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Abstract: Due to the influence of parasitic internal parameters and junction capacitance, the silicon
carbide (SiC) power devices are frequently marred by significant overshoots in current and voltage,
as well as high-frequency oscillations during the switching process. These phenomena can severely
compromise the reliability of SiC-based power electronic converters during operation. This study
delves into the switching transient of the SiC MOSFET with the goal of establishing a quantitative
correlation between the gate driving current and the overshoot in both the drain-source voltage and
the drain current. In light of these findings, the innovative active gate drive (AGD) circuit, which
features an adjustable gate current, is introduced. Throughout the switching process, the AGD circuit
employs a dynamic monitoring and feedback mechanism that is responsive to the gate voltage and
rate of change in the drain-source voltage and drain current of the SiC MOSFET. This adjustment
enables gate driving current to be actively modified, thereby effectively mitigating the occurrence
of overshoots and oscillations. To empirically validate the efficacy of the proposed AGD circuit in
curbing voltage and current overshoots and oscillations, a double-pulse experimental setup was
meticulously constructed and tested.

Keywords: overshoot; oscillation; active gate circuit adjustment; turn-on and turn-off detection

1. Introduction

Silicon carbide (SiC) is a new semiconductor material with a wide bandgap and high
breakdown voltage. Its bandgap width is approximately three times that of silicon (Si),
and its breakdown voltage exceeds that of Si by over 10 times [1]. SiC MOSFETs are also
renowned for their exceptional properties, including a high blocking voltage capacity,
minimal on-state resistance, superior thermal conductivity, and rapid switching speeds [2].
Consequently, the implementation of SiC MOSFET has been recognized and adopted across
a broad spectrum of industrial applications. This includes areas like the propulsion systems
of electric vehicles, the technology-laden aerospace sector, and the burgeoning field of
renewable energy [3,4]. However, with the escalation of the switching frequency in SiC
MOSFETs, the susceptibility of these devices to internal parasitic elements and junction
capacitance is amplified. According to the literature [5], the rate of voltage change (dV/dt)
for 10 kV SiC MOSFETs can exceed 140 V/ns. This figure is the voltage rate immunity
threshold of a majority of driver-integrated circuits (ICs). Concurrently, the high-speed
transition of states leads to significant overshoots in both voltage and current, accompanied
by oscillatory phenomena [6,7], leading to intensified electromagnetic interference (EMI),
increased device loss, and shortened lifetimes [8,9]. Therefore, to enhance the security
and dependability of SiC-based circuit systems, research on suppression methods for the
overshoot and oscillation has important theoretical value.

Active gate drive (AGD) is a circuit composed of active devices based on a conven-
tional drive circuit (CGD), which changes the structure of the gate drive circuit at specific
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stages of the switching procedure to optimize switching characteristics of SiC MOSFETs [10].
Therefore, AGD has been extensively studied by scholars in recent years, and three driving
schemes have been proposed: variable driving resistance [11,12], variable driving volt-
age [13–15], and variable driving current [10,16,17]. A short-circuit resistance method is
proposed in [11]. By controlling the gate drive resistance at different stages, the drive
resistance is increased as the current ascends during the turn-on stage and decreased as the
voltage ascends during the turn-off stage. Such an approach is instrumental in diminishing
the peak reverse recovery current experienced by the body-diode, but the gate voltage de-
tection is easily disturbed by gate loop oscillation, causing erroneous switching actions. A
multi-stage AGD drive circuit is proposed in [15], equipped with two-level circuits, a main
drive and an auxiliary drive. However, this circuit is relatively complex, and the switching
of the drive circuit requires software implementation, which reduces the reliability and
practicality of the system. An AGD circuit based on a mirror current source is presented
in [16]. During various stages of the switching operation, the phenomena of the overshoot
and oscillation of the voltage or current can be effectively mitigated through the strategic
modulation of the driving current. A proposed solution involves the implementation of an
AGD for SiC MOSFETs, characterized by a segmented and dynamic adjustment mechanism
for the driving current. This system is capable of making real-time adjustments to the gate
current based on the transient feedback received at different stages of the switching process,
as referenced in [10]. However, this design is somewhat complex and involves the use
of an excessive number of active switching components. An alternative AGD is crafted
with a focus on the principal factors that contribute to current and voltage overshoot and
oscillation, as indicated in [17]. This driver is engineered to counteract these issues by
selectively increasing the gate resistance and decreasing the gate driving current at specific
intervals. However, this solution will increase losses. The essence of the AGD method of
variable drive resistance and variable drive voltage is adjusting the gate drive current, so
the variable drive current solution is simpler and more practical. Since the switching pro-
cess is very short, the generation mechanism of the drive circuit control signal is a difficult
part of the AGD solution. At the same time, it is necessary to prevent incorrect operation of
the AGD circuit due to switching signal jitter or oscillation of voltage and current.

