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Abstract: Human activities overwhelm our environment with CO2 and other global warming issues.
The current electricity landscape necessitates a superior, continuous power supply and addressing
such environmental concerns. These issues can be resolved by incorporating renewable energy
sources (RESs) into the utility grid. Thus, this paper presents an optimized hybrid fuzzy logic
self-tuning PID controller to control the automatic generation control (AGC) of various renewable
sources. This controller regulates the frequency deviations of the power system and governs the
change in the tie-line load of a multi-area hybrid energy system composed of wind, biomass, and
photovoltaic energy sources. MATLAB Simulink software was applied to design and test the system.
The PID controller has been tuned using four algorithms, namely, genetic algorithm (GA), pattern
search (PS), simulated annealing (SA), and particle swarm optimization (PSO), and we compared
the results with the proposed novel optimized PID controller (GA-fuzzy logic self-tuning technique)
to validate it. The results show the superiority of the proposed hybrid GA-fuzzy logic self-tuning
algorithm over the other algorithms in bringing the power system back to its regular operation. The
paper also proposes an operation strategy to lower the utilization of biomass energy in the presence
of other renewable energy sources.

Keywords: optimization techniques; automatic generation control; load frequency control; GA; PS;
SA; PSO; GA-Fuzzy

1. Introduction

The main objective of the electric power control technique is to generate power and
deliver it to the grid economically while preserving the voltage and frequency within
their permissible limits. Fluctuation in real power commonly affects the system frequency,
while reactive power impacts the voltage magnitude. Hence, real and reactive power are
controlled separately. Load frequency control (LFC) technology controls real power and
frequency and is the foundation of many modern concepts for controlling large systems.

When a sudden load occurs in the system, the turbine speed decreases before the
governor can calibrate the input of that system to the new load. As the turbine speed
decreases, the error signal becomes smaller and smaller, and the governor flyball’s position
becomes closer to the constant speed point; yet, there will be an offset in the speed. An
integrator is usually added to overcome the offset and restore the speed to its nominal
value [1]. As the load changes perpetually, the generation is regulated automatically to
restore the speed; accordingly, the frequency is set to the nominal value. This mechanism
is known as the AGC. The role of AGC in power grids is to distribute the loads among
the stations and the generators to attain optimal generation and to control the scheduled
interchanges of tie-line power while maintaining a steady frequency. Various studies have
been conducted on LFC and AGC, which address various modern control systems for the
power system’s successful generation [1].
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Figure 1 shows the AGC of an isolated power system, where H is the per unit inertia
constant, its unit is seconds, and its value ranges between zero and one second based on
the size and the type of the machine. The D is the damping coefficient. R is the droop
voltage magnitude; governors typically have a 5 to 6 percent speed regulation from zero
to full load. B is the frequency bias factor. ∆ω(s) is the frequency sensitive load change.
∆PL(s) is the non-frequency sensitive load change. ∆Pm is the change in mechanical power
output. ∆PV is the change in steam valve position. ∆Pre f is the reference set power. ∆Pg is
the speed governor comparator, τg is a simple time constant, and τT is the time constant of
the prime mover, which is in the range between 0.2 and 2.0 s.

B =
1
R
+ D (1)

∆PV(s) =
1

1 + τg
∆Pg(s) (2)

H =
Kinetic energy in MJ at rated speed

Machine rating in MVA
=

WK
SB

(3)

GT(s) =
∆Pm(s)
∆PV(s)

=
1

1 + τTs
(4)

Energies 2024, 17, x FOR PEER REVIEW 2 of 29 
 

 

Figure 1 shows the AGC of an isolated power system, where H is the per unit inertia 
constant, its unit is seconds, and its value ranges between zero and one second based on 
the size and the type of the machine. The D is the damping coefficient. R is the droop 
voltage magnitude; governors typically have a 5 to 6 percent speed regulation from zero 
to full load. B is the frequency bias factor. Δ𝜔(𝑠) is the frequency sensitive load change. Δ𝑃௅(𝑠)  is the non-frequency sensitive load change. Δ𝑃௠  is the change in mechanical 
power output. Δ𝑃௏  is the change in steam valve position. Δ𝑃௥௘௙  is the reference set 
power. Δ𝑃௚ is the speed governor comparator, 𝜏௚ is a simple time constant, and 𝜏் is the 
time constant of the prime mover, which is in the range between 0.2 and 2.0 s. 𝐵 = 1𝑅 + 𝐷 (1) 

Δ𝑃௏(𝑠) = 11 + 𝜏௚ Δ𝑃௚(𝑠) (2) 

H = Kinetic energy in MJ at rated speedMachine rating in MVA = 𝑊௄𝑆஻  (3) 

G୘(𝑠) = Δ𝑃௠(𝑠)Δ𝑃௏(𝑠) = 11 + 𝜏்𝑠 (4) 
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The energy sources applied in AGC and LFC studies were not limited to conventional 
energy sources but also included RES. Even though biomass is considered an RES, mini-
mal research has been conducted on its application as an energy source in power plants. 
In the United States, until the middle of the 1800s, biomass was the primary source of the 
nation’s annual energy consumption. By 2022, the United States’ primary energy con-
sumption was about five percent from biomass [2]. Figure 2a depicts the US biomass en-
ergy consumption in the year 2022, where the consumption was 2266 trillion British ther-
mal units (TBtu)—1565 TBtu, 539 TBtu, 413 TBtu, and 147 TBtu from the industrial, trans-
portation, residential, electric power, and commercial sector, respectively. Figure 2b de-
picts the energy consumed from biomass in the US, which accounts for 5% of the total 
energy consumption [2]. 

Paper [3] presents an overview of applying biomass as an RES to generate heat and 
power. Different technologies are introduced. Paper [4] integrated biomass energy into an 
IEEE 30 bus test system composed of six generating units to minimize the conventional 
fuel ratio and the greenhouse gases. In [5], H. H. H. Aly presented dynamic models of 
tidal current turbines applying a direct drive permanent magnet synchronous generator 

Figure 1. AGC of an isolated power system, redrawn from [1].

The energy sources applied in AGC and LFC studies were not limited to conven-
tional energy sources but also included RES. Even though biomass is considered an RES,
minimal research has been conducted on its application as an energy source in power
plants. In the United States, until the middle of the 1800s, biomass was the primary source
of the nation’s annual energy consumption. By 2022, the United States’ primary energy
consumption was about five percent from biomass [2]. Figure 2a depicts the US biomass
energy consumption in the year 2022, where the consumption was 2266 trillion British
thermal units (TBtu)—1565 TBtu, 539 TBtu, 413 TBtu, and 147 TBtu from the industrial,
transportation, residential, electric power, and commercial sector, respectively. Figure 2b
depicts the energy consumed from biomass in the US, which accounts for 5% of the total
energy consumption [2].

