
Citation: Shin, D.J.; Choi, H.W.

Enhancement of Perovskite

Photodetector Using MAPbI3 with

Formamidinium Bromide. Energies

2024, 17, 2183. https://doi.org/

10.3390/en17092183

Academic Editor: Francesco Calise

Received: 28 March 2024

Revised: 22 April 2024

Accepted: 29 April 2024

Published: 2 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Enhancement of Perovskite Photodetector Using MAPbI3 with
Formamidinium Bromide
Dong Jae Shin and Hyung Wook Choi *

Department of Electrical Engineering, Gachon University, Seongnam 13120, Republic of Korea;
djshinyoon@gachon.ac.kr
* Correspondence: chw@gachon.ac.kr

Abstract: In this study, a perovskite-based mixed cation/anion ultraviolet photodetector with an
added halide material is fabricated using perovskite combined with an ABX_3 structure. Mixed
cation/anion perovskite thin films of MAPbI3/FABr are manufactured through a relatively simple
solution process and employed as light-absorption layers. In the produced thin film, SnO2–sodium
dodecylbenzenesulfonate acts as an electron transport layer and spiro-OMeTAD acts as a hole injection
layer. Compared to a single cation/anion perovskite, the fabricated device exhibits phase stability
and optoelectronic properties, and demonstrates a responsivity of 72.2 mA/W and a detectability of
4.67 × 1013 Jones. In addition, the films show an external quantum efficiency of 56%. This suggests
that mixed cation/anion films can replace single cation/anion perovskite films. Thus, photodetectors
based on lead halides that can be applied in various fields have recently been manufactured.

Keywords: deep-ultraviolet (UV) photodetectors; MAPbI3; FABr

1. Introduction

In recent years, ultraviolet (UV) photodetectors have received considerable attention
from researchers owing to their use in various fields such as covert communication, photo
detecting, environmental analysis, astronomy, and medicine [1–3]. Generally, UV rays
are divided into three areas according to wavelength range: UVA (~400–320 nm), UVB
(~320–280 nm), and UVC (~280–100 nm) [1]. Most UVC rays are absorbed by the ozone
layer and atmosphere and have no effect on Earth [4]. However, some UVC rays are
radiated from technical light sources, like UV germicidal bulbs and mercury lamps [5].
UVC is harmful to human cells and can cause erythema and blindness [6,7]. Therefore,
research on photodetectors that can detect UVC regions by converting incident optical
signals into electrical signals is required.

Several types of inorganic materials such as Ga2O3, GaN, ZnGa2O4, and MoS2/Si
have been used for UV detection. However, processes that use inorganic semiconductor
materials require sophisticated processing at high temperatures [8–10]. By contrast, the
application of low-temperature solution processing using perovskite materials is increasing
compared to that of other semiconductors [11–14].

At present, perovskites are considered as good materials for fabricating photodetectors
owing to their ease of manufacturing and low operating voltage [15]. Additionally, hybrid
organic–inorganic perovskites demonstrate advantages such as a large optical absorption
coefficient, high carrier mobility, controlled band gap, and long diffusion length; conse-
quently, the reported photodetectors based on halide perovskites can function in wide
detection regions with a fast response speed [16].

Early research on optical devices using perovskites used methylammonium lead
iodide (CH3NH3PbI3, MAPbI3), which was prepared using only MA+ monovalent A
cations as the light absorber. However, problems such as photostability and thermal
stability occur because of the low crystallization energy and phase transition between the
tetragonal and cubic phases at ~320 K [17–19]. Therefore, the focus of research has shifted
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to engineering optimal perovskite configurations [20]. In this regard, formamidinium
lead iodide (CH(NH2)2PbI3, FAPbI3) has been studied, owing to its higher decomposition
temperature, longer diffusion length, excellent thermal stability, and narrow bandgap
compared with MAPbI3 [21]. However, FAPbI3 has a trigonal structure (perovskite phase,
black, and α-phase-FAPbI3) or a hexagonal structure (non-perovskite phase, yellow, and
δ-phase-FAPbI3) depending on the synthesis temperature [22]. Because α-phase-FAPbI3
is stable at high temperatures (above 160 ◦C), it can change into the more stable δ-phase-
FAPbI3 at room temperature [20]. This phase change degrades the performance of optical
devices that use the fabricated perovskite film as a light-absorption layer. Therefore, to
prevent this phase change and improve the performance of optical devices, research is
being conducted to improve stability using a mixture of monovalent cations such as MA+,
FA+, and CS+, or by adding halides such as Cl− and Br− [23,24].