Based on the characteristics analysis for the turn-on and turn-off process of the SiC
MOSFET, an AGD circuit for dynamic adjustment of the drive current is proposed. With
the transient detecting the gate voltage, change rate of the drain current, dynamically
controlled to mitigate overshoots and the drain-source voltage of SiC MOSFET, the gate
drive current is and prevent oscillations. This circuit has the advantage of a simple structure,
high detection accuracy, accurate control signal generation time, and high reliability. To
validate its performance, a double-pulse experimental setup was constructed to test the
AGD circuit’s effectiveness in mitigating voltage and current overshoots and oscillations.

2. Analysis of SiC MOSFET Switching Characteristics

Figure 1 illustrates the double-pulse circuit model, which accounts for the parasitic
parameters inherent to the SiC MOSFET, where M1 and M2 are the ideal models of the
SiC MOSFET and diode, respectively. Cgd, Cgs, and Cds represent the gate-drain, gate-
source, and drain-source capacitances, respectively. Rg denotes the gate resistance, and
Lg, Ld, Ls and LS correspond to the parasitic inductances associated with the gate lead,
drain-gate connection, Kelvin sense terminals, and power source. Meanwhile, the circuit
incorporates the notions of input capacitance Ciss, output capacitance Coss, and reverse
transfer capacitance Crss to delineate the inter-capacitance relationships at each junction.
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Figure 1. Equivalent circuit model for the double-pulse test configuration. 
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Figure 2. The turn-on characteristics of SiC MOSFET. 

Stage (t0~t1): When the gate charging is delayed, the gate-source voltage Vgs transi-
tions from VEE (negative voltage) to VCC (positive voltage), with Ciss being charged via the 
gate drive resistor. During this stage, Vgs is less than the threshold voltage Vth, resulting in 
no change to Vds (drain-source voltage) and Id (drain current), which remain in a static 
state. 

Stage (t1~t2): At t1, upon Vgs attaining the threshold voltage Vth, the gate current per-
sists in charging the input capacitor Ciss, and the drain current Id incrementally ascends 
towards IL (load current). This rise can be subject to the influence of the reverse recovery 
current Ir from the anti-parallel diode. Id will continue to increase and reach the current 
spike Id_peak at t2. Id_peak can be expressed as follows: 

d_peak L rI I I= +  (1)

Ir is positively related to the drain current change rate dId/dt: 

r rr dd dI Q I t=   (2)

where Qrr signifies the reverse recovery charge associated with the anti-parallel diode. The 
change rate of Id, denoted as dId/dt, can be approximated as follows: 

Figure 1. Equivalent circuit model for the double-pulse test configuration.

2.1. Analysis of Turn-on Characteristics

The characteristic curves of the turn-on process, depicted as Figure 2, are primarily
divided into four stages:
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Stage (t0~t1): When the gate charging is delayed, the gate-source voltage Vgs tran-
sitions from VEE (negative voltage) to VCC (positive voltage), with Ciss being charged
via the gate drive resistor. During this stage, Vgs is less than the threshold voltage Vth,
resulting in no change to Vds (drain-source voltage) and Id (drain current), which remain
in a static state.