Paper [3] presents an overview of applying biomass as an RES to generate heat and
power. Different technologies are introduced. Paper [4] integrated biomass energy into an
IEEE 30 bus test system composed of six generating units to minimize the conventional
fuel ratio and the greenhouse gases. In [5], H. H. H. Aly presented dynamic models of
tidal current turbines applying a direct drive permanent magnet synchronous generator
(DDPMSG) and doubly fed induction generator (DFIG). The stability analysis results found
better performance of the tidal current turbines using a DDPMSG over the DFIG one and
that applying PID controllers improves the stability analysis.
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K. Jagatheesan et al. [6] presented a nature bio-inspired firefly (FFA)-tuned PID con-
troller for AGC of a multi-area reheat thermal power system. The results derived were
compared with GA and PSO-tuned PID controllers. From the results derived, the pro-
posed technique gave the best results regarding the Integral of Time and Absolute Error
(ITAE), settling time, undershoot, and overshoot. D. K. Gupta et al. [7] introduced a PID
controller tuned using a nature bio-inspired FFA, Particle Swarm Optimization (PSO), and
the Gravitational Search Algorithm (GSA) for AGC of multi-area hydro, gas, and thermal
power systems. ITAE is considered as the objective function. The results derived from the
proposed algorithm show the efficiency of applying it to obtain stable frequency and load
responses. Rabindra R. K. Sahu, S. Panda, and S. Pradhan [8] presented a novel hybrid fire-
fly algorithm and pattern search (HFA–PS)-tuned PID model for AGC of multi-area power
systems considering the Generation Rate Constraint (GRC). ITAE has been considered to be
the objective function. The results derived from the proposed model demonstrated superior
outcomes compared to some modern heuristic optimization techniques such as the Bacteria
Foraging Optimization Algorithm (BFOA), Genetic Algorithm (GA), and conventional
Ziegler–Nichols (ZN)-based PI/PID controllers for the same interconnected power system.
A. Ghosh et al. [9] proposed an optimized Ziegler–Nichols (ZN)-based tuned PID controller
for AGC of a single-area thermal power system and a multi-area PV-integrated thermal
power system.

A. K. Barisal and S. Mishra [10] presented a nature bio-inspired BFOA, PSO, and
Improved-PSO-tuned PID controller for AGC of two-area diesel, hydro, thermal, and wind
power systems. ITAE is considered as the objective function. The results derived from
the proposed algorithm show its effectiveness in obtaining a stable frequency response
and load response on the tie-line. Applying parallel DC/AC links enhanced the dynamic
stability of the system and dropped the cost index. S. K. Bhagat et al. [11] introduced a
hybrid PSO-GA controller with a tilt-integral-derivative (TIDN) filter controller for AGC
control of a multi-area power system.

H. Haes Alhelou, M. E. Hamedani Golshan, and M. Hajiakbari Fini [12] introduced a
wind-driven optimization (WDO)-algorithm-tuned PID controller for the three-area power
system LFC. C. Huang et al. [13] presented a natural bio-inspired Gravitational Search
Algorithm (GSA)-based linear active disturbance rejection control (LADRC) approach for
the LFC of the two-area power system. ITAE is considered as the objective function. The
results derived from the proposed algorithm show the efficiency of applying it to obtain
stable frequency and load responses. H. Changmai and M. Buragohain [14] presented a
natural bio-inspired, GA-tuned, PID-controller-based linear quadratic regulator (LQR) for
the LFC of the two-area power system. In [15], Y. L. Karnavas and E. Nivolianiti intro-
duced a nature bio-inspired Harris Hawks Optimization (HHO) for LFC of an isolated
multi-source power system. By comparing the proposed algorithm with the Whale Opti-
mization Algorithm (WOA), Grey Wolf Optimizer (GWO), and PSO, it was found that the
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proposed algorithm exhibited superior performance in terms of power stability, settling
time, overshoot, and undershoot.

R. Shankar, K. Chatterjee, and R. Bhushan studied, in [16], the LFC of a multi-source
two-area power system with an energy storage system (redox flow battery) in a dereg-
ulated power environment. An opposition-based harmonic search (OHS) technique has
been applied to tune the PID controller. Economic load dispatch has been integrated
into the LFC. The redox flow battery is applied to absorb any transient or sudden load
change. In [17], E. Çelik et al. presented a nature bio-inspired dragonfly search algorithm
(DSA)-tuned PID controller for LFC of a single-area and two-area thermal power system.
A (1 + PD)-PID cascade controller has been optimized via DSA using ITAE to obtain op-
timal results. N. R. Babu et al. [18] studied the impact of different solar insulation types
on the LFC of two-area thermal power systems. Tilt integral minus derivative control
(TI-DN) with filter has been applied as a supplementary controller with the crow search
optimization (CSO) technique to optimize LFC. The paper found that the amalgamation
of HVDC with AC tie-line amalgamates system dynamics. R. R. Kumar, A. K. Yadav, and
M. Ramesh [19] presented a PID-based LQR controller for the LFC of a wind/solar-based
renewable microgrid. The results reveal the proposed controller’s dynamic and frequency
response effectiveness.

M. Amaro Pinazo, R. Antara Arias, and J. Mirez Carrillo reviewed, in [20], the anal-
ysis and performance of four different control technologies for wind turbines based on
electromagnetic and mechanical torques. Babu, N.R. et al. presented in [18] the effects
of different solar insolation types on two thermal area LFC systems. They showed that
integrating HVDC with an AC tie-line improved system dynamics.V. Patel, D. Guha, and
S. Purwar [21] presented a fractional-order adaptive sliding mode control (FO-ASMC)
to improve the frequency regulation of power systems. The efficiency of the proposed
control scheme has been tested under different load and wind disruptions. The results
reveal this method’s effectiveness in frequency response and system stability. P. Saxena, N.
Singh, and A. K. Pandey studied, in [22], the frequency fault ride-through (FFRT) capability
of solar-based microgrids and proposed an adaptive PI-based virtual damping (PIVD)
controller to augment the dynamic performance. This controller de-loads solar power while
tracking frequency errors; the de-load process produces virtual inertia reserve (VIR) to
stabilize the grid in case of contingency, in place of batteries. The model has been validated
via MATLAB, and the results derived showed that the suggested model is qualified to ride
through severe fault scenarios with minimal frequency disruption.