In this study, mixed cation/anion perovskite films of MAPbI3/FABr were produced as
light-absorption layers to enhance the performance of perovskite deep-UV photodetectors.
A more stable perovskite photodetector can be produced by adding a halide material
(Br−) to the anti-solvent. When Br− ions are added, the Pb–Br bond length is relatively
short, which reduces the lattice constant and improves the photogeneration and carrier
transport characteristics. Additionally, because the ionic radius of the Br atom is smaller
than that of I and the electronegativity of Br (2.96) is higher than that of I (2.66), the
electronic charge distribution around the Br atom is much stronger, which can address
the phase transition problem. Moreover, by adding Br ions, the bonding density of the
perovskite can be increased, which can improve the efficiency of the film. Consequently, the
prepared perovskite-based photodetector showed a photocurrent generation of 108.3 µA
and a reactivity of 72.2 mA/W when FABr 20 was added to MAPbI3. In addition, the
photodetector exhibited a detection degree of 4.67 × 1013 Jones.

2. Materials and Methods
2.1. Reagents and Materials

All the materials and reagents were used without additional purification. Indium
tin oxide (ITO) was coated on a quartz glass substrate (TMA, Seoul, Republic of Ko-
rea). A SnO2 colloidal solution (15 wt% in water; Alfa Aesar, Haveril, MA, USA) was
prepared. Furthermore, Pb(II) iodide (PbI2; 99.999%), 1-butyl alcohol (99%,), sodium do-
decylbenzenesulfonate (SDBS), acetonitrile (99.93%), ethyl alcohol (≥99.5%), dimethyl
sulfoxide (DMSO; ≥99.9%), N,N-dimethylformamide (DMF; 99.8%), 2,2,7,7-tetrakis[N,N-
di(4-methoxyphenyl)amino]-9,9-spirobifluorene (spiro-OMeTAD; 99%), 2-propanol (IPA;
75 wt%), bis(trifluoromethane)sulfonimide lithium salt (Li-TSFI; ≥99.0%), toluene (99.9%),
and 4-tertbutylpyridine (98%) were all purchased from Sigma Aldrich, St. Louis, MO, USA.
In addition, methylammonium iodide (MAI) and formamidanium bromide (FABr) were
obtained from GreatCell SolarKorea, Seohyun, Republic of Korea.

2.2. Fabrication of MAPbI3-Based Perovskite Photodetector

The ITO-deposited quartz substrates (8 Wm/sq) were purified to remove organic
matter. Then, the substrates were sequentially cleaned using an ultrasonic bath with a
neutral detergent, IPA, acetone, and purified water for 15 min each. Subsequently, the films
were dried with UV ozone to remove any foreign substances. After diluting 1.2 mL of the
SnO2 colloidal solution with 5.2 mL of deionized water, 1 mg of SDBS was dissolved in
the SnO2 solution to make a SnO2–SDBS mixed solution. To form the electron transport
layer of the film, the SnO2–SDBS mixed solution was spin-coated on an ITO substrate at
3000 rpm for 30 s and annealed at 150 ◦C for 30 min. The films were dried with UV ozone
for 20 min to completely remove any moisture prior to the deposition of perovskite. The
MAPbI3 perovskite precursor solution was prepared by mixing PbI2 (1.4 mol) and MAI
(1.4 mol) in a mixture of DMF and DMSO (10:1, v/v). Next, IPA was stirred with FABr
(0, 5, 10, 15, 20, and 25 mg) for 1 h to prepare the solution for FABr post-processing. The
MAPbI3 perovskite layer was spin-coated onto the SnO2–SDBS layer at 4000 rpm for 25 s.
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Subsequently, 250 µL of toluene was added dropwise 15 s before the end of the spin-coating
to form an anti-solvent. The prepared post-processing solution was then spin-coated onto
the MAPbI3 layer at 4000 rpm for 25 s. The perovskite films were then annealed at 140 ◦C
for 15 min on a hot plate. After cooling to room temperature, a spiro-OMeTAD solution
[1 mL chlorobenzene containing 72.3 mg spiro-OMeTAD, 28.8 µL 4-tert-butyl pyridine, and
17.5 µL Li-TFSI solution (ACN in 1 mL of 520 mg Li-TSFI)] was coated onto the perovskite
layer at 2000 rpm for 35 s. Finally, Au was thermally evaporated through an electrode
using an e-beam evaporator in a high vacuum (2 × 106 Torr). Figure 1a shows the vertical
structure of the fabricated photodetector and Figure 1b shows the preparation method.
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Figure 1. (a) Schematic diagram and (b) manufacturing process of MAPbI3-based deep-UV PD.

