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Abstract: The recent energy crisis has renewed interest in forecasting crude oil prices. This paper
focuses on identifying the main drivers determining the evolution of crude oil prices and proposes a
statistical learning forecasting algorithm based on regression analysis that can be used to generate
future oil price scenarios. A combination of a generalized additive model with a linear transfer
function with ARIMA noise is used to capture the existence of combinations of non-linear and linear
relationships between selected input variables and the crude oil price. The results demonstrate
that the physical market balance or fundamental is the most important metric in explaining the
evolution of oil prices. The effect of the trading activity and volatility variables are significant under
abnormal market conditions. We show that forecast accuracy under the proposed model supersedes
benchmark specifications, including the futures prices and analysts’ forecasts. Four oil price scenarios
are considered for expository purposes.
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1. Introduction

Oil markets have exhibited multiple regime changes over the last two decades. This
has created renewed interest in modeling and forecasting oil prices. Oil is a crucial factor
in the global economy as it is not only a significant component of gross domestic product
but also a key driver of inflation and interest rates. Therefore, the accurate forecast of oil
prices is critical for central banks, financial analysts, energy corporations, utilities, investors,
governments, and international organizations to implement policy responses to achieve an
optimal allocation of resources.

The time series evolution of crude oil prices has been impacted by a wide range
of variables, including global demand and supply disruptions, macroeconomic factors,
geopolitical events, as well as regulation changes designed to foster the transition to a
low-carbon economy. The interplay of different factors over the last two decades gave rise
to four unanticipated steep oil price shocks, including the 2007–2008 Global Financial Crisis,
the 2014 oil price collapse, the COVID pandemic, the June 2021–August 2022 energy crisis,
and the war in Ukraine [1–3]. The persistence of underinvestment initiated during the
2014–2016 oil price shock [4] has been enhanced by the energy transition, which is expected
to restrict long-term supply and add further shocks to the behavior of energy prices. Indeed,
the global push to phase out fossil fuels is gaining new momentum as the COP28 celebrated,
in November 2023, advocates for a historical transition from fossil fuels in energy systems
to achieve net zero by 2050 (see “Ten key conclusions from COP28: a farewell to fossil fuels”,
January 2023, the Oxford Institute for Energy Studies) and avoid a climate catastrophe.
Such institutional developments suggest that there will be time-changing patterns on the
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demand side for oil in the medium term (see F.T. article “Peak in fossil fuel demand will
happen this decade”, by Faith Birol, 12 September 2023).

A significant strand of the literature has developed statistical methods to establish the
relationship between fundamentals and generate accurate energy price forecasts. Bench-
mark contributions include [5–9]. This literature concludes that an appropriate selection
of fundamentals can lead to price forecasts that improve the random walk and no-change
benchmarks. Vector autoregression (VAR) techniques have been extensively used in this
literature, which has also applied the cointegration approach and the vector error correction
model (VECM) as a forecasting algorithm for oil [10] and for agricultural commodities [11].
On a parallel dimension, the role of financial variables in predicting commodity prices
gained significant momentum with the development of the financialization literature.
Ref. [12] highlights the increased exposure to commodity futures of financial institutions
and retail investors, empirically demonstrating the emergence of speculative investment
flows impacting commodity futures prices [13–15]. Financial variables have also been used
in the recent forecasting literature. Ref. [16] compiled a set of indicators to construct a
new measure of global economic activity using a multidimensional approach that includes
financial indicators.

One of the benchmark sources of crude oil price forecasts is the U.S. Energy Infor-
mation Administration (EIA), which provides monthly, quarterly, and yearly forecasts for
the crude oil price for horizons up to two years. Ref. [6] analyzes the EIA short forecasts,
demonstrating that they do not outperform the naïve or no-change forecast. Ref. [17]
analyzes the performance of Bloomberg analysts’ (1-year) forecast, demonstrating that
these underperform the forecast of future prices at the aggregate level.

The work of [8] shows that while some fundamental-based econometric models have
outperformed the EIA forecast for some horizons, no methodology is available in the
literature performs well at all horizons for which the EIA generates predictions. This issue
motivated them to use a combination of six different models considered in the literature,
including the no-change forecast, oil futures prices, and VAR models of the global oil
market. They concluded that forecast combinations help to improve accuracy and that all
models are essential in contributing to forecast accuracy except for the no change. The
naïve forecast is vital for comparing the forecast with different horizons as it controls for
the maturity and volatility effect [17].

Statistical learning models are essential for accounting for non-linear interactions
between input and output variables. This paper introduces the hybrid combination of a
generalized additive model (GAM) combined with a linear transfer function time series
approach as an oil price forecasting tool.

The existence of non-linear relations between price-driving factors and the price pro-
cess implies that linear models cannot fully capture the underlying functional relationships.
This singularity has motivated the use of machine learning approaches. Particularly note-
worthy machine-learning applications in the crude oil forecasting literature include the
LASSO regressions in [18]. The authors of that work show that the proposed regression
LASSO method significantly improves the forecasting accuracy of prices compared to
alternative benchmarks.

The proposed GAM model aims to explain the occurrence of remarkable price changes
by capturing the different states and factor dynamics that determine the evolution of
the price process. In doing this, it exploits the EIA expert forecast information in two
dimensions. First, it uses IEA fundamental forecast data to feed the fundamental variable.
Secondly, it uses the quarter Brent price forecast as a benchmark model for assessing
predictive accuracy.

By allowing for non-linear relationships, the GAM model adds flexibility to the linear
regression framework in analyzing data related to time-changing distributions by consid-
ering different price states assigned to the corresponding data of driving factors. GAM
models are more interpretable than fully non-linear methods such as bagging, boosting
support vector machines, and neural networks (deep learning). These methods are more
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flexible than the GAM algorithm because they can generate a more comprehensive range of
possible shapes to estimate the explained variable. However, they are also less interpretable
than linear regressions because predictors and responses are modeled using black-box
non-linear functions. The crude oil forecasting literature has acknowledged the importance
of considering possible non-linearities in model settings. Ref. [19] proposes a combination
forecasting approach that accounts for structural breaks and then applies a time-varying
transition probability Markov regime switching (TVIP-MRS) model, showing superior
forecasting ability in four statistical tests.

The motivation for using the GAM approach to forecast oil prices is threefold. First,
the literature has not identified a decisive outperforming framework for forecasting oil
prices. Secondly, many financial time series, such as crude oil prices, contain non-linear
characteristics that machine-learning methods can model. Third, within the statistical
learning methods, the GAM specification provides the best trade-off between predictive
accuracy and interpretability [20].

We aim to contribute in the following areas: First, we address the non-linearities
documented in the crude oil price literature pertaining to the aftermath of the Global
Financial Crisis. We use calculation and prediction methodologies that move away from
the traditionally used linear models [21–23]. Second, we provide a price forecasting algo-
rithm that incorporates the complex interplay of fundamental, financial, and economic
factors that determine the evolution of oil prices, maintaining model interpretability. The
error measures of simulated prices under the proposed algorithm supersede competing
benchmarks, including futures prices. Outperformance with respect to the no-change and
the futures price in terms of MAPE reductions is as high as 8% and 7%, respectively. Third,
we develop a tool to provide oil price scenarios based on the selected input variables that
can be used for the assessment of price risk and optimal decision making. This allows for
exploring how much a given forecast would change relative to the baseline prediction un-
der alternative hypotheses about future oil demand and supply conditions. Such a scenario
analysis is crucial for end-users of oil price forecasts who are interested in evaluating the
risk underlying a given prediction.

Our results have important implications for oil consumers, producers, and investors
as accurate forecasts of oil prices lead to an improved allocation of resources. The reported
findings are also relevant for regulators that use crude oil prices to set future inflation targets.
As underlined by [24], central banks consider the price of oil as one of the instrumental
variables in generating macroeconomic projections and determining macroeconomic risk.
Accurate forecasting is also important for project investment decision making. Increases
in oil price uncertainty complicate the appropriate discount rate for estimations of the net
present value [1].

This paper is organized as follows: Section 2 describes the model methodology.
Section 3 describes the data used in the forecasting exercise, including summary statis-
tics, feature engineering, the GAM model approach, and preliminary statistical tests. The
same also describes the factor selection process. Section 4 presents empirical results, includ-
ing a sensibility analysis and forecasting results. The proposed forecasting algorithm is
applied in Section 5 to generate future price scenarios. We conclude in Section 6.

2. Methodology: Combining the Generalized Additive Model with the Linear
Transfer Function

Generalized additive models (GAMs) offer a general framework for extending a stan-
dard linear model by allowing non-linear functions of each variable while maintaining
additivity. They offer a natural way to extend the multiple regression model to allow for
non-linear relationships between each explanatory variable (feature) and the explained
variable (response variable). The smooth functions are used as a replacement for the alter-
native detailed parametric relationship on the covariates. Moreover, this methodology is
appropriate for the monthly data required in this study due to the low-frequency avail-
ability of oil fundamental data. The GAM methodology supersedes competing machine



Energies 2024, 17, 2182 4 of 25

learning algorithms, such as neural networks, when large volumes of data are unavailable.
It is also a preferred method because it allows a straightforward interpretation of results.
This method calculates the sensibilities of the forecasted variable with respect to changes
in input values, allowing a deeper understanding of underlying relationships than under
competing machine learning models.

In essence, a generalized additive model (GAM) is a generalized linear model (GLM)
in which the linear predictor is given by a sum of smooth non-linear functions of at least
some (or possibly all) covariates [25]). The family of smooth functions is defined as the
basis functions. The logarithmic function and a polynomial cubic spline are good examples
of this specification class. Each basis function transforms the vector of explanatory variables
x in terms of the type of basis considered.

The GAM can be formally expressed as follows:

yt = β0 +
n

∑
i=1

fi(xi,t) + εt (1)

where i = 1, . . ., n, and xi are the n independent input variables, fi is the unknown non-
parametric smooth functions of xi, and εt is a i.i.d random error. This structure captures
the non-linear relationships while providing a flexible framework for understanding the
(linear or non-linear impact) of every variable considered.