W. Guo and J. Yang presented, in [23], a novel nonlinear mathematical model of hydro-
turbine governing systems based on the nonlinear characteristics of penstock head loss. P.
Dash, L. C. Saikia, and N. Sinha proposed, in [24], a Flower Pollination Algorithm (FPA)-
tuned Proportional Integral-Proportional Derivative (PI-PD) cascade controller for AGC of
a four-thermal power system. R. El-Sehiemy et al. presented, in [25], an Artificial Rabbits
Algorithm (ARA)-optimized PID controller for LFC of multi-area power systems. ITAE
has been considered to be the objective function. The results derived from the proposed
model demonstrated superior outcomes compared to some modern heuristic optimization
techniques such as PSO, differential evolution (DE), JAYA optimizer, and self-adaptive
multi-population elitist (SAMPE) JAYA.

This work proposes and optimizes a multi-area hybrid renewable energy system
composed of three renewable energy sources: wind, biomass, and solar. The proposed
work is validated by using software programs that can simulate it. MATLAB R2017b
software is a powerful tool that allows users to predict a system’s behavior. It can be
used to evaluate a new design, diagnose problems with an existing design, and test a
system under various conditions. A mathematical model of the system is needed to run
a simulation, which can be expressed as a block diagram, code, schematic, or even state
diagram. As Peck (2004, p. 4) puts it:

When a researcher builds a simulation model, they have created a world in which they
have access to all of the laws and components of that world, and the relationships among
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those components. Not only do researchers have access to these things, but they can also
manipulate them. To the extent that researchers can match their simulated world to the
real world, they should be able to read things off the simulated world that will tell them
something about the real world.

MATLAB Simulink R2017b is applied to design and optimize the subjected model.
GA, PS, SA, PSO, and the novel GA-fuzzy logic self-tuning techniques are used to tune
the PID controller’s parameters by minimizing ITAE and the net present cost (NPC). The
novelty here is integrating biomass into AGC and developing the GA-fuzzy algorithm.
System performance is examined by considering the frequency and load disturbance in all
three areas. The effectiveness of the novel GA-fuzzy logic self-tuning technique was proved
by comparing its performance with the other four optimization techniques. The paper also
presents an operating strategy to utilize wind, solar, and biomass energy sources.

2. PID Controller and the Proposed Hybrid Energy System

This work presents the novel GA-fuzzy logic self-tuning algorithm and some heuristic-
based optimization techniques for AGC of multi-area hybrid energy systems. Regarding
the heuristic-based optimization techniques, four different optimization techniques, namely,
GA, PS, SA, and PSO, were applied. These algorithms, in addition to the novel GA-fuzzy
logic self-tuning algorithm, are applied to tune the PID controller’s parameters, diminish
the fluctuation in the frequency, and control the power flow in the plants and the tie-line.

The PID controller is one of the most used controllers in many disciplines. Its output
could be represented by Equation (5).

y(t) = Kpx(t) + Ki

∫
x(t)dt + Kd

d(x)t
dt

(5)

where x(t), y(t), Kp, Ki, and Kd correspond to the input, the output, the proportional gain,
the integral gain, and the derivative gain, respectively.

The objective functions in this work are ITAE and NPC (see Equations (6) and (16)).
ITAE is considered to be the objective function because it reduces the error during the initial
transient response. Such a criterion is recommended when a fast response and settling time
are desired. The goal is to tune the PID parameters by minimizing the objective function.

ITAE =
∫ ts

0
t × |x(t)|.dt (6)

where ts is simulation time, tuning the controller’s parameters is crucial for optimal operation.
Research papers consider many performance indices, such as the integral of absolute

error (IAE), integral of squared error (ISE), integral of time-weighted squared error (ITSE),
and ITAE. However, ITAE was proven to give satisfactory optimization results concerning
LFC and AGC regarding settling time, undershoot, and overshoot. Therefore, we consider
ITAE to be an objective function in our current work.

ITAE =
∫ ts

0
(|∆FW |+ |∆FB|+ |∆FPV |+ |∆Ptl |)·t·dt (7)

where ∆FW , ∆FB, and ∆FPV represent the variation in frequency in the wind power plant,
the biomass power plant, and the photovoltaic power plant, respectively; moreover ∆Ptl
represents the variation in tie-line power. The proposed optimization technique minimizes
the objective function for finding the PID controller’s parameters.

The constraints were as follows:

Kpmin < Kp < Kpmax ,
Kimin < Ki < Kimax ,
Kdmin

< Kd < Kdmax
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where Kpmin , Kpmax , Kimin , Kimax , Kdmin
, and Kdmax are the minimum proportional gain, the

maximum proportional gain, the minimum integral gain, the maximum integral gain, the
minimum derivative gain, and the maximum derivative gain, respectively.

From Equation (5), we have:

Y1 = Kp1 × ACEW + Ki1 ×
∫

ACEW + Kd1 ×
dACEW

dt
, (8)

Y2 = Kp2 × ACEB + Ki2 ×
∫

ACEB + Kd2 ×
dACEB

dt
, (9)

Y3 = Kp3 × ACEPV + Ki3 ×
∫

ACEPV + Kd3 ×
dACEPV

dt
(10)

where ACE is the area control error; ACE is the difference between each plant’s electric
power into the grid via generation or purchases and the electric power taken out as load,
losses, or sales.

ACEW = B1∆FW + ∆Ptl
ACEB = B2∆FB + ∆Ptl

ACEPV = B3∆FPV + ∆Ptl

where ACEW , ACEB and ACEPV are the area control errors for the wind, biomass, and
solar power plants, respectively. Figure 3 and the ACE equations show that ACE relies
on the frequency and the tie-line power, where ACE is the input. Appendix A shows the
parameters for the proposed AGC of the model depicted in Figure 3.
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3. Fuzzy Logic Control

Lotfi Asker Zadeh introduced the fuzzy logic approach in 1965 [26]. It comprises three
steps: fuzzification, rule-based inference engine, and defuzzification, as depicted in Figure 4.
It can be applied to nearly every discipline; it could be used to models whose mathematical
modeling is not well defined, and it has been applied widely in LFC and AGC. M. A. R.
Shafei, D. K. Ibrahim, and M. Bahaa presented, in [27], a PSO-tuned fuzzy logic controller
for the LFC of a two-area power system. The performance of the proposed controller has
been validated by comparing its results with those of a recently published PID-P controller,
where it achieved less settling time and less undershooting and overshooting values. In [28],
T. Hussein and A. Shamekh proposed a gain-scheduling PI fuzzy logic two-level LFC for a
two-area power system. This technique eliminates steady-state error and results in good
transient response. The results derived from applying the criterion of integral square error
(ISE) using MATLAB Simulink show the proficiency of the proposed technique.