Stage (t1~t2): At t1, upon Vgs attaining the threshold voltage Vth, the gate current
persists in charging the input capacitor Ciss, and the drain current Id incrementally ascends
towards IL (load current). This rise can be subject to the influence of the reverse recovery
current Ir from the anti-parallel diode. Id will continue to increase and reach the current
spike Id_peak at t2. Id_peak can be expressed as follows:

Id_peak = IL + Ir (1)

Ir is positively related to the drain current change rate dId/dt:

Ir =
√

Qrr·dId/dt (2)
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where Qrr signifies the reverse recovery charge associated with the anti-parallel diode. The
change rate of Id, denoted as dId/dt, can be approximated as follows:

dId
dt

=
(VCC − Vth)gm

CissRg + gmLs
≈ gm ×

Ig

Ciss
(3)

According to (2) and (3), the relationship between Ir and Ig can be expressed as

Ir =

√
gm IgQrr

Ciss
(4)

It can be seen from Equation (4) that Ir is positively correlated with Ig. Therefore,
reducing Ig can effectively reduce the drain current spike.

Stage (t2~t3): The reverse recovery charge is completely released, Id returns to IL
and remains unchanged, and Vgs is clamped at the Miller voltage Vmiller. The gate-drain
capacitor Cgd is charged with a constant gate current Ig, and the anti-parallel diode begins to
block Vds. Vds gradually decreases to zero. Ig can be articulated by the following expression:

Ig =
Vcc − Vmiller

Rg
(5)

The rate of change for Vds is given by the expression:

dVds
dt

= −
Ig

Cgd
(6)

Substituting Equation (6) into Equation (5), tdown, the duration of the Vds drop process,
can be obtained as

tdown =
Cgd(Vdc − Vds)

Ig
(7)

Stage (t3~t4): The gate current continues to charge Cgs until the device is saturated.
Vgs rises exponentially to the reference gate voltage VCC, Vds drops to a value close to zero,
and Id is maintained at IL.

2.2. Analysis of Turn-off Characteristics

The characteristic curves of the turn-off process, depicted in Figure 3, are primarily
divided into four stages:
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Stage (t5~t6): The drive voltage transitions from VCC to VEE, and Ciss starts to discharge
through the gate resistance Rg and source resistance Ls. Id and Vds remain unchanged. At
t6, Vgs drops to the Miller voltage VMiller.

Stage (t6~t7): Vds gradually increases, but Id remains unchanged.
Stage (t7~t8): As Vgs descends to the threshold voltage, Id diminishes swiftly, thereby

generating an induced voltage across the circuit’s parasitic inductance. This induced
voltage, when combined with the DC-bus voltage, results in a voltage spike, denoted as
Vds_peak. The spike can be formulated as

Vds_peak = Vdc + Lloop
dId
dt

(8)

where Lloop represents the total parasitic inductance of the whole double-pulse circuit. The
change rate of Id is

dId
dt

=
(Vth − VEE)gm

CissRg + Lsgm
≈ gm ×

Ig

Ciss
(9)

According to (9), diminishing the gate current Ig serves as an effective approach to
curtailing voltage overshoot during the voltage increase stage.

Stage (t8~t9): Vgs drops to the negative voltage VEE. The overvoltage will oscillate,
attenuated until stable.

In light of the preceding analysis, during the ascent of Id in the turn-on stage, the
surge in Id can be mitigated by extracting Ig. Likewise, during the increase in Vds in the
turn-off stage, the excess in Vds can be curtailed by injecting Ig. To minimize switching
losses, the original Ig should be restored in other phases of the switching process. This
restoration can shorten the charging and discharging duration of Cgd within the Miller
plateau, thus enhancing the switching rate. This study introduces an active gate current
adjustment circuit that leverages the transient feedback of the change rates of Vgs, Id, and
Vds for dynamic regulation.