We impose restrictions on the number of smooth functions allowed in the framework
to prevent problems related to overfitting. For this reason, the specified models are usually
fit by penalized likelihood maximization, and each penalty is multiplied by an associated
smoothing parameter to control the balance between over- and underfitting. The MGCV
implementation of GAM in R is applied. This module characterizes the smooth functions
using penalized regression splines with smoothing parameters selected by the restricted
maximum likelihood (REML).

In order to make the reported method robust to the existence of residual autocorrela-
tion and dynamic causal effects, we consider a linear transfer function (LTF) with ARIMA
noise [26] for the variables transformed by the GAM model.

We assume the series, yt and x1,t, . . ., xn,t are stationary variables. The classical multiple
linear regression model given by

yt = c + β1x1,t + β2x2,t + . . . + βnxn,t + εt (2)

which assumes that the system’s noise εt is white noise and uncorrelated with the ex-
planatory variables. In order to guarantee uncorrelated residuals and no cross-correlation
between the residuals and the regressors, the LTF method with ARIMA noise, introduced
by [27], is applied. The dependent variable is modeled as a function of its past values
and lagged values of the explanatory variables. The following specification is used for
this purpose:

yt = c +
ω(L)
δ(L)

x′i,t−b + vt (3)

ω(L) =
(

ω0 − ω1L − ω2L2 − . . . − ωsLs
)

(4)

δ(L) =
(

1 − δ1L − δ2L2 − . . . − ωsLr
)

(5)

vt =

(
1 − θ1L − θ2L2 − . . . − θqLq)(

1 −φ1L −φ2L2 − . . . −φpLp)(1 − L)d εt (6)

where yt is the dependent output variable at time t, xi,t represents the i-th independent or
explanatory input variables, νt is an autocorrelated ARIMA(p,d,q) noise, r, s, and b are
constant integers, ω(L) and δ(L) are lagged polynomials, εt is white noise, and x′i,t = f (xi,t)
are the input variables transformed by the GAM model.
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3. Data and Preliminary Results

The primary data used in this analysis have three main sources: The Energy In-
formation Administration (EIA), the Commodity Futures Trading Commission (CFTC),
and Bloomberg. We have a sample of monthly observations covering the period from
January 1995 to December 2023. A detailed description of the initial variables considered is
provided in Table A1. The EIA Short-Term Energy Outlook reports data series related to the
fundamental balance in the crude oil market. It publishes monthly data on aggregate crude
oil production, supply, and inventories. As shown below, these are used to construct the
fundamental variable measure and provide input forecasts based on EIA data. Other fun-
damental variables that are initially considered but not selected as input variables include
OPEC production, spare OPEC production, OECD consumption, OECD total inventory,
China consumption, and the stocks–consumption ratio.

The CFTC releases weekly data on investor positions used to construct the financial
variable. Data on long and short positions of non-commercial agents and open contracts
are obtained for the entire sample period. Other position data that were initially considered
but not selected as input data are specified in Table A1. Weekly data are transformed
into monthly averages for analysis. Front-month Brent Intercontinental Exchange (ICE)
crude oil daily data are downloaded from Bloomberg. This is used to calculate the monthly
average price. The log of the monthly Brent price is the target variable within the model.
However, model forecasts (provided in logs) are transformed into level Brent spot data
to allow a comparison with benchmark forecasting models (the forecasting literature
usually is designed to predict the nominal spot price of Brent or WTI prices. See [6]). The
nominal Brent spot price returns are used to construct the historical (realized) volatility
measure. We use daily quotations of the DXY dollar index to calculate a monthly measure
of the dollar variable. We also download daily Brent ICE futures prices for the remaining
available maturities (2–12 months) to construct the futures price benchmark as an alternative
forecast measure.

3.1. Data Input Selection

The final input variables are selected based on the correlation coefficient between the
logarithm of the Brent spot crude oil price and the input variables. Table A2 describes
the four selected variables. A detailed correlation analysis of the raw data is provided
in Table A3 in the Appendix A. In what follows, we briefly describe the variables selected
for the model. The level of these variables is used in the forecasting algorithm.

Note that the variable selection is closely related to specifications similar to those
in the crude oil forecasting literature. For example, ref. [19] uses fundamental (demand,
supply, and stock), financial market (dollar index, exchange rate of the euro against the U.S.
dollar, S&P500 index, speculative factor based on crude oil non-commercial long ratio), and
technology indicators. These are the final variables built for the proposed model:

(i) Balance in the physical market (FUN):

We consider the crude oil forecasting literature and define oil-related supply and
demand metrics to define the fundamental variable. Ref. [8] include the percentage change
in global oil production, the change in global crude oil inventories, and global economic
activity, among other factors. Similar ratios as proxies of fundamentals are considered
in [28] in their study of the bubble characteristics of non-ferrous metals. They define the
consumption–supply ratio (CSR) as a measure of market fundamentals. This is measured
as the ratio of metal consumption in the quarter in question to production in the same
quarter plus the stock level at the end of the previous quarter. Specifically, we construct
the ratio where the numerator is defined as the sum of aggregate OECD crude oil stocks
to aggregate crude oil production over a 30-day period. The denominator includes the
sum of world oil consumption over the same 30-day period. This fundamental variable
(FUN) is specified under Equation (7) and measures the physical market balance. We can
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see from Table A4 in the Appendix A that it exhibits an inversely proportional relationship
with Brent crude oil with a correlation equal to −0.887.

Fun = MAV(6M(Commercial OECD Stocks))+30·MAV(12M(World Supply))
30·MAV(12M(World Demand)) (7)

(ii) Speculation in the crude oil market (FIN):

The variable used to capture the speculative activity and investors’ sentiment concern-
ing oil prices is constructed with CFTC data. This requires the definition of the following
input ratios. Open interest is the total amount of futures and/or option contracts that
remain open overnight (and thus not offset by a transaction, delivery, or exercise). Note
that all long open interest aggregates equal short open interest. Secondly, we use “commer-
cial” or “non-commercial” CFTC classifications and define a “net non-commercial ratio”
that considers net (long minus short) “non-commercial” positions in the numerator and
total open interest in the denominator. The objective is to provide a metric gauging the
direction of the market sentiment as “non-commercial” positions are defined as trades
not designed for hedging purposes. The second measure is the sum of long and short
“non-commercial” positions divided by the total open interest. This aims to provide the
magnitude or impact of investors (or speculators) taking oil market positions. The pro-
posed financial variable (denoted as FIN) is defined as the product of two ratios. Note that
this metric is related to Working’s T-index, which has been used as a futures speculation
proxy by [29] in the crude oil price case by [30] for multiple commodity markets and [31]
for food commodities. See also [28,32] for the non-ferrous and agricultural market cases,
respectively. While the FIN variable correlates with Working’s T index, it better fits the
proposed forecasting model and is more closely related to the speculation-related measures
used in the crude oil forecasting literature [19]. The underlying presumption is that a high
(low) level of speculation will encourage higher (lower) prices, as shown by a correlation
coefficient between the FIN variable and the crude oil Brent price, which is reported to be
0.51 in Table A4 in the Appendix A. The financial variable is therefore defined as follows:

Fin =
Net Long NonCommercial Positions

Open Interest
·Total NonCommercial Positions

Open Interest
(8)

(iii) Realized Volatility (VOL):

We follow [33] and use a metric of uncertainty related to the crude oil market. Specifi-
cally, the realized volatility of Brent front-month futures prices is used. Volatility is often
related to market risks and therefore has a negative impact on the price of oil. As reported
in Table A4 in the Appendix A, the correlation coefficient of realized volatility with the oil
price is equal to −0.21.

(iv) U.S. Dollar (DXY):

The U.S. dollar is the numeraire in most oil contracts quoted in U.S. dollars. We use
the DXY index to address the effect of the U.S. dollar on the oil price. As underlined
by [34], changes in the exchange rate can be translated into changes in oil consumption
for oil-importing countries and non-US-based investors. The dollar index (as well as
the euro-dollar exchange rate) is considered by [19] in a recent oil forecasting exercise.
Table A4 in the Appendix A shows that the correlation coefficient of the DXY index and
the log of the Brent price is −0.52.

3.2. Descriptive Statistics

Table A2 in the Appendix A summarizes the series selected to construct the final
variables, including data sources. Table A3 shows the correlations across the log of the
Brent price and the main variables selected by the algorithm. The results show that the
reported correlations between explanatory variables remain below 0.55, suggesting that the
model will not suffer from multicollinearity problems.
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Table 1 in the main text reports descriptive statistics of the selected input variables
and the output or forecasted variable, which is the log of the Brent spot price labeled as
log(Brent). Estimates are based on a sample of monthly data ranging from January 1995 to
December 2023 (358 observations). We can see that the Brent spot price level exhibits the
highest standard deviation and maximum level.

Table 1. Summary statistics.

Variables n Mean Median Std Skew Kurtosis Min Max

Brent 348 58.18 56.81 32.28 0.353 −0.972 10.19 133.81
log(Brent) 348 1.68 1.75 0.28 −0.442 −0.947 1.01 2.13

Fun 348 2.05 2.03 0.09 0.673 −0.336 1.88 2.28
Fin 348 0.03 0.02 0.03 0.476 −0.869 −0.03 0.11
Vol 348 0.32 0.30 0.16 2.788 14.452 0.08 1.54

DXY 348 92.29 92.83 10.69 0.366 −0.428 72.08 119.04
Note: This table reports summary statistics of the Brent spot price, the log of the spot Brent price (log(Brent)), as well
as the selected variables used in the forecasting exercise. The table shows mean, median, standard deviation (Std),
skew, kurtosis, minimum (Min), and maximum (Max) variable values.

The normality and unit root test results are reported in Table 2. The results of the Jarque-B
test and Ljung–Box show that the null hypothesis of normality and white noise errors is rejected
for all variables considered. This table also reports results for the augmented Dicky–Fuller
(ADF) [35], the Phillips–Peron (P.P.) [36], and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [37]
unit root tests. The reported results show that the unit root hypothesis is accepted for all
variables except the volatility variable (Vol). This motivates the use of the LTF model.