Energies 2024, 17, x FOR PEER REVIEW 8 of 29 
 

 

 
Figure 4. A Block diagram of a fuzzy logic control system. 

K. Ben Meziane, R. Naoual, and I. Boumhidi presented, in [31], the interval type-2, 
fuzzy-logic-based, tuned PID controller for AGC of a two-area hydro, gas, and thermal 
power system with an Advanced Thyristor Controlled Series Capacitor (ATCSC). ITAE is 
considered as the objective function. The results derived from the proposed algorithm 
show the efficiency of applying it to obtain stable frequency and load responses. Com-
pared to other controllers, the presented technique demonstrates an excellent damping 
response. A. Bloul, A. Sharaf, and M. El-Hawary [32] introduced a low-cost flexible AC 
transmission system (FACTS)-based, flexible fuzzy-logic-controller-tuned arm filter and 
Green Plug compensation scheme for single-phase nonlinear loads to improve power 
quality, correct power factor, diminish switching transients, and reduce harmonics. 

In Boolean algebra, we only have two states: either true (1) or false (0)—something 
working 100% or not working at all (0). This can be applied to limited applications, in-
cluding switches. In real life, many applications do not follow the Boolean algebra rules; 
numbers like 0.1, 0.15, and 0.2 have some value, whereas they are rounded to zero in Bool-
ean algebra. The speed of objects is not just halted or full speed; there are grades in be-
tween, such as the slowest, slower, slow, fast, faster, and the fastest. This is not limited to 
speed applications but is applied to many cases. In our study, the turbine does not have 
just two states, open or closed, but can be 5%, 10%, …, and 95% open. Based on that, Bool-
ean algebra does not always suit all applications where we must include all the previous 
turbine states. To include those scenarios, we applied fuzzy logic, which allowed us to 
deal with all states between zero and one. A basic example of distinguishing between 
Boolean algebra and fuzzy logic is illustrated in Table 1. 

  

Figure 4. A Block diagram of a fuzzy logic control system.

B. Khokhar, S. Dahiya, and K. P. S. Parmar proposed, in [29], a novel hybrid fuzzy
proportional derivative–tilt integral derivative (FPD-TID) controller for the load frequency
control (LFC) analysis of a standalone microgrid. The developed controller has been opti-
mized using a robust chaotic crow search algorithm (CCSA). A. Ghafouri, J. Milimonfared,
and G. B. Gharehpetian applied, in [30], Fuzzy-Adaptive Frequency Control to study the
effect of microgrids and wind penetration on LFC. The improved hierarchical coordinated
control technique has been applied to the IEEE 39-bus system, including microgrids and
windfarms. The results validated the developed method’s effectiveness in improving the
power quality and the frequency response.

K. Ben Meziane, R. Naoual, and I. Boumhidi presented, in [31], the interval type-2,
fuzzy-logic-based, tuned PID controller for AGC of a two-area hydro, gas, and thermal
power system with an Advanced Thyristor Controlled Series Capacitor (ATCSC). ITAE
is considered as the objective function. The results derived from the proposed algorithm
show the efficiency of applying it to obtain stable frequency and load responses. Compared
to other controllers, the presented technique demonstrates an excellent damping response.
A. Bloul, A. Sharaf, and M. El-Hawary [32] introduced a low-cost flexible AC transmission
system (FACTS)-based, flexible fuzzy-logic-controller-tuned arm filter and Green Plug
compensation scheme for single-phase nonlinear loads to improve power quality, correct
power factor, diminish switching transients, and reduce harmonics.
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In Boolean algebra, we only have two states: either true (1) or false (0)—something
working 100% or not working at all (0). This can be applied to limited applications,
including switches. In real life, many applications do not follow the Boolean algebra rules;
numbers like 0.1, 0.15, and 0.2 have some value, whereas they are rounded to zero in
Boolean algebra. The speed of objects is not just halted or full speed; there are grades in
between, such as the slowest, slower, slow, fast, faster, and the fastest. This is not limited
to speed applications but is applied to many cases. In our study, the turbine does not
have just two states, open or closed, but can be 5%, 10%, . . ., and 95% open. Based on
that, Boolean algebra does not always suit all applications where we must include all the
previous turbine states. To include those scenarios, we applied fuzzy logic, which allowed
us to deal with all states between zero and one. A basic example of distinguishing between
Boolean algebra and fuzzy logic is illustrated in Table 1.

Table 1. Comparison between Boolean algebra and fuzzy logic.

Turbine Operation in Boolean Algebra Turbine Operation in Fuzzy Logic

If (valve == 0)
{
// Turbine is off
}
Else
{
Turbine is on
}

If ((valve >= 0) && (valve < 0.25))
{
// Turbine is quarter opened
}
Else if ((valve >= 0.25) && (valve < 0.5))
{
//Turbine is half-opened
}
Else if ((valve >= 0.5) && (valve < 0.75))
{
//Turbine is three-quarters opened
}
Else if ((valve >= 0.75) && (valve < 1.0))
{
//Turbine is fully opened
}

The frequency is the system’s input in all three plants, and the turbine valve is the
output. To form the membership functions in the novel GA-fuzzy logic self-tuning ap-
proach, we need to specify the range of the inputs and the outputs, where the input in
our model is the frequency in Hz and the output is the turbine valve position. Figures 5
and 6 depict the range of the frequency fluctuation and the turbine valve position of the
proposed model, respectively. Where OS is overshoot, 0% means there is no overshoot in
the response. Where O is open, 0% means the valve is closed, whereas 100% means the
valve is fully open.
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4. System Configuration