3. Hardware Implementation of the Proposed AGD Circuit

The proposed AGD circuit is shown in Figure 4. It is divided into four parts: (1) detec-
tion circuit of turn-on current rising state; (2) turn-off voltage rising state detection circuit;
(3) current shunt circuit; and (4) current injection circuit. The specific implementation
schemes of each circuit are as follows:
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(1) The detection circuit of the turn-on current rising state comprises a dId/dt detection
circuit and a Vgs-on voltage detection circuit. The dId/dt detection circuit utilizes LsS, the
parasitic inductance between the Kelvin source and the power source, which generates
an induced voltage VsS due to the change in current, so the signal of dId/dt is converted
into a voltage signal for detection. To detect the voltage signal during the current rising
stage in the turn-on process, a diode D1 is employed to filter out spurious signals that may
arise from the descent of the current during the turn-off stage. The induced voltage of
LsS is detected when the SiC MOSFET is turned on, and is compared with the reference
voltage Vr3 to generate a corresponding logic signal. The value of Vr3 is defined by the
following equation:

Vr3 = LsS ×
(VCC − Vth)gm

CissRg + gmLs
× R9

R8 + R9
(10)

The Vgs-on voltage detection circuit, with voltage dividing resistors (R6 and R7), com-
parators (OP1 and OP2) and AND gate (AND3), eliminates the interference from the current
rising stage and Id oscillation after device turn-on. By detecting whether Vgs is within
the interval [Vth, Vmiller] and using the logic signal from the dId/dt detection circuit, the
phase of current increase during the turn-on process is accurately identified. The values of
comparison voltages Vr1 and Vr2 are defined by the following equations, respectively.

Vr1 = Vmiller ×
R7

R6 + R7
(11)

Vr2 = Vth × R7

R6 + R7
(12)

(2) Voltage rising state detection circuit for turn-off stage: It consists of two parts,
dVds/dt detection circuit and Vgs-off detection circuit. The detection circuit of the dVds/dt
utilizes a differential circuit to calculate the voltage change rate of Vds during the turn-off
stage, then the dVds/dt is converted into a voltage signal. This signal is compared with
the reference voltage Vr6 through a comparator. It should be noted that the diode D2
is employed to block the interference signals generated during the turn-on stage. Vr6 is
defined by the following equation:

Vr6 = R4C × VEE − Vmiller
Cgd × Rg

× R4

R4 + R3
(13)

Similarly to the turn-on part, the Vgs-off voltage detection circuit, consisting of voltage
dividing resistors (R3 and R4), comparators (OP4 and OP5) and an AND gate (AND2), is
designed to eliminate interference caused by Vds oscillation after the device is turned on.
By detecting whether Vgs is within the interval [Vr4, Vr5] and cooperating with the logic
output signal from the dVds/dt detection circuit, the phase of voltage increase during the
turn-off process is accurately identified. The values of the comparison voltages Vr4 and Vr5
are determined by the following equations, respectively.

Vr4 = Vmiller ×
R7

R6 + R7
(14)

Vr5 = Vgs(t7A)×
R1

R2 + R1
(15)

Vgs(t) = VEE + (Vmiller − VEE)×
(

1 − e−tif/Rg×Ciss
)

(16)

tif = Rg(CGS + CGD)× ln
Vth − ID

gm
− VEE

Vth − VEE
(17)

(3) Extraction circuit: It includes a push–pull amplifier circuit, MOS1, diode and
resistor. The detection signal, generated by the current rising state detection circuit, is
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amplified by the push–pull circuit and drives the MOS1 to conduct. A portion of the gate
current flows out through MOS1 and R10.

(4) Injection circuit: The structure is similar to that of the shunt circuit. The detection
signal, generated by the turn-off voltage rising state detection circuit, drives the MOS2
to conduct through the push–pull circuit. Reversed gate current is injected into the gate,
reducing the discharge current during the turn-off process.