Table 2. Normality and unit root test results.

Variables Jarque-B Ljung–Box ADF PP KPSS

Brent 21.06 *** 338.26 *** −2.85 −2.51 1.04 ***
log(Brent) 24.39 *** 340.21 *** −2.51 −2.22 1.38 ***

Fun 28.42 *** 338.99 *** −3.48 ** −2.80 0.89 ***
Fin 24.21 *** 322.99 *** −3.19 * −3.99 *** 1.04 ***
Vol 3489.10 *** 129.37 *** −9.15 *** −9.07 *** 0.13

DXY 10.49 *** 339.84 *** −1.77 −1.60 1.09 ***
Note: This table provides normality and unit root test results. ***, **, and * denote rejection of the null hypothesis
at the 1, 5, and 10 percent levels, respectively.

The Bai and Perron test [38] for detecting multiple structural changes has also been per-
formed for the logarithm of the Brent spot price as well as for the regression with the selected
input and explained variables in differences. The results are reported in Tables A5 and A6,
respectively. They show that the log of Brent prices exhibits five breakpoints along our
sample period (these correspond to September 1999, October 2004, August 2010, and
November 2014. Such points are consistent with those detected in for crude oil in the
bubble literature [4].). When we run the regression in differences (with log Brent as ex-
plained variable and the changes in the fundamental, financial dollar, and volatility as
input variables), the reported results do not show evidence of structural breaks. The fact
that structural breaks are no longer reported for the regression in differences shows that
the input variables have been appropriately selected.

Figure 1 illustrates the complete process of the proposed methodology to forecast oil
prices. The starting point is the data obtained from multiple sources, such as EIA or the
Commodity Futures Exchange Commission (CFTC). The data are then used to build four
variables (FUN, FIN, VOL, and DXY), which are transformed through a GAM model into
the final input variables used by the linear transfer function model.
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Figure 1. Process of the proposed methodology: This figure exhibits the steps required for GAM
method development. Step 1 involves raw data extractions; step 2 requires the creation of featured
variables; step 3 performs the transformation through a GAM model into the final variables used by
the linear transfer function model in step 4 to create the Brent forecast.

This analysis applies a feature engineering approach to crude oil price forecasting.
Feature engineering is the process of using domain knowledge to obtain features (charac-
teristics, properties, and attributes) of the analyzed variables. It involves the extraction and
transformation of variables from raw data to a more effective set of inputs so that these can
be used for training and prediction to improve the quality of results arising from a machine
learning process. This increases model performance as it goes beyond supplying only the
raw data to the machine learning process. This study combines a set of transformed vari-
ables (using basis functions) to create a parsimonious model specification. The proposed
framework allows for an improved understanding of the oil price determinants through
four representative variables that allow the development of a simple tool designed for
scenario analysis. Feature engineering has been a successful method in machine learning
models [39], and in the case of oil price forecasting, it could also be an advantage. The data
pre-processing step (first applied under the statistical learning algorithm) adds different
variables to create a combined metric representing some market features.

4. Model Identification and Empirical Results

This section describes the building process underlying the two-step method proposed
to model the oil price. We first analyze each time series to determine the modeling method-
ology. The variable to be forecasted is the logarithmic monthly average Brent spot price.

The empirical application covers the January 1995 to June 2023 period and aims to
forecast the monthly crude oil Brent price series as the current global crude oil price bench-
mark. The in-sample period runs up to December 2016. This selection makes the in-sample
size comparable to the recent literature; ref. [8] uses an in-sample period ranging from
1997:12 to 2010:6. The model is tested for the 2017–2023 out-of-sample period. Note that
this constitutes seven years of monthly data leading to 82 observations. While this out-of-
sample window may be considered short compared to other benchmark analyses [8,40],
recent research in the literature considering the existence of non-linearities [18] has used
shorter out-of-sample periods. Specifically, it evaluates the out-of-sample forecast per-
formance for the 2009:M5 to 2016:M11 period. We therefore follow the recent literature
that addresses the sources of non-linearities and use shorter out-of-sample periods in
our forecasting exercise. The sources of recent non-linearities include the collapse of the
2014–2016 crude oil price, the 2020 COVID-19 pandemic shock, the ongoing war in Ukraine,
and a shift to green energy. Forecasting performance is measured in terms of MAPE values
as well as the absolute ratios of MAPE with respect to the no change. The RMSE is also
computed in the principal analysis as a means of robustness. The same out-of-sample
period is considered for the sensitivity analysis. Possible scenarios are created for the four
quarters of 2024.
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4.1. Preliminary Analysis

Figure 2 illustrates the partial effects obtained with the GAM model of the transformed
fundamental, financial, volatility, and dollar variables on the oil price. For instance, the top
left-hand side (LHS) panel of Figure 2 illustrates the fundamental variable on the X-axis
and the transformed variable on the Y-axis, indicating the effect of the fundamental on the
oil price metric. The dotted lines illustrate 5% confidence intervals. The model results show
non-linearities in every variable considered except for the fundamental metric. This is
corroborated by “EDF” reported in column 2 of Table 3, representing the effective degrees
of freedom, which measure the degree of non-linearities within a given curve. Note that
when the reported EDFs are equal to one, as is the case for the fundamental variable, this
implies that the curve is linear. The volatility variable depicted in the bottom right-hand
side (RHS) panel exhibits the highest level of non-linearity, followed by the dollar in the
bottom LHS panel and the financial metric in the top RHS panel.
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Figure 2. Partial effects illustration under the GAM model: This figure illustrates the non-linear
relationship between each of the variables considered and the oil price under the GAM estimation.
The row input variables (represented by dots on the horizontal axis) are transformed using the basis
functions (denoted by f()). The transformed variables are introduced in the LTF model at a later stage.
The effects of the fundamental and financial variables are illustrated under the top left-hand side
(LHS) and right-hand side (LHS) panels. The dollar and volatility variables are depicted under the
bottom LHS and RHS panels. Moreover, 95% confidence intervals are depicted as dotted lines.

Table 3. Summary of estimated coefficients under a GAM model specification.

Approximate Significance of Smooth Terms:

Variable: Edf Ref Edf F p-Value

Fundamental 1.00 1.00 293.16 <2 × 10−16 ***
Financial 3.015 3.985 17.20 7.5 × 10−13 ***
Volatility 4.385 5.471 13.34 1.57 × 10−12 ***

Dollar 3.713 4.900 14.34 2.11 × 10−12 ***
Signif. Codes: 0 ‘***’, 0.001, ‘.’ 0.1′′

R-sq- (adj) = 0.883 Deviance explained = 88.8%
fREML = −637.32 Scale est. = 0.0035994

Box–Pierce test = 294.28, df = 1, p-value < 2.2 × 10−16

Note: This table reports estimates of the GAM model specification. EDF: reflects the degree of non-linearity of a
curve. An EDF equal to 1 is equivalent to a linear relationship. p-values represent calculated p-values from Wald
test (significance of each parametric and smooth term of the model). Signif. Codes: 0 ‘***’.
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In what follows, we interpret the plots in Figure 2, illustrating the partial effects for
every explanatory variable. Note that the four signs of the function slopes are aligned
with the correlation coefficient calculated with the oil prices, reported in Table A4. The
top LHS panel in Figure 2 shows that the fundamental variable, which takes a low value
under fundamental shortages, exhibits a well-fitted negative linear relationship with the oil
Brent price, showing that excess supply market conditions lead to lower oil prices. While
the effect of the financial variable on the oil price is almost linear, we can see that the
financial variable presents some non-linear features. Specifically, we can see that the slope
is slightly smoothed when the market sentiment becomes bullish so that positive investor
bets outnumber the negative counterparts. The bottom LHS panel in Figure 2 shows a non-
linear inverse relationship between the dollar index and oil benchmark that is significantly
smoothed when the index exceeds 105. The negative influence of the dollar value on oil
prices has been widely documented in the literature [18,41]. The relationship estimated
implies that Brent prices increase under low dollar conditions. A lower dollar leads to
higher demand and higher prices as producers try to protect the dollar-adjusted value
of their revenues. Oil becomes relatively cheap for foreign investors, and this increases
demand. However, the results illustrated in the LHS panel of Figure 2 suggest that the
dollar’s impact on crude oil prices is lower when the dollar is under stronger conditions.
The results depicted in the bottom RHS panel in Figure 2 show the effect of volatility, which
is highly significant under high-volatility regimes and negatively affects prices. Episodes
of extreme volatility (such as that seen during the 2014 oil price shock) are expected to
decrease the oil price, while the volatility effect is reduced under normal market conditions.
In fact, we can see that when the volatility is below 40%, it exhibits a reduced impact on
oil prices. The existence of volatility-driven regime changes has been considered in the
forecasting literature by the authors of [18], who document a “volatility upward regime”
via the TVIP-MRS model and forecast the crude oil price.

The preliminary estimation results reported in Table 3 show that the adjusted R2
and the deviance explained demonstrate that the model fits the data correctly. The
Box–Pierce test suggests that there is residual autocorrelation. The details can be found
in Figure A1 in the Appendix A.

In order to correct this autocorrelation, we include a linear transfer function model
with ARIMA noise in the second step. We estimate the LTF specification using an identifica-
tion, estimation, and diagnosis procedure [42], following a similar approach to constructing
the univariate Box–Jenkins ARIMA model [26]. The identification requires fitting a multiple
regression model, adding as many lags of the regressors as required, and a low-order
autoregressive model for the error term to capture most of the autocorrelation and be
able to estimate the impulse response. If regression errors are not stationary, variables are
differentiated. The next stage is identifying the transfer function and selecting the appro-
priate values for b, r, and s. We can identify the orders (b, r, and s) by visually comparing
the estimated impulse response function with some standard theoretical functions. Then,
the ARMA model for the regression errors must be determined to fit the complete model.
Finally, several diagnostic tests are applied to determine the model selection model based
on resulting cross-correlation and autocorrelation tests.