2.3. Device Characterization

To investigate the crystal structure of the fabricated film, XRD (SmartLab, Rigaku,
Tokyo, Japan) analysis was performed using Cu Kα radiation (λ = 1.542 Å). Field-emission
SEM (Hitachi, S-4700, Tokyo, Japan) was used to analyze the surface and cross-sectional
morphologies of the perovskite layers. The light absorptivity of the device was measured by
UV-vis spectroscopy (UV-vis 8453, Agilent, Santa Clara, CA, USA). A combined source and
measurement meter (Source Measure Unit, Keithley, 2400, Cleveland, OH, USA) was used
to measure the electrical response of the perovskite photodetector. A UV lamp (6 W, 254 nm)
(VL-6. LC, Vilber, VL6.LC, Seine-et-Marne, France) was used to provide 254 nm irradiation.

3. Results
Characteristics of the Prepared Perovskite Film

The perovskite films fabricated in this process are denoted as FABr 0, 5, 10, 15, 20,
and 25, according to the amount of FABr added. Figure 2 shows the X-ray diffraction
(XRD) patterns as a function of the amount of FABr added. The patterns indicate the
crystal formation of the thin film after post-treatment with FABr. Figure 2a shows that the
crystallinity of the films gradually enhanced as the FABr content increased. The reduced
peak intensity in FABr 25 indicated that the high density of FABr caused grain shrinkage,
which has a negative effect on film crystallization. The highest crystallinity was observed
for FABr 20, and the intensity of the XRD peak was approximately 2.43 times that of the
film without FABr. The growth of crystal grains owing to the addition of FABr leads to
an increase in the extinction coefficient, which indicates the improved performance of the
photodetector [25]. Figure 2b exhibits that with the addition of FABr, the main peak of
MAPbI3 shifts from 14.2◦ to 14.0◦, which matches the main peak of FAPbI3. This peak
shift suggests the formation of an FAXMA1−XPbI3 perovskite thin film [26,27]. The lattice
constant calculated by Bragg’s law is 3.14 Å at a diffraction angle of 14.2◦, and increases
to 3.184 Å at 14.0◦, which suggests that adding br-ions to the produced film increases
mobility, allowing better current flow. It can be seen that the crystal size calculated using
the Debye–Scherrer equation increases from 36.37 nm for FABr 0 to 39.98 nm for FABr 20.
As a result, the produced FAXMA1−X PbI3 film has high crystallinity. First, MAI and PbI2
were dissolved in DMSO and DMF and filtered using a syringe filter. Subsequently, the
prepared precursor solution was spin-coated on the ITO substrate on which SnO2 was
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deposited. In the intermediate step, the film was concentrated by solvent evaporation, and
the spatial steric hindrance of FABr and DMSO prevented the conversion of layered PbI2
into tetragonal perovskite. Subsequently, perovskite nucleation was accelerated through an
anti-solvent process to crystallize the perovskite film with rapid solvent extraction. Finally,
FABr was converted into the FAXMA1−XPbI3-DMSO phase via ion exchange. A highly
crystalline perovskite film was formed through annealing [28].
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Figure 3 shows the degree of surface formation of each fabricated perovskite film as
observed using scanning electron microscopy (SEM). Figure 3a shows an SEM image of
pure MAPbI3. It can be observed that the surface of FABr 0 has an irregular thin film. In
addition, the particle sizes are relatively small. With the addition of the postprocessing
solution, the size of the particles on the thin films also increased. In addition, the surface
formation of the film improved, and a change in particle formation occurred. This implies
improved photoelectric properties such as longer carrier life and better absorbance [29,30].
Figure 3e shows the most stable grain growth and uniform surface formation for FABr
20. However, Figure 3f shows that the grain size decreased and the number of pinholes
increased in FABr 25. In addition, residues of PbI2 are observed. This can be attributed to
the de-wetting phenomenon caused by the addition of excessive FA cations [31]. Excessive
FABr content may affect the quality of the film by microcrystallizing the remaining fine
pattern material. Thus, the crystal grains become smaller and gaps appear throughout the
thin film, which ultimately has a negative effect on the performance of the perovskite films.
Therefore, the addition of more FABr than is necessary prevents the proper formation of the
perovskite and causes a decrease in the performance. Consequently, changes in the grain
size and surface shape depending on the concentration of added FABr suggest that the
added FABr has a significant impact on the microstructural changes in the perovskite [32].
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15, (e) FABr 20, and (f) FABr 25. (g) Cross-section of a device with individual layers shown in
different colors.