A strategy for the operation of the RES (SORES) has been proposed (Figure 7); this
hybrid system comprises a wind energy system, a photovoltaic (PV) system, a biomass
gasifier system, and a battery storage system. The wind turbine and solar panels produce
DC, so an inverter is required to convert DC into AC. The biomass gasifier produces AC; it
is coupled directly to the AC bus. A battery bank storage system will be included in the
HES to store surplus energy when generation exceeds demand and supply power when
there is deficit energy.
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The control system will arrange to meet the sudden demand in the following sequence:
When there are enough wind gusts to meet the demand, the wind source will cover the
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sudden demand. The solar source will cover sudden demand when there is enough solar
irradiation to meet the demand. If both wind and solar sources can meet the demand, they
can be utilized to provide the load needed. When both wind and solar energy sources
cannot meet the demand, biomass energy will be applied to meet the demand. Using this
control strategy, we minimize the use of biomass energy to generate power. Figure 8 shows
the schematic flowchart of the proposed operation strategy.
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5. Mathematical Modeling of the Components

It is very important to model the system mathematically to size it correctly. The system
needs to be optimized under different operating conditions.
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5.1. Mathematical Modeling of the Wind Energy System

The electrical power output of a wind energy system at any instant (t) in kW can be
calculated using the following equation:

PW =


0 VCi > V(t) > VCo
[ 1

2×NW×CP×ρa×AW×ηg×(V(t))3]
1000 VCi ≤ V(t) < Vr

Pr Vr ≤ V(t) ≤ VCo

(11)

where NW is the number of wind turbines in service, CP is the power coefficient of the
designated wind turbine model, ρa is the air density (roughly 1.2 kg/m3), AW is the swept
area of the wind turbine rotor, ηg is the generator efficiency of the wind power system
(roughly 90%), Pr is the wind turbine rated power, V(t) is the wind speed in (m/s). and
VCi, VCo and Vr are cut-in speed, cut-out speed, and rated speed, respectively.

5.2. Mathematical Modeling of the Photovoltaic System

The power output of the solar photovoltaic can be obtained using the following equation:

PPV(t) = CPV × DPV × QPV (t)
QPV, STC

(12)

where CPV denotes the rated capacity of the photovoltaic system under standard test
conditions (STC) and panel efficiency of 14%, DPV is a derating factor of the PV array that is
used to consider reduced output under real-world conditions like dust, shadow, etc. (80%),
QPV (t) represents solar irradiance incident on PV array in kW/m2, and QPV, STC is the
solar radiation at STC (1 kW/m2).

5.3. Mathematical Modeling of the Biomass Gasifier System

The hourly power output obtained from the biomass gasifier system PBm (t) in kW can
be computed using the following equation:

PBm (t) =
QBm × CVBm × ηBm × 1000

365 × 860 × HD
(13)

where QBm is the annual available amount of biomass in (ton/yr), CVBm is biomass calorific
value in kcal/kg, ηBm is the biomass to electricity overall conversion efficiency of the
biomass gasifier (20%), and HD represents the biomass gasifier systems’s operating hours
per day.

5.4. Mathematical Modeling of the Battery Bank Storage System

Battery banks are often installed in the wind and PV models. They save energy when
they produce surplus energy and supply the network with energy when the system has a
deficit. During charging, the battery bank capacity at time (t) can be expressed using the
following equation:

UBt(t) = UBt(t − 1) +
[(

Us−AC(t)× ηrec × ηchg

)
+

(
Us−DC(t)× ηchg

)]
(14)

where UBt(t − 1) is the energy that is stored in the battery bank in (kWh); Us−AC(t) is
the energy surplus from the AC source, the biomass gasifier in this case; Us−DC(t) is the
energy surplus from the DC source, the PV array, and the wind energy based system after
serving the load; ηrec is the rectifier efficiency (90%); and ηchg is the battery bank charging
efficiency (90%).

While discharging, the battery bank capacity at time (t) can be calculated from the
following equation:

UBt(t) = UBt(t − 1)−
[

Unl(t)
ηinv × ηdchg

]
(15)
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where Unl(t) is the load net deficit, which RES does not serve; ηinv is the inverter efficiency
(95%); and ηdchg is the battery discharging efficiency (100%).

6. Problem Formulation

The problem formulation contains the objective functions and the constraints. The
main objective function is to minimize ITAE and the NPC of the hybrid system. The total
NPC of the hybrid system represents the present value of all the project costs during its
lifetime minus the present value of all the revenue earned over its lifetime. The costs
considered here include capital costs, replacement costs, fuel costs, O&M costs, and emis-
sions penalties. The revenues include the biomass gasifier, diesel generator, and salvage
values of batteries. If the system is grid-connected, the costs of purchasing electricity from
the grid will be added to all project costs, and selling power to the grid will be added to
revenue costs.

The total net present cost is calculated using HOMER, as follows:

CNPC =
Cyt

CRF
(
ir, Rp

) (16)

where CNPC is the total net present cost in USD, Cyt is the total annualized cost in USD/year,
CRF is the capital recovery factor, ir is the interest rate in %, and Rp is the project’s lifetime
in years.

CRF transforms the system components’ present value into equal increments of annual
payments over the project lifetime and is computed as follows:

CRF
(
ir, Rp

)
=

ir(1 + ir)
npl

(1 + ir)
npl − 1

(17)

where ir is the yearly real interest rate and npl is the project lifetime. The yearly real interest
rate is the discount rate used to switch between one-time costs and annualized costs, while
the nominal interest rate is a bank loan.

6.1. Constraints

The HES can be optimized using the following constraints.

6.1.1. Power Reliability Constraints

Equation (18) depicts the annual capacity shortage (FCS):

FCS =
ECS
ED

(18)

where FCS is the annual capacity shortage and ECS is the total capacity shortage of a year.

6.1.2. Battery Bank Storage Limits

In any instance (t), the battery bank storage falls into the following constraint:

EBtmin ≤ EBt(t) ≤ EBtmax (19)

where EBtmin and EBtmax are the battery bank storage’s minimum and maximum capacity,
respectively. The following equation represents EBtmin and EBtmax:

EBtmin =
NBtVBtSBt

1000
× SCmin, (20)

EBtmax =
NBtVBtSBt

1000
× SCmax (21)
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where NBt, VBt, SBt, SCmin, and SCmax are the number of batteries, the battery voltage in
(V), the battery capacity in Ampere Hour (AH), the minimum state of charge, and the
maximum state of charge, respectively.