The explanatory variables are determined using the previously estimated GAM pro-
cess. The final model identification suggests an ARIMA (1,1,0) for the residuals. The
estimation results are reported in Table 4. We can see that the four independent vari-
ables are statistically significant, and the residuals do not exhibit s serial correlation, with
Box–Pierce failing to reject that residuals are independently distributed. The partial auto-
correlation function (PACF) and auto-correlation function (ACF) confirm the absence of
a serial correlation (see Figure A2 in the Appendix A). Note that results reported for the
regression in differences under the Bai and Perron test [39] (see Table A6) show that we
failed to reject the null hypothesis of no structural breaks. This confirms that the LTF model
can be applied to the residuals.
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Table 4. Summary of estimated coefficients under final specification.

Approximate Significance of Smooth Terms:

Variable: Estimate Std Error Z Value p-Value

ar 0.268 0.057 4.741 2.12 × 10−16 ***
f(Fundamental) 0.51 0.110 4.654 <2 × 10−16 ***

f(Financial) 1.125 0.106 10.622 <2.11 × 10−12 ***
f(Volatility) 0.882 0.097 9.088 <7.5 × 10−12 ***

f(Dollar) 0.510 0.137 3.710 <1.57 × 10−12 ***
Signif. Codes: 0 ‘***’, 0.001, ‘.’ 0.1′′

Box–Pierce test = 0.000040065, df = 1, p-value = 0.984
Note: This table reports estimates of the final model specification with the coefficient of the regression calculated.
Signif. Codes: 0 ‘***’.

The final equation of the complete model is as follows:

yt = ω1,0x′1,t + ω2,0x′2,t + ω3,0x′3,t + ω4,0x′4,t +
εt

(1 − φL)(1 − L)
(9)

where x′1,t = f1(x1,t); x′2,t = f2(x2,t); x′3,t = f3(x3,t); and x′4,t = f4(x4,t) are the variables
transformed by the GAM model (see Figure 2) and εt is the white noise.

Figure 3 depicts the one-month-ahead forecast of the Brent crude oil price under
the proposed model versus the observed Brent price as well as the error defined as the
difference between the estimated and observed values. A closer look at the figure shows
that the goodness of fit is high but clearly deteriorates in times of increased uncertainty,
such as during the 2008 crisis, the 2014 crude oil price collapse, or the 2020 COVID crisis.
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price (Brent) price, the estimated Brent spot price (model), and the forecast error. The GAM model is
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4.2. Sensitivity Analysis

The next step is to provide a sensitivity analysis, developed to show the future evolu-
tion of the crude oil price, given a one standard deviation shock to some of the explanatory
variables over a six-month horizon, keeping the remaining variables constant. The results
are reported in Figure 4.
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Figure 4. Sensitivity analysis: This figure illustrates the effect of a one standard deviation shock in each ex-
planatory variable on the Brent crude oil price over a 6-month horizon. The January 1995–December 2016
in-sample period is considered for this purpose. The sensitivity analysis is performed for the
first two quarters of 2017.

We assume that variables were shocked in December 2016 and evaluated over the next
six months.

They show that the variable with the most significant influence on crude oil is the
fundamental variable, which decreases the crude oil price by 20% for a given one stan-
dard deviation shock. The second most important variable in terms of price impact is
the financial variable, which has a positive 10% effect on Brent prices for a given one
standard-deviation shock. The same shock applies to the dollar and volatility variables
exert a negative impact of 5% and 2%, respectively. Our findings are consistent with the
literature supporting supply and demand fundamentals as the main drivers of crude oil
prices [7,8,29,43]. The market fundamental variable is the most important factor explaining
the time series evolution of crude oil prices, with shocks remaining important after six
months. Speculators are informed investors and enter the market to exploit fundamental-
related trends [43]. Indeed, Table A4 in the Appendix A shows that the fundamental
and financial variables exhibit a significant negative correlation of −0.56, implying that
they share common characteristics. When fundamentals are tight, the market has a more
significant inflow of speculative activity.

4.3. Forecasting Results

In what follows, we quantify the predictive performance of the proposed model
specification. The analysis takes the 2017Q1 to 2023Q4 time frame for the out-of-sample test
(21% of data). A forecast for different quarters within a window of 12 months (four quarters)
is made at the beginning of every quarter. Data for the last seven years of the sample have
been used to compare model performance with four forecasting methods. This implies that
there are 25 quarterly forecasting periods. The average monthly forecast for each quarter is
considered, and the mean absolute percentage error (MAPE) for each method considered is
reported in Table 5. Note that this period represents the recovery from the 2014–2016 price
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slump and the COVID-induced crude oil price collapse. As discussed in the introduction,
crude oil prices have experienced many different price swings over the forecasting period.
Therefore, we believe it is essential to provide an appropriate testing framework to account
for the observed non-linearities in the data.

Table 5. MAPE error measures for different forecasting methods.

2017Q1 2017Q2 2017Q3 2017Q4 2018Q1 2018Q2 2018Q3 2018Q4 2019Q1

Constant 6.19% 10.09% 24.62% 20.06% 10.14% 7.30% 10.47% 20.80% 9.96%
Futures 9.84% 10.29% 20.53% 19.21% 9.45% 5.91% 11.75% 23.31% 14.37%

BBG Analysts Median 6.50% 8.77% 12.08% 20.77% 19.48% 8.73% 3.96% 13.30% 9.48%
Department of Energy EIA 5.72% 9.81% 20.50% 22.63% 16.15% 12.05% 4.66% 16.99% 5.68%

GAMLTF Forecasted Inputs 5.78% 9.75% 18.72% 15.58% 14.05% 7.10% 8.49% 21.33% 6.41%
GAMLTF Actual Inputs 16.11% 6.15% 8.86% 4.80% 5.78% 11.45% 3.86% 11.30% 7.72%

LTF Actual Inputs No GAM 17.65% 6.32% 8.13% 9.07% 9.27% 22.79% 3.65% 4.13% 7.09%

2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2

Constant 9.83% 29.17% 34.49% 54.64% 24.77% 22.29% 30.57% 28.53% 15.94%
Futures 10.87% 29.24% 29.81% 48.13% 20.86% 19.84% 26.89% 27.36% 22.64%

BBG Analysts Median 16.04% 39.54% 35.67% 42.36% 10.02% 25.24% 26.14% 33.24% 23.26%
Department of Energy EIA 7.38% 37.00% 32.62% 43.62% 32.28% 16.61% 25.21% 24.85% 20.14%

GAMLTF Forecasted Inputs 10.39% 30.62% 42.76% 42.15% 29.97% 23.36% 10.80% 7.59% 13.10%
GAMLTF Actual Inputs 5.86% 9.83% 16.25% 12.47% 19.46% 17.67% 12.96% 5.95% 3.79%

LTF Actual Inputs No GAM 14.35% 63.13% 93.00% 94.80% 27.15% 27.26% 17.22% 8.85% 13.11%

2021Q3 2021Q4 2022Q1 2022Q2 2022Q3 2022Q4 2023Q1 TOTAL

Constant 16.66% 21.17% 22.66% 20.27% 36.84% 8.48% 3.10% 19.96%
Futures 19.15% 21.30% 23.45% 6.74% 13.33% 5.29% 4.55% 18.16%

BBG Analysts Median 23.92% 26.33% 22.15% 5.12% 16.60% 14.79% 10.73% 18.97%
Department of Energy EIA 19.95% 20.19% 23.10% 10.64% 13.21% 12.29% 3.86% 18.29%

GAMLTF Forecasted Inputs 11.98% 9.50% 13.59% 32.05% 32.49% 8.98% 5.86% 17.30%
GAMLTF Actual Inputs 11.72% 14.91% 21.22% 26.12% 20.87% 9.29% 4.12% 11.54%

LTF Actual Inputs No GAM 8.31% 8.27% 9.96% 43.39% 42.51% 11.08% 5.30% 23.03%

Note: This table reports the forecasting performance in terms of the MAPE measure of the proposed framework
for forecasted and actual input data as well as alternative benchmarks, including the LTF framework with no
GAM. The in-sample period is 1995–2016, and the out-of-sample or forecasting period is 2017–2023. Forecasting is
performed for the next four quarters. The following forecasting methods are considered: No-change: forecasts are
the average price of the previous month for the whole forecast period. Futures: forecasts are the average of Brent
first-, second-, and third-month contracts for the first quarter, fourth-, fifth-, and sixth-month contracts for the
second quarter for the day before beginning the period of forecast. BBG: Bloomberg quarterly surveys are taken
as forecasts the day before beginning the period of forecast. EIA: average monthly forecasts to create quarterly
forecasts are taken from the last EIA report before beginning the period of forecast. GAMLFT with forecasted
inputs: proposed new model fed by forecasted inputs. GAMLFT with actual inputs: proposed new model fed by
actual inputs. LFT with actual inputs: linear function transfer model fed by forecasted inputs.

We benchmark the proposed model against the no-change or spot reference price. This
uses the last available monthly spot price observation. The no-change forecast is set as
the spot price under the previous month of the forecast during the whole forecast period.
Next, we consider the forecasting performance of the Intercontinental Exchange (ICE) Brent
futures prices. This price aggregates expectations for future price delivery across market
participants. The benchmark built based on futures prices takes the average of the first-,
second-, and third-month generic future contracts (Brent) for the first quarter forecast and
the average of the fourth-, fifth-, and sixth-month contracts for the second quarter forecast.
The same method is applied to forecast prices in the subsequent quarters. The benchmark
is constructed the day before the forecast period begins, and as previously specified, the
data source for the price of the futures prices is Bloomberg.

As an alternative analysts’ forecast benchmark, we first use the monthly forecast
of the Department of Energy of the U.S. (EIA or DoE) released under the Short-Term
Energy Outlook every month. This report calculates monthly Brent price forecasts for
maturities ranging between 1 and 12 or up to 24 months. We construct quarterly forecasts by
calculating three-month averages using the last report before the start of the forecast period.

The second benchmark source of analysts’ forecasts is the prediction provided by the
Bloomberg survey with crude oil analyst forecasts (BBG). This offers industry experts’ price
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forecasts for different maturities. The median forecast for each quarter reported in this
survey is taken as forecasts the day before the forecast period starts. See [15] for a detailed
Bloomberg analysts’ forecast survey description.