The UV-visible absorption spectra in Figure 4a show the absorbance of the fabricated
film. With an increase in the amount of FABr solution during the post-treatment process,
the absorption spectrum showed a relative improvement. The films post-processed with
FABr exhibited better optical properties than that of FABr 0. Furthermore, FABr 20 exhibited
the highest absorbance, and the decrease in the absorbance of FABr-25 was affected by
grain shrinkage owing to the excessive addition of FABr. In addition, adding an optimal
amount of Br improved the binding density of the particles, which is expected to improve
the characteristics of the film, as shown in the absorbance measurement results [33].

Optoelectronic properties such as the resistivity, mobility, and carrier concentration
of perovskite films are important characteristics of photodetector materials [34]. The
photoelectric properties of the films with different concentrations of FABr were analyzed
through a Hall measurement system, and the results are shown in Figure 4b. The resistivity
in FABr 0 is 0.7704 Ω·cm, and the perovskite films with added FABr show resistivities of
0.2519, 0.2975, 0.2249, 0.2077, and 0.8474 Ω·cm. The pure film (FABr 0) exhibits a mobility
of 5.01 cm2/V·s, whereas FABr 20 exhibits a mobility of 25.48 cm2/V·s, which is the highest
value obtained among the samples tested. The mobility is correlated with the Pb–Br
structure. As the Pb–Br bond is relatively short, the lattice constant and distance between
the atoms are reduced. Additionally, the electronegativity of the Br atom (2.96) is higher
than that of I (2.66); therefore, heavy Pb hardly interacted with Br [35]. The decrease in
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the mobility of FABr 25 can be attributed to the excessive amount of FABr added. The
higher the mobility, the greater the photocurrent generated [36]. The parameter values of
Resistivity, Mobility, and Carrier Concentration are shown in Table 1.
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Table 1. Parameters of resistivity, mobility, and carrier concentration for all films.

Sample Resistivity
(Ω·cm)

Mobility
(cm2/V·s)

Carrier Concentration
(cm−3)