4. Active Drive Control Process
4.1. Turn-on Process Control

As the SiC MOSFET is turned on, Vgs, Id, Vds and other signal waveforms of each
detection circuit are as shown in Figure 5. The control process is categorized into four stages.
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(1) During the delay stage (t0–t1), the external drive signal transitions from VEE to
VCC, and Vgs gradually rises. At this stage, Vgs does not reach the lowest set voltage Vr2,
so the AND3 outputs the low-level voltage. Both the dId/dt detection circuit and dVds/dt
detection circuit have no induction signal output.

(2) During the current rising stage (t1–t2), when Vgs satisfies the math condition
(Vr2 < Vgs < Vr1), the AND3 outputs the high-level voltage. At the same time, the rapidly
rising gate current generates an induced voltage on the auxiliary source inductor LsS. After
voltage division, when the induced voltage VsS satisfies the following condition:

VsS >
R8 + R9

R9
Vr3 (18)

OP3 outputs the high-level voltage. Meanwhile, AND1 receives two high-level input signals
and outputs the high-level voltage. Through the push–pull amplification circuit, the MOS1
is controlled to be turned on, the circuit of the current extraction is turned on, and partial
gate current will flow to the ground through R10, namely Ig1. The gate drive current is
reduced to Ig−Ig1, the change rate of Id also decreases with the decrease in Ig, and the
corresponding overshoot of Id is reduced. At this stage, the current injection circuit remains
in the state of low-level voltage output.

(3) During the current oscillation stage (t2–t3), several cycles of oscillation will occur,
causing the dId/dt detection circuit OP3 to generate a high-level signal again. However,
since Vgs is larger than Vmiller, AND3 outputs the low-level voltage and MOS1 is turned
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off at this moment, so the circuit of the current extraction is blocked. Meanwhile, the gate
drive current returns to Ig.

(4) During the stage (t3–t4), when the SiC MOSFET is fully turned on, the induction
signal of the dId/dt detection circuit outputs a low-level voltage, the control circuit does
not work, and MOS1 remains in the turn-off state.

4.2. Turn-off Process Control

As the SiC MOSFET is turned off, Vgs, Id, Vds and other signal waveforms of each
detection circuit are as shown in Figure 6. The control of the turn-off process mainly
includes four stages.
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(1) During the turn-off delay stage (t5–t6), the external drive signal transitions from VEE
to VCC, and Vgs gradually decreases. At this stage, Vgs is greater than Vr4, the maximum
reference value set for the turn-off state detection circuit, and AND2 outputs the low-level
voltage. The SiC device is in the turn-off delay stage, Both the dId/dt detection circuit and
the dVds/dt detection circuit have no induction signal output.

(2) During the voltage rising stage (t6–t7), when the gate voltage satisfies the math
condition (Vr5 < Vgs < Vr4), the AND2 of the turn-off detection circuit outputs high-level
voltage. The drain-source voltage Vds rises rapidly, and the dVds/dt detection circuit
generates an induced signal. The induced voltage signal is greater than the threshold
voltage Vr6 after being divided by the resistor R3 and R4, and the comparator OP6 outputs
high-level voltage. Then, the AND4 receives two high-level signals and outputs high-level
voltage. After the push–pull amplifier circuit increases the current, the MOS2 is controlled
to be turned on, the current injection circuit is turned on, and Ig2 is injected into the gate
terminal. At the moment, the gate current is −Ig + Ig2, so the corresponding turn-off voltage
overshoot is reduced.

(3) During the voltage oscillation stage (t7–t8), after the rising stage of Vds, Vds tends to
stabilize after oscillating. The dVds/dt detection circuit will output a high-level signal again
during the oscillation process. However, Vgs is less than Vr5 after voltage division. The
AND4 outputs a low-level voltage, and MOS2 is turned off in time. The current injection
circuit is blocked, and the gate drive current returns to Ig.