We report forecasts for the GAMLTF with forecasted EIA fundamental inputs as well
as from the actual input data. To measure the contribution of the GAM framework, we
report a forecast for the LTF with no GAM. We select the mean absolute percentage error
(MAPE) as a metric for evaluating the performance of the forecasting methods, which is
defined as follows:

MAPE =
1
n

n

∑
t=1

∣∣∣∣∣yt −
∼
y t

yt

∣∣∣∣∣ (10)

The choice of the MAPE metric is motivated by the high oil price variability during
the sample period considered. Oil prices range between USD 30 and USD 140, implying
that absolute differences in high-price states will be difficult to compare with absolute
differences in low-price states. However, the RMSE metric is also included in the main
forecasting analysis as a means of robustness.

The forecasting performance of a model with exogenous variables will depend on the
forecast accuracy of the future values of the selected regressors. For that reason, we also
test under two explanatory variables’ predictions. In the real data model, the observed
values of the future selected explanatory variables are used for forecasting purposes. In
the forecast data model, every explanatory variable is forecasted. In this sense, we use
forecasts of the fundamental and U.S. dollar variables from the EIA, available in its Short-
term Energy Outlook, providing information for world production, world demand, and
OECD inventories. Therefore, we incorporate forward-looking information (based on EIA
predictions) into our forecast framework. ARMA models are estimated for the financial
and volatility variables.

The results reported in Table 5 show that the performance of each model varies over
time. The average MAPE errors indicate that the best model is GAM-LTF with actual inputs
followed by the GAM-LTF. However, a close look at the table shows that the no-change and
the futures forecasts outperform in periods of high volatility, such as 2020Q3 and 2022Q2.
Bloomberg analysts’ forecasts perform worse on average than futures prices, consistent with
previous results reported in the literature [17]. However, it outperforms all the benchmarks
considered during 2017Q3 and 2020Q1. Given that the best results at the average level are
achieved when we know the variable data (GAMLTF actual inputs), we propose using the
model for scenario analysis as the reported results suggest that it accurately captures the
relationships between variables. This analysis is performed in Section 5.

Table A7 in the Appendix A provides the same forecasting results under the MRSE
measure. The reported figures are qualitatively similar to those reported in Table 5, sug-
gesting that the relative forecasting ability is not dependent on the forecast performance
measure selected for the analysis.

In order to provide a deeper analysis of the results we report, Table 6 provides forecast
accuracy in terms of the MAPE metrics for four maturities of the different models analyzed.
The average forecast for each quarter is reported. For instance, if the forecast maturity is
one quarter, in Q1 of 2016, the forecast for Q2 2016 is performed for each of the models
considered and is used to calculate the average forecast for the Q2 forecast period. Similarly,
in Q2 of 2016, the forecast for Q3 2016 is performed for each of the models considered for
the reported average for the Q3 forecast. The same procedure is followed to calculate the
forecast for longer horizons.

Our main findings can be summarized as follows: (i) In line with the previous literature [17],
forecast accuracy decreases with maturity. (ii) The best forecasting performance for all
horizons considered is reported for the proposed model with actual values of input vari-
ables. Furthermore, the second best performance is observed for the proposed model with
forecasted input. This confirms that the proposed model can be used as an optimal tool for
scenario analysis purposes (details will be provided in Section 5). (iii) The introduction of
the GAM specification in the model, considering the non-linearities in the input/output re-
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lationships between the explanatory variables and the oil price, is important for improving
forecasting results, as can be seen by comparing the last column with columns 5 and 6. The
forecast provided by the LTF approach with no GAM is less accurate than that provided
under the GAMLTF with actual and forecasted inputs. (iv) The model with forecasted
variables (forecast data model) improves the forecasting performance when compared to
other benchmarks for all quarters considered.

Table 6. MAPE for different forecasting methods and horizons.

No-Change Futures BBG Department of
Energy EIA

GAMLTF with
Forecasted Inputs

GAMLTF with
Actual Inputs

LTF with
Actual Inputs

No GAM

1Q Forecast 8.1% 11.6% 10.2% 9.5% 7.7% 6.0% 8.2%
2Q Forecast 19.8% 21.3% 18.2% 19.5% 17.7% 11.0% 23.1%
3Q Forecast 24.8% 25.0% 22.6% 22.2% 21.1% 12.0% 31.3%
4Q Forecast 30.4% 28.8% 26.9% 27.2% 25.1% 12.5% 39.4%

Note: this table illustrates the model accuracy in terms of the MAPE measure with different forecasting horizons
ranging from Q1 to Q4.

Table 7 reports the forecasting performance of the different models in terms of the
MAPE metric in relation to the no-change forecast. The prediction horizon ranges from 1Q
in the first panel to Q4 in the fourth. In this case, a moving window of six quarters is used
to calculate the MAPE metric. The purpose is to quantify the evolution of predictive ability
and robustness for the different models considered. Note that this requires changing the in-
sample and out-of-sample period for every calculation. For instance, the forecast estimates
corresponding to 2019Q4 include 2019Q4, 2020Q1, 2020Q2, 2020Q3, 2020Q4, and 2021Q1.
Therefore, the in-sample period covers the January 1995 to December 2019Q3 range. How-
ever, the forecast estimate corresponding to 2020Q1 calculates the average prediction for
2020Q1, 2020Q2, 2020Q3, 2020Q4, 2021Q1, and 2021Q2 and uses the 1995Q1-2019Q4 as
an in-sample period. As opposed to the results reported in Table 5, we provide forecast-
ing results for every period of the out-of-sample window under each different quarter to
analyze the persistence of the relative performance of the different methodologies consid-
ered. This is relevant given the high performance of regime-changing events seen during
the 2017–2023 window, including the COVID crisis, the war in Ukraine, and the higher-
than-expected recovery with high inflation and interest rate rises. Under this reporting
format, the ratio takes a value of 1 if a given model performs equally as well as the naïve
(no-change model). A close look at Table 5 shows that, as suggested in Figure 1, the fore-
casting performance of every model varies across time. The calculated results confirm the
findings reported in Table 4. The proposed model with actual inputs performs best for
almost all subsamples considered. The only exceptions are documented in 2018, a period
dominated by the Fed tightening monetary policy. The results also demonstrate that the
model with forecasted inputs is, on average, the second best when the horizon ranges from
one quarter to two quarters. The model with forecasted inputs does not exhibit a clear
outperformance for higher horizons. Since this specification is run based on predicted data,
performance depends on the forecast accuracy of the different (EIA forecasted) inputs. We
see that the longer the forecast horizon, the lower the forecast accuracy. The reported results
confirm the view that the proposed model can be used to consider different (twelve-month
maturity) scenarios underlying the selected explanatory variables.

The forecasting ability of futures prices and the Bloomberg analyst survey can be com-
pared with the results reported by [17], which demonstrate that futures prices outperform
(at the aggregate level) analyst forecasts when considering forecasts performed on a yearly
basis. The current analysis makes it unclear whether future prices will beat Bloomberg
analysts’ forecasts. This may be explained by the different periods and prediction horizons
considered in the forecasting exercise. While [17] considers the average forecast for a given
year with Chicago Mercantile Exchange (CME) WTI futures prices for a sample ending in



Energies 2024, 17, 2182 16 of 25

December 2019, the analysis in this paper uses ICE Brent futures prices and a six-quarter
rolling window and includes forecasts ending the last quarter of 2023.

Table 7. Performance evolution versus no-change forecast (a six-quarter window ahead).

1st Quarter Forecast
6 Quarter Rolling from 2017Q1 2017Q2 2017Q3 2017Q4 2018Q1 2018Q2 2018Q3 2018Q4 2019Q1 2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2 2021Q3 2021Q4

to 2018Q2 2018Q3 2018Q4 2019Q1 2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2 2021Q3 2021Q4 2022Q1 2022Q2 2022Q3 2022Q4 2023Q1
Futures 1.28 1.167 1.317 1.447 1.35 1.447 1.568 1.595 1.712 1.589 1.629 1.434 1.135 1.272 0.927 0.937 1.115 0.930 0.892 0.943

BBG 1.511 1.62 1.204 1.283 1.158 1.17 1.029 0.749 0.89 1.152 1.181 1.150 1.346 2.095 1.914 1.371 1.818 1.507 1.550 1.571
DoE 1.281 1.295 1.231 1.316 1.196 1.191 1.145 0.836 1.309 1.386 1.448 1.123 1.134 1.605 0.655 0.645 0.682 0.609 0.630 0.643

GAMLTF Forecasted Inputs 1.024 1.011 0.999 1.013 0.993 0.893 0.774 0.736 0.854 1.138 1.061 0.956 1.224 1.810 1.256 0.848 1.198 1.386 1.127 1.018
GAMLTF Actual Inputs 0.878 0.746 0.651 0.661 0.77 0.745 0.796 0.567 0.649 0.726 0.709 0.707 0.595 0.821 0.658 0.665 0.799 0.763 0.787 0.838

LTF Actual Imputs no GAM 1.423 1.187 0.899 0.931 0.897 0.765 0.474 0.72 0.993 1.139 1.104 1.048 1.255 1.637 1.388 0.919 1.518 1.916 1.951 1.857
2nd Quarter Forecast

6 Quarter Rolling from 2017Q1 2017Q2 2017Q3 2017Q4 2018Q1 2018Q2 2018Q3 2018Q4 2019Q1 2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2 2021Q3 2021Q4
to 2018Q2 2018Q3 2018Q4 2019Q1 2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2 2021Q3 2021Q4 2022Q1 2022Q2 2022Q3 2022Q4 2023Q1

Futures 1.155 1.178 1.143 1.204 1.276 1.316 1.457 1.072 1.03 0.995 0.963 0.968 0.935 0.964 1.011 1.027 0.930 0.769 0.654 0.645
BBG 1.093 0.951 0.816 0.832 0.905 0.89 0.891 0.918 0.864 0.955 0.899 0.889 0.909 1.050 1.243 1.165 1.083 0.864 0.884 0.906
DoE 1.216 1.173 1.051 1.064 1.063 1.048 0.908 0.898 1.005 0.996 0.961 0.914 0.948 1.071 0.917 0.964 0.914 0.762 0.755 0.760