6.1.3. Lower and Upper Bounds

The wind, solar, and battery bank storage systems are subject to the following constraints:

0 ≤ PPV(t) ≤ say (100), where PPV = Integer, (22)

0 ≤ NWT(t) ≤ say (20), where NWT = Integer, (23)

0 ≤ NBt(t) ≤ say (200), where NBt = Integer. (24)

6.1.4. Excess Electricity

When the total electricity generation exceeds demand and batteries reach their max-
imum storage capacity, we are in the excess electricity stage. The following equation
estimates excess electricity in (kWh/yr):

PEH =

{
PG(t)− PD(t), PG(t) > PD(t) and EBt(t) = EBtmax

0, otherwise
, (25)

PG(t) = PBm(t) + ηinv × [PW(t) + PPV(t)], (26)

EEY =
8760

∑
t=1

PEH(t) (27)

where PEH(t), PG(t), PD(t), and EEY represent the hourly excess power in (kW), the total
hourly generation from all applied resources in (kW), the hourly power demand in (kW),
and the annualized excess electricity in kWh/yr.

6.2. Optimization

Meta-heuristic optimization techniques have become very popular recently. The very
well-known ones are Ant Colony Optimization (ACO) [33], GA [34], and PSO [35].

6.2.1. Meta-Heuristic Classes

Meta-heuristics can be divided into two main classes:

• Single-solution based: in Simulated Annealing (SA) [36], for example, the search pro-
cess starts with one candidate solution and then improves over the course
of iterations.

• Population based: They execute the optimization using a set of solutions (population).
The search process starts with a random initial population (multiple solutions), which
is enhanced over the course of iterations. Swarm Intelligence (SI) is one of the most
popular branches of the population-based meta-heuristics. The most popular SI
techniques are ACO, Artificial Bee Colony (ABC) [37], and PSO.

6.2.2. Meta-Heuristics Categories

Meta-heuristics can also be categorized into three main classes:

• Evolutionary algorithms (EAs): these algorithms are often inspired by natural concepts
of evolution, such as GA and differential evolution (DE) [38].

• Physics based: they mimic physical rules, such as Gravitational Local Search (GLSA) [39],
Charged System Search (CSS) [40], Central Force Optimization (CFO) [41], and the
Black Hole (BH) algorithm [42].

• SI algorithms: They often mimic the social behavior of swarms, herds, and flocks in
nature. Some of the algorithms are PSO, ACO, the ABC and the Bat-inspired Algo-
rithm (BA) [43], and Grey Wolf Optimization (GWO) [44]. According to the No Free
Lunch (NFL) theorem, no meta-heuristic can solve all optimization problems. Some
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algorithms may show promising results on a set of issues, but the same optimization
technique may show poor performance on a different set of problems.

This work uses the Hybrid Optimization Model for Electric Renewables (HOMER)
Pro Version 3.16.2 software to determine the NPC and the LCOE, and the GA-fuzzy logic
self-tuning technique is applied to optimize the ITAE in our AGC model.

6.3. Algorithms Applied for AGC:

Many heuristic optimization algorithms range from straightforward “trial and error”
methods to intricate algorithms like evolutionary algorithms. Both the implementation and
use of the techniques are simple. The problem’s mathematical formulation is flexible. GA,
PS, SA, PSO, and GA-fuzzy logic self-tuning techniques are applied to our model; Figure 9
illustrates the flowchart of our novel hybrid GA-fuzzy logic self-tuning technique.
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(2) Obtain the values ofω and Ptl , then calculate ∆ω and ∆Ptl .
(3) Once the values of ∆ω and ∆Ptl are determines, decide the control action to be made.
(4) Send the control actions to all three plants and calculate ITAE using the GA-fuzzy algorithm.
(5) Use a fixed-length chromosome to represent the problem variable domain. Select the

size of the chromosomal population N, the crossover probability Pc, and the mutation
probability Pm.

(6) Establish a fitness function to gauge each chromosome’s effectiveness within the issue
domain. The fitness function establishes the basis for choosing which chromosomes
to mate with during reproduction.

(7) Generate a starting population of size N chromosomes randomly (x1, x2, . . . , xN).
(8) Determine the fitness value of every single chromosome: f(x1), . . . , f(xn).
(9) Choose a pair of chromosomes from the existing population to mate with. Parent

chromosomes are chosen based on fitness-related probability. Fitter chromosomes are
more likely to be selected for mating than less suitable ones.

(10) Apply the crossover and mutation genetic operators to produce a pair of offspring
chromosomes.

(11) Insert the progeny chromosomes into the newly formed population.
(12) Step 9 should be repeated until the size of the new chromosomal population equals

that of the original population, N.
(13) Use the new (offspring) chromosomal population in place of the original (parent)

population.
(14) Repeat from step 8 until the termination creation is fulfilled. Examine whether the

solution that satisfies the equality constraint is feasible.

7. Results and Discussion

A multi-area power plant transfer function could be designed similarly to a single-area
power plant with the addition of tie-line power flow, see Figure 3. When no extra load
demand occurs on the system, the system frequency will be stable, and all three plants will
work parallel at the nominal frequency of 60 Hz. In this work, some loads are added to the
wind, biomass, and solar power plants to test the system. In this work, the frequency in Hz
is measured in the three plants, and the mechanical power flow in MW in all three plants
is measured as well, in addition to measuring the tie-line power flow in MW. In the case
of any sudden load occurring in any of the three power plants, the system frequency will
fluctuate, and the power plant will augment its power generation to meet the increased
load demand.

If the system is not designed professionally, all three power plants will increase their
generation to meet the demand, and the tie-line will provide the power; consequently, the
frequency may vary between 59 Hz and 61 Hz, or worse. In practice, when an unexpected
demand occurs in a specific plant, that power plant must absorb that demand; the other
plants must not sense it, and the tie-line power should have 0 MW power flow.

To overcome such scenarios, an integrator is added to the model. As can be seen
from Figure 10 and Figure 13, when an increment load of 80 MW is added to the wind
power plant, the whole load is supplied from that source; the biomass power plant, the
photovoltaic power plant, and the tie-line supply 0 MW of load and the frequency is kept
steady at 60 Hz.

When adding another increment load of 30 MW to the biomass power plant in addition
to the existing 80 MW load on the wind power plant, the designated power plants cover
the demand, the photovoltaic power plant and the tie-line supply 0 MW of load, and the
frequency is kept steady at 60 Hz (see Figure 11 and Figure 14).