(4) During the stage (t8–t9), when the device is fully turned off, Vds and Ig tend to
have a constant value, and the output of each detection circuit is low-level voltage. At this
time, the control circuit does not work, and MOS2 remains in the turn-off state.
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5. Experimental Results and Analysis

To substantiate the efficacy of the AGD circuit designed and proposed in this paper,
an experimental setup of the double-pulse topology was established, as shown in Figure 7a.
The SiC MOSFET module model was CAS300M12BM2, with its parameters provided in
Table 1. The oscilloscope was a Tektronix MDO3024. A DSP28335 control board was
utilized to produce the double-pulse signal, and the load inductance value was 48.5 µH.
The proposed active gate drive circuit, as shown in Figure 7b, includes the detection and
control circuit for the turn-on and turn-off processes, and the SiC MOSFET module is
soldered under the circuit board.
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Table 1. The parameter values for the CAS300M12B2M module.

Parameter Value

Threshold gate voltage Vth 2.3 V
Reverse recovery charge of the anti-parallel diode Qrr 1.2 µC

Drain-gate parasitic inductance Ld 4 nH
Kelvin source parasitic inductance LsS 2.4 nH

Total parasitic inductance of the power circuit Lloop 48 nH
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The models of the devices adopted in the AGD are listed in Table 2.

Table 2. Models of devices used in the IC.

Device Model

Comparator TLV3501AI, TLV3502AI
Logical AND SNL17SZ08DFT2G

Amplifier 2N2222A, 2N2907A
MOS1 and MOS2 BSR302N, BSS308PE

The experiment compared the current, voltage overshoot, oscillation and losses during
the switching process for the proposed AGD and the conventional drive circuit (CGD)
under different DC bus voltage levels, gate resistance and load current conditions. A total
of nine groups of experimental operation conditions were established in this study, as
shown in Table 3.

Table 3. Experimental operation conditions.

Number Gate Resistance (Ω) Bus Voltage (V) Load Current (A)

1 3 300 110
2 6.8 300 110
3 10 300 110
4 6.8 200 75
5 6.8 350 130
6 6.8 400 145
7 6.8 300 45
8 6.8 300 70
9 6.8 300 140

5.1. Comparative Analysis of Different Gate Resistances

To validate the effectiveness of the proposed AGD circuit under different gate resis-
tance conditions, the experimental conditions were set as follows: bus voltage 300 V, load
current 110 A, and three different gate resistances of 3 Ω, 6.8 Ω and 10 Ω, respectively.
Under the same operating conditions, the experimental waveforms of Id, Vds and Vgs under
the proposed AGD circuit and under the CGD are as shown in Figure 8.
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Figure 8a~f demonstrate that the proposed AGD has a significant suppression effect
on overshoot and oscillation under different gate resistances. Among them, when the gate
resistance is 3 Ω, the peak of Id decreases from 187 A to 151 A. When the SiC MOSFET
is turned off, the peak of Vds decreases from 374 V to 354 V. When Rg is set as 6.8 Ω and
10 Ω, the current overshoot decreases by 27 A (44.3%) and 24 A (53.3%), respectively. The
voltage overshoot decreases by 28 V (53.8%) and 24 V (52.1%), respectively. Meanwhile,
the current and voltage of AGD can be quickly restored to steady state, with a smaller
oscillation amplitude and shorter oscillation time.

5.2. Comparative Analysis of Different Voltage Levels

To verify that the designed active drive circuit has superiority at different voltage
levels, the gate resistance was set to 6.8 Ω, the DC-bus voltage levels were set to 200 V,
300 V, 350 V, and 400 V, and the corresponding load currents were 74 A, 110 A, 129 A, and
147 A, respectively. The experimental results for AGD and CGD are shown in Figure 9a~f.
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Figures 9a~f and 8c,d illustrate that under the four different voltage level conditions, 
in the turn-on process, compared to CGD, the current overshoot of AGD decreases by 19 
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process, compared to CGD, the suppression effect on the current and voltage oscillation 
is obvious. 

5.3. Comparative Analysis of Different Load Current 
To verify that the proposed AGD circuit is effective under various load current con-

ditions, the gate resistance and DC-bus voltage were set as 6.8 Ω and 300 V, respectively. 
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Figure 9. Turn-on and turn-off waveforms at different values of Vds.