GAMLTF Forecasted Inputs 0.873 0.935 0.939 0.931 1.006 0.966 1.104 0.992 1.016 1.11 0.997 0.883 0.889 0.826 0.649 0.562 0.749 0.915 0.802 0.843
GAMLTF Actual Inputs 0.795 0.583 0.512 0.57 0.616 0.693 0.714 0.449 0.446 0.475 0.521 0.456 0.388 0.535 0.538 0.555 0.649 0.740 0.792 0.869

LTF Actual Imputs no GAM 1.078 0.876 0.663 0.696 0.572 0.631 0.921 1.522 1.629 1.77 1.625 1.413 1.298 0.777 0.617 0.469 0.684 1.030 1.026 1.038
3rd Quarter Forecast

6 Quarter Rolling from 2017Q1 2017Q2 2017Q3 2017Q4 2018Q1 2018Q2 2018Q3 2018Q4 2019Q1 2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2 2021Q3 2021Q4
to 2018Q2 2018Q3 2018Q4 2019Q1 2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2 2021Q3 2021Q4 2022Q1 2022Q2 2022Q3 2022Q4 2023Q1

Futures 1.089 1.026 1.047 1.152 1.214 1.425 1.097 1.05 0.983 0.956 0.943 0.877 0.906 0.958 1.024 1.051 0.949 0.790 0.646 0.578
BBG 0.878 0.757 0.784 0.996 1.118 1.075 1.05 1.044 0.963 0.947 0.9 0.888 0.867 0.962 1.109 1.115 0.980 0.800 0.787 0.742
DoE 1.075 0.995 0.973 0.943 0.824 0.879 0.828 0.861 0.904 0.904 0.898 0.868 0.906 0.972 0.985 1.038 1.002 0.844 0.819 0.750

GAMLTF Forecasted Inputs 0.861 0.876 0.904 0.922 1.012 0.978 1.094 1.009 1.043 1.049 0.928 0.817 0.662 0.620 0.521 0.443 0.645 0.780 0.831 0.909
GAMLTF Actual Inputs 0.616 0.402 0.445 0.597 0.806 0.763 0.503 0.394 0.449 0.494 0.454 0.406 0.376 0.479 0.474 0.462 0.625 0.703 0.828 0.835

LTF Actual Imputs no GAM 0.715 0.435 0.445 0.63 0.858 1.27 1.815 2.027 2.053 1.965 1.73 1.540 1.065 0.672 0.548 0.410 0.654 0.824 0.796 0.958
4th Quarter Forecast

6 Quarter Rolling from 2017Q1 2017Q2 2017Q3 2017Q4 2018Q1 2018Q2 2018Q3 2018Q4 2019Q1 2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2 2021Q3 2021Q4
to 2018Q2 2018Q3 2018Q4 2019Q1 2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2 2021Q3 2021Q4 2022Q1 2022Q2 2022Q3 2022Q4 2023Q1

Futures 0.871 0.885 0.901 0.95 1.197 1.095 1.065 1.012 0.976 0.957 0.875 0.863 0.912 0.970 1.028 1.068 0.954 0.786 0.750 0.665
BBG 0.781 0.728 0.745 0.876 1.034 1.051 1.063 1.051 0.981 0.95 0.889 0.805 0.818 0.881 1.028 1.083 0.925 0.779 0.710 0.641
DoE 0.998 0.889 0.859 0.76 0.687 0.89 0.924 0.955 0.938 0.93 0.92 0.853 0.852 0.894 0.972 1.058 1.003 0.848 0.832 0.749

GAMLTF Forecasted Inputs 0.925 0.832 0.858 0.873 0.954 0.975 1.042 0.985 0.979 0.937 0.835 0.675 0.503 0.514 0.413 0.371 0.576 0.700 0.851 0.929
GAMLTF Actual Inputs 0.578 0.434 0.449 0.488 0.568 0.395 0.312 0.321 0.385 0.394 0.367 0.367 0.418 0.484 0.458 0.503 0.682 0.762 0.861 0.882

LTF Actual Imputs no GAM 0.849 0.714 0.59 0.674 1.236 1.76 1.944 1.963 1.985 1.864 1.679 1.253 0.825 0.615 0.506 0.426 0.610 0.708 0.824 0.916

Note: This table reports the forecasting performance in terms of the ratio of MAPE of the selected method and
the no-change method. (Forecasting horizon is a six-quarter average window ahead). The performance for the
proposed GAMLTF framework for forecasted and actual input (in bold) data as well as alternative benchmarks,
including the LTF framework with no GAM. The in-sample period 1995–2016, out-of-sample or forecasting period
2017–2023. Colour legend: Dark green → best performer, dark red → worst performer.

5. Oil Price Scenario Generation

We have seen in the previous section that the proposed model can explain and forecast
very accurately when the observed (and not forecasted) values of the explanatory variables
are used in the forecasting process. This tool can help understand the interaction of factors
that determine the past oil price evolution and the future paths under different scenarios,
quantifying the risk associated with a particular scenario compared to an alternative
baseline forecast (selected as the EIA forecast). The proposed model identifies key variables
driving upside and downside risks in the oil price forecast. For expository purposes, three
scenarios involving hypothetical future oil market conditions are explored, starting in the
first quarter of 2024. These main variables and estimated parameters correspond to world
production, world demand, OECD stocks, non-commercial long and short positions, open
interest, historical volatility, and the U.S. dollar. Figure 5 illustrates the twelve-month
forecasts for the four variables in the three scenarios defined from 2024Q1. The illustrative
scenarios are focused on the implications of shocks arising from the supply relative to the
demand conditions.

Scenario A: Main benchmark scenario with EIA forecast
The main scenario uses the U.S. Department of Energy forecast of the fundamental

variable for the next 12 months, performed in December 2023. This includes the concern
expressed by the DoE regarding the weakening global economic situation, which leads
to lower expectations for global oil demand growth. An increase in demand of 1.3 mb/d
is thus considered under this scenario. These views about the economy can potentially
offset the upward pressure on prices stemming from lower short-term oil supply due to
the OPEC’s and Russia’s supply cuts in crude oil production. Oil production cuts were
first announced in October 2022 for a cut of 2 mb/d and were enhanced in April 2023 to
3.5 mb/d.

Furthermore, in June 2023, the OPEC and Russia decided to extend cuts to December 2024.
In July, Saudi Arabia additionally announced voluntary cuts (details can be found at https://

https://www.reuters.com/business/energy/saudi-arabia-expected-extend-voluntary-oil-cut-september-analysts-say-2023-07-28/
https://www.reuters.com/business/energy/saudi-arabia-expected-extend-voluntary-oil-cut-september-analysts-say-2023-07-28/
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www.reuters.com/business/energy/saudi-arabia-expected-extend-voluntary-oil-cut-september-
analysts-say-2023-07-28/ accessed on 15 August 2023). Full compliance (−3.5 mb/d from the
level registered in August 2022) is not expected, but the agency forecasted, in December 2023,
that production will increase by 0.6 mb/d, representing a slowdown when compared to growth
levels reported of 1.6 mb/d in 2023. The fundamental variable is predicted to stay near last
year’s lows. With the tightening of the physical market, investors will increase their positions.
The U.S. dollar stabilizes around 102 as monetary policies are becoming more aligned in the U.S.
and Europe. Crude oil price volatility returns to normal conditions, considering the Ukrainian
crisis causes no other uncertainty-related spikes.

Scenario B: Physical Market tightening
This represents the case of full compliance with the OPEC’s quota supported by

increased tensions in the Middle East (particularly in the Red Sea) and a robust economy
that sustains oil consumption with a rebound in consumption driven by the airline sector,
as forecasted by data from S&P Global. In this case, the fundamental variable will fall to
the lowest value registered over our sample period. Under this scenario, investors will be
attracted to exploit the upward price trend. The U.S. dollar will be weaker than in the main
scenario, and volatility will rebound mildly because of increasing geopolitical pressures.
Note that the OPEC plus group has announced an extension of 3 months to their voluntary
cuts, making this scenario less likely. See the Financial Times article “Opec+ members extend
production cuts to boost oil price”, 4 March 2024.

Scenario C: Low OPEC compliance and delay on the end of monetary tightening
OPEC compliance is less stringent than the main scenario, implying that production

stands at 1 mb/d during 2023Q3–2024Q4. Oil demand growth moderates because of the
delay in the monetary tightening. Under this scenario, investors will reduce their oil
exposure in their portfolios, volatility will pick up, and the dollar will appreciate slightly.

Our model also allows us to do reverse engineering. This feature implies that we can
calculate the values of the underlying variables implied by futures prices. In order to match
quoted futures prices observed in December 2023, our framework shows that there should
be low compliance with the announced the OPEC cuts in the first half of 2024. The prices
are similar to Scenario C.

Forecasts under the different scenarios, including the main and EIA forecasts, are
illustrated in Figure 6. First, our main benchmark scenario for the next 12 months is slightly
more bullish than that reported by the EIA. Under the supply-stressed scenario (B), oil
prices are expected to be higher than USD 100, given the context of deteriorated levels
in the physical balance. The increase in geopolitical risk, partly driven by the recent
moves by Saudi Arabia and Russia to extend their voluntary supply cuts, drives fears of
future inflation and new periods of prolonged periods of low investment in new capacities.
This fact is fundamental under the currently announced OPEC’s production cuts. While
OPEC compliance has always been hesitant, the possibility of future supply cuts remains a
primary concern for Western governments already struggling to contain inflation. We could
see prices stabilizing around the USD 72/bbl level in the case of low OPEC compliance.
The term structure of futures prices is in December 2023 in mild backwardation, with the
December 2024 futures price trading at USD 75/bbl. This implies improved fundamentals
compared to the term structure seen in November 2023.