To test the system’s functionality, a sudden load decrease of −40 MW is applied to
the photovoltaic power plant in addition to the existing 80 MW load on the wind power
plant and the 30 MW on the biomass power plant. The designated power plants cover the
demand, the tie-line supplies 0 MW of load, and the frequency is kept steady at 60 Hz (see
Figure 12 and Figure 15).
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We obtained the desired results when we added the integrator but with a longer set-
tling time, overshoot, and undershoot, as seen in Figures 10–15. To obtain better results, the
frequency should be steady in minimal time, with less settling time and less overshooting
and undershooting; the PID controller should be added in place of the integrator.

The PID’s parameters could be tuned manually to obtain good results, but many
optimization techniques may promptly give better results. In our model, we applied GA,
PS, SA, and PSO to tune the parameters, then applied the novel GA-fuzzy logic self-tuning
technique. Table 2 shows the parameters of the P, I, and D; these parameters are obtained
using MATLAB R2017b software.

As is well known, power loads are variable; they fluctuate continuously at every
moment. On the contrary, PID controllers have shortcomings in their parameters as
they cannot be tuned online to accommodate load changes. As a result, PID controllers
cannot deliver the appropriate response for every load fluctuation. This means that some
concessions must be taken to test the PID controller’s performance in all scenarios with
various settings.
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Table 2. The PID parameters use different algorithms.

Parameters GA PS SA PSO GA-Fuzzy

Controller I

P 21.5457 20 19.99679 20 30

I 17.30914 20 13.25205 15.43407 24.08826

D 3.633331 14.93847 3.751003 3.970836 4.72576

Controller II

P 21.71193 20 6.856002 18.72205 15.95172

I 29.9966 20 19.9941 17.68945 30

D 0.029296 0.228512 0.005082 0 0

Controller II

P 27.93593 20 6.517656 20 29.99936

I 22.96649 20 19.99775 20 27.68385

D 3.053391 20 1.268777 8.207062 17.06332

Controller IV

P 21.17271 10.18554 19.71834 17.08208 26.20549

I 5.398859 0.268551 5.126602 4.375707 5.24566

D 14.78407 0.251951 12.20899 16.78958 27.84191

In control theory, the overshoot occurs when a signal exceeds its stability target, while
undershoot is the opposite. When we applied the integrator, the frequency response went
up to 61.5 Hz and down to 59.3 Hz, and it took about 4 s until it became stable at 60 Hz.
When the frequency recovers to 60 Hz, the load demand will be covered by the designated
generation plants. A 1.2 Hz fluctuation is unacceptable from an engineering point of view,
and other steps must be taken to improve the frequency and the power output. In the
following section, the PID controller is applied instead of the integrator, and the results
obtained are compared. Applying the PID controller and adjusting its P, I, and D gain
parameters, according to Table 2, makes the system stable faster with less overshoot and
undershoot, as seen in Figures 16–21 and Tables 3–6.
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Table 3. Comparison of values of rise time between the applied algorithms.

Rise Time

Integrator GA PS SA PSO GA-Fuzzy

∆FW 0.6383 5.94 × 10−4 1.64 × 10−4 2.57 × 10−4 6.32 × 10−4 3.75 × 100

∆FB 1.21 × 10−5 4.97 × 10−7 0.0069 6.56 × 10−7 4.94 × 10−8 4.14 × 10−2

∆FPV 0.0801 5.21 × 10−4 1.37 × 10−4 2.44 × 10−4 5.69 × 10−4 8.37 × 10−6

∆PT−line 2.80 × 10−5 1.40 × 10−3 1.91 × 10−4 1.90 × 10−3 9.71 × 10−4 2.00 × 10−3

ACEW 0.3718 3.91 × 10−4 8.59 × 10−5 4.14 × 10−4 3.43 × 10−4 5.48 × 10−5

ACEB 3.39 × 10−1 1.63 × 10−2 1.65 × 10−2 3.58 × 10−2 1.89 × 10−2 2.50 × 10−3

ACEPV 0.768 1.11 × 100 1.11 × 100 1.12 × 100 1.11 × 100 3.01 × 10−1

Table 4. Comparison of values of settling time between the applied algorithms.

Settling Time

Integrator GA PS SA PSO GA-Fuzzy

∆FW 2.6067 0.5813 0.7642 0.7443 0.7738 6.3051

∆FB 4.389 1.6777 2.4703 1.165 2.3389 3.0165

∆FPV 0.7863 0.0863 0.0429 0.0937 0.0951 5.5882

∆PT−line 7.45 5.1307 0.1585 8.9649 4.2436 10.846

ACEW 3.1814 2.1047 2.0722 2.048 2.1251 6.2576

ACEB 4.906 0.2603 0.1037 0.489 0.2915 0.0056

ACEPV 2.8787 2.0544 2.0973 2.1189 2.015 3.5384

Table 5. Comparison of values of peak overshoot between the applied algorithms.

Peak Overshoot

Integrator GA PS SA PSO GA-Fuzzy

∆FW 9.29 × 10−6 1.35 × 107 2.30 × 10−5 6.04 × 10−7 0.00 × 100 0

∆FB 0.0142 1.22 × 10−4 3.81 × 10−4 0.0152 8.65 × 10−6 0

∆FPV 0.0341 0.0222 0.0589 0.0357 0.0042 0

∆PT−line 2.16 × 103 1.19 × 106 6.79 × 106 1.93 × 106 1.04 × 104 1.05 × 101

ACEW 35.2413 3.57 × 101 3.78 × 101 35.9763 3.85 × 10−1 0

ACEB 53.2843 3.07 × 101 3.06 × 101 51.2822 1.18 × 100 0

ACEPV 0 9.36 × 10−2 0.00 × 100 0.0048 3.94 × 100 0

Because all the algorithms give very similar responses except for the novel GA-fuzzy
logic self-tuning algorithm, we are content with demonstrating the frequency and the
mechanical load responses when the PID parameters are tuned using the GA algorithm
to limit the pages. Figures 16–18 depict the frequency response when the PID parameters
are tuned using the GA algorithm; as shown in Figure 16, when the wind power plant
experienced a sudden load of 80 MW, it experienced some fluctuation in the frequency
between 59.98 Hz and 60.01 Hz. It took about 2.5 s until the system became stable. When
a sudden 30 MW load occurred in the biomass power plant (Figure 17) and a decrement
−40 MW load occurred in the photovoltaic power plant (Figure 18), the frequency expe-
rienced more fluctuation between 59.96 Hz and 60.02 Hz, and it took about 3 s until the
system became stable.
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Table 6. Comparison of values of peak undershoot between the applied algorithms.