Figures 9a~f and 8c,d illustrate that under the four different voltage level conditions,
in the turn-on process, compared to CGD, the current overshoot of AGD decreases by
19 A, 26 A, 26 A, and 25 A, respectively, with an average decrease of 40.4%. In the turn-off
process, compared to CGD, the suppression effect on the current and voltage oscillation
is obvious.

5.3. Comparative Analysis of Different Load Current

To verify that the proposed AGD circuit is effective under various load current con-
ditions, the gate resistance and DC-bus voltage were set as 6.8 Ω and 300 V, respectively.
Four different load currents of 45 A, 70 A, 110 A, and 140 A were obtained by changing the
first pulse time. The results of the comparative experiment are depicted in Figure 10a~f.
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Figure 10. Turn-on and turn-off waveforms at different values of Id.

Figures 10a~f and 9c,d indicate that under the same gate resistance and bus voltage
conditions, the current and voltage overshoot, oscillation amplitude, and oscillation time
under the proposed AGD are significantly smaller than those under CGD. During the
turn-on process, compared to CGD, the current overshoot of AGD decreases by 15 A, 20 A,
27 A and 26 A, respectively, with an average decrease of 39.1%. In the turn-off process,
the voltage overshoot decreases by 12 V, 24 V, 28 V and 32 V, respectively, with an average
decrease of 48.9%.

5.4. Comparative Analysis of Switching Loss under Different Conditions

The switching loss comparisons under different gate resistances are shown in Figure 11.
Based on three group experiments under the same gate resistance condition, compared
with CGD, the average switching loss of the proposed AGD only increased by 26.41%.
Comparing Figure 8a with Figure 8e, it should be noted that the current suppression effect
of the proposed AGD under Rg = 3 Ω, was the same as that of CGD under Rg = 10 Ω.
However, the switching loss was 20.4 mJ, increasing by 46.76%.
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5.5. Comparative Analysis of EMI

By reducing the overshoot of Id and Vds during the turn-on and turn-off stages, the
emission of high-frequency electromagnetic interference from the SiC MOSFET can be
reduced. Under the conditions of Vds = 300 V, Id = 110 A, and Rg = 6.8 Ω, the spectrum
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analysis and comparison results for Id and Vds under the AGD and CGD circuits are as
presented in Figure 12 and Figure 13, respectively. It is obvious that the current and voltage
oscillations of CGD all generate spikes around 7.3 MHz, and the positions of the spikes are
basically consistent with the oscillation frequency. However, the spectrum amplitude of
AGD is significantly reduced, which verifies that the proposed AGD circuit can effectively
mitigate electromagnetic interference in the SiC MOSFET switching process.
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6. Conclusions

Based on the switching transient state feedback, an active gate drive (AGD) circuit for
SiC MOSFETs was proposed in this paper. Experimental results showed that the proposed
AGD circuit can effectively reduce the overshoot and oscillations of the SiC MOSFET drain
current and drain-source voltage. The following conclusions were formed:

(1) This paper proposes a high-precision transient detection method. The gate voltage
and change rate of the drain current together serve as the basis for determining the
current rise stage during the turn-on process, and the gate voltage and change rate of
the drain-source voltage together serve as the basis for determining the voltage-rising
stage during the turn-off process.

(2) This experiments in this paper only reduced the gate drive current during the current-
rising stage, injected the gate current during the voltage-rising stage, and did not
perform any operations during other stages of the switching process. Therefore, as the
experimental results indicate, without affecting the switching speed, the overshoot and
oscillation of the drain current and drain-source voltage can be effectively suppressed.

(3) The AGD scheme proposed in this paper has a simple structure and strong universal-
ity, eliminating the need for a digital signal processor. The resistance of the current
extraction circuit and current injection circuit and the threshold voltage can be ad-
justed to satisfy the requirements of the switching speed, switching loss, current and
voltage overshoot.
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