Note that the set of scenarios envisaged for the explanatory variables allows the simula-
tion of different geopolitical situations. Given that increased geopolitical tensions influence
the price of oil, the proposed tool can be used to consider changes in the explanatory
variables (and the corresponding crude oil price forecast) affected by increased geopolitical
uncertainty. For instance, we expect that there will be supply disruptions under the surge
of an armed conflict. These disruptions will reduce the value of the fundamental variable
and therefore lead to a scenario similar to that described in scenario B.

https://www.reuters.com/business/energy/saudi-arabia-expected-extend-voluntary-oil-cut-september-analysts-say-2023-07-28/
https://www.reuters.com/business/energy/saudi-arabia-expected-extend-voluntary-oil-cut-september-analysts-say-2023-07-28/
https://www.reuters.com/business/energy/saudi-arabia-expected-extend-voluntary-oil-cut-september-analysts-say-2023-07-28/
https://www.reuters.com/business/energy/saudi-arabia-expected-extend-voluntary-oil-cut-september-analysts-say-2023-07-28/
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6. Conclusions

Recent developments in energy markets have shown that the crude oil market is
exposed to time-changing uncertainty. As a result, crude oil prices have been subject to
significant fluctuations over the past two decades. This makes oil price prediction a very
challenging task. While the forecasting frameworks developed in the literature are wide
and varied, there is no consensus about the appropriate methodological framework to apply.
This paper combines the classical regression model with machine learning approaches in
a hybrid framework, selecting the GAM method across the feature engineering literature
jointly with a transfer function with the ARIMA noise approach. Machine learning methods
help to incorporate flexible non-linear capability in the modeling process.

Compared to competing machine learning approaches, the advantage of the proposed
method is that it captures non-linearities under the analysis of partial effects. This allows
input variable interpretation through estimated regression coefficients. The method iden-
tifies two main drivers explaining oil prices. The first and most important variable is the
fundamental variable, which measures the physical market balance. The second is the
financial variable quantifying and capturing crude oil investors’ speculative interest. The
volatility and the dollar variables contribute to a lower impact on oil price movements.
The results show that the non-linear effects are remarkably significant in the dollar and
volatility variables. The impact of the dollar index is significant only under weak dollar
conditions, while volatility is essential for forecasting purposes under high-volatility states.

We show that the algorithm may be applied using U.S. EIA forecasts of the fundamen-
tal and the input variables. The forecasting ability of the proposed framework outperforms
benchmark techniques, including the futures prices and analysts’ crude oil price predictions
provided by Bloomberg and the EIA.

A sensitivity analysis is performed in the second stage, confirming that the variable
with the most significant influence on crude oil prices is the fundamental variable. One
standard deviation increase in this variable results in an oil price reduction of 20%. The
financial variable is the second most important, exerting an impact of 10% for a one standard
deviation increase. The impact of the one standard deviation change in the dollar and
volatility variables are 5% and 2% price change, respectively.

The proposed model is also highly suitable for scenario analysis. The algorithm
demonstrates the ability to quantify the risk associated with a benchmark forecast based on
an extensive analysis of how this forecast changes under alternative hypothetical scenarios
about future oil demand and oil supply conditions. The main scenario (December 2023)
predicts a rebound in oil prices towards USD 88/bbl, delivering higher prices than the EIA.
Two additional situations are proposed for 2024, with the market balance variable acting
as the main driving force. Under market tightening conditions arising from compliance
with the OPEC’s and Russia’s production cuts, prices are pushed to new highs (above USD
100/bbl). Under a lower OPEC compliance scenario and lower consumption due to higher-
than-expected interest rates, we could see a moderation in prices towards USD 72/bbl.

Our results show the relevance of supply and demand fundamentals in the price
determination process and confirm that events that disrupt global oil supply are expected
to increase oil prices, while events that suppress oil consumption growth will generally
decrease oil spot prices (Baumeister and Kilian, 2015) [8]. The proposed hybrid model can
be applied to risk management systems of energy corporations and institutions. It can
also provide a quantitative assessment of the impact of a range of hypothetical events on
the crude oil price. This is crucial in times of multiple sources of uncertainty arising from
factors such as geopolitical tensions, interest rate risk, and energy transition-related shocks.
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A.M.; data curation, P.M.; writing—original draft preparation, P.M.; writing—review and editing,
I.F.-F. and A.M.; supervision, I.F.-F. and A.M. All authors have read and agreed to the published
version of the manuscript.
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Appendix A

Table A1. Raw data description.

Raw Variable Frequency History Source Model Variable

Brent Monthly (average daily data) from January 1995 Bloomberg Fundamental VariableLog(Brent)

Total World Production

Monthly from
January 1995

U.S. Energy
Information

Administration
Fundamental Variable

OPEC Production
Spare OPEC Production
Total World Consumption
OECD Consumption
China Consumption
OECD Commercial Inventory
OECD Total Inventory
Stocks Consumption Ratio

Long non-commercial Futures

Monthly (average weekly data)

from
January 1995

Commodity Futures
Trading Commission Financial Variable

Short non-commercial Futures
Net non-commercial Futures
Open Interest Futures
Long non-commercial F&O

from March 1995
Short non-commercial F&O
Net non-commercial F&O
Open Interest F&O

DXY Monthly (average daily data) from January 1995 Bloomberg DollarUSD/EUR

Implied Volatility Monthly (average daily data) from January 1995 Bloomberg Volatility
Realized Volatility Price

Note: This table describes the data used in the initial stage of algorithm implementation. The second to fourth
columns provide variable frequency, data history, and data source. The label “Model variable” in the last column
describes the category of the given data series within the fundamental, financial, dollar, and volatility variables,
according to dimensions for model input variables.

Table A2. Description of selected input variables.

Model Variable
(Equation) Raw Variable Frequency History Source

Fundamental Variable (7)
Total Crude Oil Supply (World)

Monthly From January 1995
U.S. Energy
Information

Administration
Total Crude Oil Demand (World)
Total Commercial OECD Stocks

Financial Variable (8)
Non-Commercial Long Futures WTI

Monthly (average weekly data) From January 1995
Commodity

Futures Trading
Commission

Non-Commercial Short Futures WTI
Open Interest Futures WTI

Volatility
Realized Price First Brent Contract Monthly (average daily data) From January 1995 Price

Dollar DXY Index Monthly (average daily data) From January 1995 Bloomberg
Note: This table describes the selected input data used for GAM model implementation. The third to fifth columns
provide variable frequency, data history, and data source. The label “Model variable” in the first column describes
the category of the given data series within the fundamental, financial, dollar, and volatility variables according to
dimensions for model input variables. The fundamental and financial variable definitions are linked to definitions
specified in Equations (7) and (8), respectively.
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Table A3. Correlation matrix of primary variables used in the analysis.
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Brent 1.00 0.96 0.63 0.66 −0.15 0.66 −0.15 0.60 0.00 0.36 −0.79 −0.81 0.51 0.53 0.41 0.61 0.53 0.46 0.48 0.73 0.44 0.36 −0.57 0.55 −0.23 −0.24
Log(Brent) 0.96 1.00 0.74 0.74 −0.16 0.77 −0.10 0.70 0.11 0.49 −0.86 −0.89 0.60 0.64 0.49 0.71 0.62 0.56 0.56 0.81 0.51 0.45 −0.52 0.49 −0.18 −0.21

Total World Production 0.63 0.74 1.00 0.80 −0.17 0.98 −0.22 0.96 0.58 0.79 −0.79 −0.80 0.90 0.73 0.81 0.92 0.90 0.70 0.85 0.87 0.80 0.78 −0.11 0.08 0.00 0.02
OPEC Production 0.66 0.74 0.80 1.00 −0.56 0.78 0.03 0.65 0.35 0.63 −0.71 −0.72 0.64 0.76 0.49 0.70 0.66 0.73 0.56 0.77 0.53 0.48 −0.38 0.35 −0.08 −0.06

Spare OPEC Production −0.15 −0.16 −0.17 −0.56 1.00 −0.12 −0.41 0.05 0.20 0.07 0.26 0.29 0.05 −0.13 0.11 0.02 0.04 −0.16 0.09 −0.01 0.08 0.09 0.18 −0.16 0.08 −0.01
Total World Consumption 0.66 0.77 0.98 0.78 −0.12 1.00 −0.13 0.95 0.55 0.77 −0.84 −0.80 0.89 0.74 0.79 0.92 0.89 0.70 0.84 0.87 0.78 0.77 −0.14 0.10 −0.06 −0.06

OECD Consumption −0.15 −0.10 −0.22 0.03 −0.41 −0.13 1.00 −0.38 −0.45 −0.36 −0.16 −0.01 −0.43 −0.14 −0.47 −0.36 −0.42 −0.18 −0.45 −0.29 −0.50 −0.46 0.06 −0.07 −0.06 −0.13
China Consumption 0.60 0.70 0.96 0.65 0.05 0.95 −0.38 1.00 0.64 0.80 −0.72 −0.71 0.93 0.68 0.87 0.95 0.93 0.65 0.91 0.86 0.85 0.85 −0.09 0.07 −0.01 0.00

OECD Commercial Inventory 0.00 0.11 0.58 0.35 0.20 0.55 −0.45 0.64 1.00 0.88 −0.02 −0.05 0.71 0.57 0.65 0.65 0.70 0.61 0.64 0.54 0.65 0.66 0.16 −0.17 0.15 0.14
OECD Total Inventory 0.36 0.49 0.79 0.63 0.07 0.77 −0.36 0.80 0.88 1.00 −0.38 −0.41 0.85 0.81 0.73 0.85 0.85 0.81 0.76 0.81 0.75 0.74 −0.16 0.13 0.07 0.05

Stocks Consumption Ratio −0.79 −0.86 −0.79 −0.71 0.26 −0.84 −0.16 −0.72 −0.02 −0.38 1.00 0.93 −0.60 −0.56 −0.51 −0.68 −0.61 −0.47 −0.58 −0.71 −0.51 −0.49 0.27 −0.24 0.13 0.14
Fundamental Variable −0.81 −0.89 −0.80 −0.72 0.29 −0.80 −0.01 −0.71 −0.05 −0.41 0.93 1.00 −0.59 −0.56 −0.50 −0.67 −0.60 −0.48 −0.56 −0.73 −0.50 −0.46 0.28 −0.26 0.02 0.04

