerging technology. This survey has identified several open questions that need to be
addressed in the future in order to realize the full potential of synthetic data for accelerating
the development of Trustworthy AI. These questions involve determining a reliable method
of measuring the utility of synthetic data, as well as how to provide a reliable measure
that synthetic data are not biased in any way. An additional question that requires further
investigation is the optimal balance between real and synthetic data when augmenting data
in order to achieve the best possible results. Furthermore, it is necessary to determine which
real data should be available in order to generate useful synthetic data. This applies both to
the energy domain and across domains. Another question that requires clarification is the
extent to which the training and testing of ML models benefit from the inclusion of critical
situations in a dataset and whether it is possible to quantify this benefit. Furthermore, it is
essential to define the minimum number of critical situations that should be present in a
dataset and to determine their composition. With additional research, it may be possible to
establish generalizable and cross-domain principles for generating critical situations.

Irrespective of the domain, the decision to use synthetic data for training ML models
should be made with caution, as it takes a considerable amount of development time to
ensure that the data are useful and can adequately represent a domain. It is essential that
synthetic data are of a certain quality and properly designed to achieve Trustworthy AI.

However, once this initial development time has been invested, synthetic data, if
generated and used correctly, has great potential to substantially increase the level of
trust in AI in any of the considered technical factors. Trustworthy AI principles and
methods are capable of improving the quality of synthetic data, so they should be a key
consideration when generating synthetic data. As this survey showed when of sufficient
quality, synthetic data allow an increase in the level of trust in the technical robustness,
generalizability, transparency, explainability, reproducibility, fairness, privacy, and sustainability
of AI applications in the energy domain.
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