FABr 0 0.7704 5.01 2.506 × 1013

FABr 5 0.2519 11.47 2.821 × 1013

FABr 10 0.2975 12.64 3.564 × 1013

FABr 15 0.2249 14.29 5.358 × 1013

FABr 20 0.2077 25.48 5.469 × 1013

FABr 25 0.8474 17.48 4.242 × 1013

The performance of the PD with respect to the amount of FABr added can be investi-
gated by irradiating a 254 nm light with an output of 0.774 mW/cm2 in dark conditions and
analyzing the current–voltage (I–V) correlation from −2 to +2 V. Figure 5 shows the amount
of photocurrent generated as a function of the amount of FABr added. The generation of
a photocurrent is affected by the intensity and bias voltage of the irradiated light. At a
voltage of 2 V, the amounts of generated photocurrents were 31.8, 51.6, 70.1, 85.2, 108.3,
and 75.3 µA, respectively. The smallest amount of photocurrent was generated in FABr 0,
and as the amount of added FABr increased, the amount of generated photocurrent also
increased; consequently, the largest amount of photocurrent was generated in FABr 20. This
is because the added FABr increased the particle size and crystal grains, thereby increasing
the extinction coefficient, as shown in the SEM image and absorbance results.
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Figure 6a shows the responsivity (R) and detectability (D*) values of each thin film; R
indicates the responsivity efficiency of the fabricated photodetector to the irradiated light. R
is defined as the output photocurrent divided by the incident light power in the active area
of the photodetector. It is determined by R = (Ilight − Idark)/APop (Ilight is the output current
under 254 nm UV light, Idark is the dark current, A is the active area of the PD, and Pop is
the incident light power intensity). As the amount of FABr increased, the R values increased
to 21.1, 34.4, 46.7, 56.8, and 72.2 mA/W. However, for FABr 25, the R value decreased to
50.2 mA/W. Furthermore, D* is an important performance parameter indicating whether a
PD region can be detected; D* is related to the R value and the noise of the device, and can
be confirmed through these characteristics. It is defined as D* = (A∆f)1/2∆R/in (A is the
effective area of the PD, ∆f is the electrical bandwidth, and in is the current noise). Generally,
it is calculated as D* = R/2qJdark. In this equation, q is the amount of charge and Jdark is the
dark current density. R and D* are proportional; as R increases, D* also increases. The D*
value of the fabricated film increased to 1.74 × 1012, 4.98 × 1012, 2.38 × 1013, 2.89 × 1013,
and 4.67 × 1013 Jones. However, in FABr 25, it decreased to 2.44 × 1013 Jones.
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Figure 6b shows the external quantum efficiency (EQE) of the photodetector as a
function of the amount of added FABr. The EQE is defined as the ratio of the number of
photons emitted to the number of electrons injected, and shows the conversion degree of
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the PD; a high EQE indicates an excellent conversion efficiency of the photodetector. With
an increase in the amount of added FABr, the EQE value at 2 V increased to 16, 27, 36, 44,
and 56%; however, the EQE value decreased to 39% for FABr-25. This indicates that the
mixed cation/anion perovskite film has better optoelectric properties than the single film.
The R, D*, and EQE values of the produced films are shown in Table 2.

Table 2. Performance parameters of PD according to the amount of FABr added.

Sample Responsivity
(mA/W) Detectivity (Jones) EQE (%)

FABr 0 21.1 1.74 × 1012 16

FABr 5 34.4 4.98 × 1012 27

FABr 10 46.7 2.38 × 1013 36

FABr 15 56.8 2.89 × 1013 44

FABr 20 72.2 4.67 × 1013 56

FABr 25 50.2 2.44 × 1013 39

Figure 7a shows the time-dependent optical response of the photodetector observed
at a bias voltage of 1 V and an output light intensity of 0.774 mW/cm2. When the physical
value input to the photodetector changes over time, the output of the UV PD cannot
fluctuate immediately and there is a delay depending on the response time. Response
speed refers to how quickly a sensor’s output can fluctuate in response to input. This
is one of the main parameters indicating the performance of the photodetector. The rise
and fall times of the photodetector were measured to be 148 ms/164 ms, 164 s/171 ms,
224 ms/227 ms, 228 ms/231 ms, 227 ms/276 ms, and 228 ms/265 ms by increasing the
amount of FABr added. This change occurs when numerous traps in the active layer
briefly capture photocarriers before they are emitted, contributing to the circuit current and
extending the fall time. Figure 7b shows the optical stability of the photodetector. Light
stability can be checked by repeating ON/OFF 200 times at 3 s intervals. The optical current
of 2.12 µA in the first iteration was 2.18 µA after 200 iterations. This section shows the
improved stability of the photodetector.
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4. Discussion and Conclusions

In summary, a mixed cation/anion perovskite UVC photodetector is manufactured
by adding FABr to MAPbI3 perovskite. When a halide material (Br−) was added to the
anti-solvent, a more stable perovskite photodetector was obtained. The fabricated thin film
showed better photoelectric properties under a 254 nm deep-UV light source, and FABr 20
in particular showed the best photoelectric properties. This suggests that an optimal PD
operation can be realized with the addition of an appropriate amount of FABr. Therefore,
these findings are expected to be useful in various fields.
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