Peak Undershoot

Integrator GA PS SA PSO GA-Fuzzy

∆FW 0 2.54 × 104 0 0 0 9.29 × 10−6

∆FB 0 0 0 0 0 0.0142

∆FPV 0 0 0 0 0 0.0341

∆PT−line 7.71 × 103 1.90 × 105 7.53 × 106 5.2 × 106 4.41 × 104 2.16 × 101

ACEW 0 0 0 0 0 0.0241

ACEB 6.2888 2.2179 2.3081 4.0984 1.0004 0.2843

ACEPV 3.7812 1.542 1.9664 5.8355 0 0

Figures 19–21 depict the mechanical load response when the PID parameters are tuned
using the GA algorithm; as shown in Figure 19, when the wind power plant experienced
a sudden load of 80 MW, and because the frequency was not fixed at 60 Hz, the biomass
power plant provided about 105 MW of power to meet the sudden load demand and
took about 3 s to supply 80 MW of load at 60 Hz frequency. Adding an increment of
30 MW sudden load (Figure 20) and a decrement of −40 MW sudden load (Figure 21) to
the biomass power plant and the photovoltaic power plant, respectively, made the system
experience some fluctuation for about 3 s. Because of the instability in the frequency, the
biomass power plant and the photovoltaic power plant provided more than the requested
load for about 3 s. When the frequency became stable at 60 Hz, all three power plants
provided the load needed.

PID controllers provide compromised responses for all scenarios. Nevertheless, they
may not offer the best solution for every condition. On the other hand, applying the GA-
fuzzy logic self-tuning approach, when the rules for each circumstance are established sepa-
rately, may offer the optimum response for each case. The best response might be obtained
by applying the novel GA-fuzzy logic self-tuning control compared to other methods.

Figures 22–24 depict the frequency response when the PID parameters are tuned using
the novel GA-fuzzy logic self-tuning algorithm; as shown in Figure 22, when the wind
power plant experienced a sudden load of 80 MW, it experienced a very slight change in
the frequency between 59.9985 Hz and 60 Hz, which is about 0.0015 Hz difference. Adding
an increment of 30 MW sudden load (Figure 23) and a decrement of −40 MW sudden load
(Figure 24) to the biomass power plant and the photovoltaic power plant, respectively,
made the system again experience a very slight change in frequency between 59.9942 Hz
and 60.0025 Hz, which is about 0.0083 Hz difference.

Figures 25–27 depict the mechanical load response when the PID parameters are
tuned using the novel GA-fuzzy logic self-tuning algorithm. Figures 25–27 show that
the system promptly acted on the power demand, which the designated power plants
immediately covered. In comparing the results derived from the proposed novel GA-fuzzy
logic self-tuning model with some modern heuristic optimization techniques, it is found
that this model demonstrates superior frequency response, overshoot, undershoot, and
settling time.

After the model is checked to meet the sudden demand, it will be programmed to
work according to the proposed strategy of operation shown in Figure 7. Even though
biomass is considered renewable energy, it emits CO2 into the atmosphere, so the program
is written to lower utilizing it. When there is enough wind speed or solar irradiation to
meet the load demand, the wind or solar energy sources will cover the sudden demand.
Because wind and solar energies are intermittent, they cannot always cover the demand.
So, when there are not enough wind gusts or solar irradiation to meet the demand, the
biomass power plant will cover it.
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8. Conclusions and Future Work
8.1. Conclusions

In this work, the PID controller’s parameters are tuned using different heuristic-
based optimization techniques and the proposed novel GA-fuzzy logic self-tuning model
to control the frequency and the mechanical load of a multi-area renewable energy sys-
tem. The proposed method has effectively minimized the search area and improved the
system’s accuracy.

The novelty of this work is adding biomass energy to the study of the AGC and the
proposed hybrid GA-fuzzy self-tuning technique. The program was written to lower the
use of biomass in the presence of wind and solar energy sources. The system was tested by
adding a sudden 80 MW load to the wind power plant and checking the frequency and the
mechanical load responses. Then, we added another 30 MW sudden load to the biomass
power plant and checked the frequency and mechanical load responses. After checking the
system with increased sudden demands, a sudden decline in the demand was applied to
the photovoltaic power plant.

Good results are obtained when the integrator is applied as a controller. Heuristic-
based optimization techniques, namely GA, PS, SA, and PSO, gave better settling time,
overshoot, and undershoot results. From the literature, it is found that PID controllers
are limited by parameter tuning and cannot modify all their parameters at once for every
situation. As a result, the PID controller offers a system response that is either compromised
or sufficient. It falls short of providing the optimal reaction for all operational settings. The
novel GA-fuzzy logic self-tuning algorithm has been applied to tune the PID parameters to
overcome such disadvantages and obtain optimum results. Figures 22–27 show that the
novel GA-fuzzy logic self-tuning algorithm provided optimum settling time, overshoot,
and undershoot results.

By comparing the novel GA-fuzzy logic self-tuning algorithm with the other heuristic-
based optimization techniques applied, we conclude that the proposed model offers the
optimum response for all operational conditions. Applying renewable energy sources in
place of conventional energy sources helps meet the 2050 commitment of lowering the
carbon footprint or zero carbon emissions. A strategy of operation is introduced to specify
which energy source would be applied at any instance.

8.2. Future Work

As an extension for the proposed work, the following steps are considered:
A novel hybrid multi-objective optimized technique will be proposed and used to

add more constraints. Thus, a plan is made to create an application for management and
optimization purposes to lower the cost of energy and the carbon footprint and improve
the system’s performance.

Future work will also consider load seasonality and geographic dependence, which
could significantly improve wind speed accuracy and solar irradiance prediction. Most
analyses and validations usually concern historical data about meteorological, wind speed,
and solar irradiance data linked to specific geographical locations. Future work will
consider employing real-time data from neighboring stations. Such an approach could
yield a more advanced strategy to design a dynamic energy management platform that
includes and compares real-world data with forecasted data.
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Appendix A

The parameters for the proposed AGC of the model depicted in Figure 3 are as follows:

The data for the wind power plant: B1 = 18, R1 = 2.5, α = 0.041, β = 0.2, and γ = 0.75, δ = 1.3.
The data for the biomass power plant: B2 = 18, R2 = 2.5, ϵ = 0.08, ζ = 0.7, η = 10.06, κ = 10.2,
and λ = 0.3.
The data for the photovoltaic power plant: B3 = 18, R3 = 2.5, µ = 0.05, ν = 0.02, σ = 0.6,
ξ = 0.23, and ψ = 0.2.
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