Long non-commercial Futures 0.51 0.60 0.90 0.64 0.05 0.89 −0.43 0.93 0.71 0.85 −0.60 −0.59 1.00 0.67 0.96 0.97 1.00 0.66 0.98 0.85 0.94 0.93 −0.13 0.10 −0.10 −0.05
Short non-commercial Futures 0.53 0.64 0.73 0.76 −0.13 0.74 −0.14 0.68 0.57 0.81 −0.56 −0.56 0.67 1.00 0.44 0.73 0.68 0.96 0.52 0.83 0.49 0.47 −0.35 0.32 0.14 0.10
Net non-commercial Futures 0.41 0.49 0.81 0.49 0.11 0.79 −0.47 0.87 0.65 0.73 −0.51 −0.50 0.96 0.44 1.00 0.90 0.95 0.44 0.99 0.72 0.95 0.95 −0.03 0.00 −0.18 −0.10

Open Interest Futures 0.61 0.71 0.92 0.70 0.02 0.92 −0.36 0.95 0.65 0.85 −0.68 −0.67 0.97 0.73 0.90 1.00 0.97 0.70 0.94 0.93 0.86 0.84 −0.21 0.19 −0.09 −0.05
Long non-commercial F&O 0.53 0.62 0.90 0.66 0.04 0.89 −0.42 0.93 0.70 0.85 −0.61 −0.60 1.00 0.68 0.95 0.97 1.00 0.67 0.98 0.86 0.94 0.92 −0.15 0.12 −0.11 −0.06
Short non-commercial F&O 0.46 0.56 0.70 0.73 −0.16 0.70 −0.18 0.65 0.61 0.81 −0.47 −0.48 0.66 0.96 0.44 0.70 0.67 1.00 0.49 0.77 0.51 0.47 −0.30 0.27 0.10 0.09
Net non-commercial F&O 0.48 0.56 0.85 0.56 0.09 0.84 −0.45 0.91 0.64 0.76 −0.58 −0.56 0.98 0.52 0.99 0.94 0.98 0.49 1.00 0.79 0.95 0.95 −0.08 0.06 −0.16 −0.10

Open Interest F&O 0.73 0.81 0.87 0.77 −0.01 0.87 −0.29 0.86 0.54 0.81 −0.71 −0.73 0.85 0.83 0.72 0.93 0.86 0.77 0.79 1.00 0.70 0.65 −0.40 0.38 0.03 0.03
Financial Variable Futures 0.44 0.51 0.80 0.53 0.08 0.78 −0.50 0.85 0.65 0.75 −0.51 −0.50 0.94 0.49 0.95 0.86 0.94 0.51 0.95 0.70 1.00 0.97 −0.10 0.06 −0.18 −0.11

Financial Variable F&O 0.36 0.45 0.78 0.48 0.09 0.77 −0.46 0.85 0.66 0.74 −0.49 −0.46 0.93 0.47 0.95 0.84 0.92 0.47 0.95 0.65 0.97 1.00 −0.03 0.00 −0.18 −0.12
DXY −0.57 −0.52 −0.11 −0.38 0.18 −0.14 0.06 −0.09 0.16 −0.16 0.27 0.28 −0.13 −0.35 −0.03 −0.21 −0.15 −0.30 −0.08 −0.40 −0.10 −0.03 1.00 −0.98 0.26 0.26

USD/EUR 0.55 0.49 0.08 0.35 −0.16 0.10 −0.07 0.07 −0.17 0.13 −0.24 −0.26 0.10 0.32 0.00 0.19 0.12 0.27 0.06 0.38 0.06 0.00 −0.98 1.00 −0.23 −0.23
Implied Volatility −0.23 −0.18 0.00 −0.08 0.08 −0.06 −0.06 −0.01 0.15 0.07 0.13 0.02 −0.10 0.14 −0.18 −0.09 −0.11 0.10 −0.16 0.03 −0.18 −0.18 0.26 −0.23 1.00 0.84
Realized Volatility −0.24 −0.21 0.02 −0.06 −0.01 −0.06 −0.13 0.00 0.14 0.05 0.14 0.04 −0.05 0.10 −0.10 −0.05 −0.06 0.09 −0.10 0.03 −0.11 −0.12 0.26 −0.23 0.84 1.00

Note: This table shows the correlation matrix for every time series initially considered for building the final input (predictive) variables.
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Table A4. Correlation matrix of selected predictive variables and the target variable.
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Log(Brent) - −0.89 0.51 −0.52 −0.21
Fundamental Variable −0.89 - −0.50 0.28 0.04

Financial Variable 0.51 −0.50 - −0.10 −0.11
Dollar −0.52 0.28 −0.10 - 0.26

Realized Volatility −0.21 0.04 −0.11 0.26 -
Note: This table reports correlation coefficients across the variables that have been selected as final input variables.
Correlations with the output variable defined as the log of the Brent spot price are also reported.

Table A5. Bai and Perron structural breaks test results for log(Brent).

Sequential F-Statistic Determined Breaks: 5

Break Test F-Statistics Scaled
F-Statistic

Critical
Value ** Break Dates: Dates:

0 vs. 1 * 1080.393 1080.393 8.58 1 09 September
1 vs. 2 * 75.975 75.975 10.13 2 04 October
2 vs. 3 * 55.274 55.274 11.14 3 10 August
3 vs. 4 * 112.946 112.946 11.83 4 14 November
4 vs. 5 * 23.992 23.992 12.25 5 19 April

Note: This table provides the results for structural breaks test. The test report results for the null hypothesis H0 of
no structural break. The alternative hypothesis H1 test for k structural breaks. There are five structural breaks.
* Significant at the 0.05 level, ** Bai–Perron critical values [38] are used.

Table A6. Bai and Perron structural breaks test for equation in differences.

Sequential F-Statistic Determined Breaks: 0

Break Test F-Statistics Scaled F-Statistic Critical Value **

0 vs. 1 2.321 11.605 18.23
Note: This table provides the results for structural breaks test for an equation that estimates changes in log of
Brent as a function of the differences in the fundamental, financial, volatility, and dollar variables. The test report
results for the null hypothesis H0 of no structural break. The alternative hypothesis H 1 tests for k structural
breaks. There are no structural breaks. * Significant at the 0.05 level, ** Bai–Perron critical values [38] are used.

Table A7. RMSE error measures for different forecasting methods.

2017Q1 2017Q2 2017Q3 2017Q4 2018Q1 2018Q2 2018Q3 2018Q4 2019Q1

Constant 4.144 8.880 18.581 15.593 8.447 6.380 8.179 13.759 6.934
Futures 5.636 7.773 15.878 15.226 8.143 5.323 8.619 15.330 9.668

BBG Analysts Median 3.579 5.715 9.903 15.761 14.872 7.939 3.620 8.961 6.447
Department of Energy EIA 4.122 7.213 16.305 17.359 12.688 9.786 3.722 11.440 5.120

GAMLTF Forecasted Inputs 5.233 7.560 14.174 12.368 10.994 6.288 6.422 14.046 4.808
GAMLTF Actual Inputs 9.409 4.215 6.703 3.854 4.197 8.550 3.273 7.585 5.452

LTF Actual Inputs No GAM 10.088 5.606 6.505 7.905 6.736 16.029 2.616 2.757 4.840

2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2

Constant 7.253 16.155 16.047 22.900 16.258 17.497 23.071 22.156 16.696
Futures 7.938 15.825 13.880 20.262 12.529 15.967 20.520 21.594 21.916

BBG Analysts Median 11.110 19.716 16.965 17.981 6.908 16.904 19.816 24.502 21.498
Department of Energy EIA 6.009 18.994 15.179 18.653 15.237 12.696 18.851 20.654 20.239

GAMLTF Forecasted Inputs 7.748 17.138 20.165 17.989 16.629 14.133 8.360 6.372 11.279
GAMLTF Actual Inputs 4.120 5.043 7.977 5.408 12.576 11.860 9.243 4.998 5.232

LTF Actual Inputs No GAM 12.689 35.927 44.212 40.622 16.969 18.266 13.300 7.160 10.398
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Table A7. Cont.

2021Q3 2021Q4 2022Q1 2022Q2 2022Q3 2022Q4 2023Q1 TOTAL

Constant 22.182 23.929 24.366 20.987 31.913 7.979 3.004 17.040
Futures 25.044 24.891 24.864 7.277 11.495 5.855 3.954 15.323

BBG Analysts Median 27.313 28.984 23.360 10.227 14.378 13.291 9.052 16.031
Department of Energy EIA 26.232 25.283 24.485 10.465 11.659 10.816 3.961 15.400

GAMLTF Forecasted Inputs 15.823 12.759 15.853 30.541 27.898 8.644 5.754 14.341
GAMLTF Actual Inputs 16.721 17.960 22.357 25.347 18.111 8.847 3.981 11.123

LTF Actual Inputs No GAM 10.190 9.670 11.454 40.561 37.043 9.519 6.019 20.065

Note: This table reports the forecasting performance in terms of the RMSE measure of the proposed framework
for forecasted and actual input data as well as alternative benchmarks, including the LTF framework with no
GAM. The in-sample period is 1995–2016, and the out-of-sample or forecasting period is 2017–2023. Forecasts are
performed for the next four quarters. The following forecasting methods are considered: No-change: forecasts
are the average price of the previous month for the whole forecast period. Futures: forecasts are the average of
Brent first-, second-, and third-month contracts for the first quarter, fourth-, fifth-, and sixth-month contracts
for the second quarter for the day before beginning the period of forecast. BBG: Bloomberg quarterly surveys
are taken as forecasts the day before beginning the period of forecast. EIA: average monthly forecasts to create
quarterly forecasts are taken from the last EIA report before beginning the period of forecast. GAMLFT with
Forecasted Inputs: proposed new model fed by forecasted inputs. Highlighted in bold. GAMLFT with actual
inputs: proposed new model fed by actual inputs. Highlighted in bold. LFT with actual inputs: linear function
transfer model fed by forecasted inputs.
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