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Abstract: State of Charge (SoC) estimation is one of the most significant and difficult
techniques to promote the commercialization of electric vehicles (EVs). Suffering from
various interference in vehicle driving environment and model uncertainties due to the strong
time-variant property and inconsistency of batteries, the existing typical SoC estimators such
as coulomb counting and extended Kalman filter cannot perform their theoretically optimal
efficacy in practical applications. Aiming at enhancing the robustness of SoC estimation
and improving accuracy under the real driving conditions with noises and uncertainties,
this paper proposes a framework consisting of (1) an adaptive-κ nonlinear diffusion filter to
reduce the noise in current measurement, (2) a self-learning strategy to estimate and remove
the zero-drift, (3) a coulomb counting algorithm to realize open-loop SoC estimation, (4) an
H∞ filter to implement closed-loop robust estimation, and (5) a data fusion unite to achieve
the final estimation by integrating the advantages of the two SoC estimators. The availability
and efficacy of each component have been demonstrated based on comparative studies
in simulation with the conventional approaches respectively, under the testing conditions
of noises with various signal-noise-ratios, varying zero-drifts, and different model errors.
The overall framework has also been verified to rationally and efficiently combine these
components and achieve robust estimation results in the presence of kinds of noises and
uncertainties.
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1. Introduction

Electric Vehicles (EVs), including pure electric vehicles and hybrid electric vehicles, are usually
recognized as the solution to solve the problems of global energy crisis and environmental deterioration.
To meet the requirements of EVs, batteries, as the alternative power source, have to be more powerful
with high voltage and large capacity, and hence request for a multi-functional, reliable, intelligent and
safe Battery Management System (BMS). Dickinson et al. even highlighted BMS as the probably single
most important technical issue in the successful commercialization of EVs [1].

State of Charge (SoC), defined as the ratio of residual capacity to the nominal full capacity, is the
most fundamental state of a battery, which functions as the “fuel gauge” for conventional fuel-driven
vehicles. Unfortunately, the crucial state is not directly measurable, essentially requiring a soft estimator
to calculate it. The accurate estimation result can indicate the amount of residual energy in a battery,
inform users the left range, and cooperate with Vehicle Management System (VMS) to prolong battery
life cycle and achieve the overall optimal energy efficiency. Therefore, SoC estimation has attracted
wide coverage in both researches and applications in the past decade, and becomes to one of the most
significant but difficult issues in BMS design.

1.1. Literature Review

A comprehensive review of SoC estimation for general battery-powered applications has been studied
by Valer Pop et al. [2]. However, limited by the special requirements for EV application, such as
realtime estimation, avoidance of energy loss and forbiddance of injecting extra test signals during
vehicle in-service period, some typical, usually more accurate, methods are impractical to estimate SoC
of power battery in EV, for example Open Circuit Voltage (OCV) direct measurement, discharge test,
measurement of electrolyte physical properties [3] and a.c. impedance spectroscopy [4,5].

Coulomb counting (usually denoted as Ah method) is one of the most applicable SoC indicators,
which simply accumulates the charges transferred in or out of the battery. Recently, some advanced
techniques have been proposed to enhance its performance by on-line estimating charege/discharge
efficiencies [6,7]. Essentially, coulomb counting family is a kind of open-loop estimators which
require accurate measurement of battery current. It will accumulate current noise and has no ability
to self-correct. If the mean of noise is nonzero, i.e., in the presence of zero-drift, the estimation result
even becomes to divergence.

Model-based methods also have been well studied, aiming at establishing a closed-loop estimation
based on a battery model. Battery models usually apply current as model control input, terminal voltage
as measured output, and SoC, State of Health (SoH) and/or equivalent OCV as hidden states [8,12].
Extended Kalman Filter (EKF) was firstly utilized to estimate these hidden states according to realtime
sampling data of current and terminal voltage [13], and then further improved by enhancement strategies
such as reduced order EKF [14], augmented states EKF [15], adaptive EKF [16] and Sigma-point KF
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[17,18]. To be an optimal estimator, EKF requires an accurate model and the knowledge on the statistic
properties of noises. The two conditions actually cannot be achieved easily in the real vehicle running
environment, because the strong time-variant property of battery make the difficulty of determining a
battery model by a set of fixed parameters and the characteristics of measurement noises depend on
vehicle driving conditions so that it is hard to obtain them beforehand. To overcome this problem,
sliding model observer was utilized to compensate the modeling errors and uncertainties [19,20].
However, the selection of parameters in sliding model observer, such as boundaries of uncertainties
and switching gains, still depends on the comprehensive understanding of battery dynamics. Moreover,
a set of unsuitable parameters even has the risk of causing the chattering phenomena [20], leading to the
unwanted vibration in SoC estimation.

To avoid the difficulty of battery modeling and identification, machine learning strategies were
also introduced to establish black-boxes mapping measurable data to SoC, including Neural Network
(NN) [21], fuzzy NN [22,23], evolutionary NN [24,25] and support vector machine [26,27]. These
data-oriented methods can not avoid their intrinsic problems such as large number of training data
covering the whole possible range of operation, the selection of model structure and the balance between
under-fitting and over-fitting. Meanwhile, the estimation result is theoretically unpredictable when
suffered from kinds of noises.

In recent years, some hybrid or combined estimation frameworks have been proposed to integrate
the advantages of individual estimators with different characters. The combination of RC and hysteresis
models was proposed to compensate deficiencies of the individual models [28]. Coulomb counting and
EKF based estimation were integrated to achieve better performance [29–31]. An very accurate result
that estimation error was less than 1 min in left time or 1% in SoC was also obtained under the together
contributions of direct measurement of the electro-motive force and book-keeping algorithm [32], though
it is not specially designed for EV application. The inspiring results reveal that establishment of SoC
estimation frameworks which rationally consist of kinds of estimators is a potential way to achieve more
accurate and robust performance.

1.2. Overview of Proposed Framework

The real vehicle driving environment often involves interference sources which cause signal
measurement noises and even zero drift. Meanwhile the strong time-variant properties of batteries raise
difficulty in establishing an accurate enough model to estimate and predict batteries’ dynamic behavior.
In a word, the non-ideal working conditions make it hard to satisfy the prerequisites of most individual
SoC estimators to realize their theoretically optimal performance.

Therefore, to guarantee the estimation accuracy in real driving process, it is necessary to improve
anti-noise and self-adaptive abilities, i.e., the robustness, of SoC estimation techniques. In this paper, we
have proposed a robust estimation framework, as shown in Figure 1, which consists of:

1. A nonlinear diffusion filter to remove current measurement noise, where Im is the measured current
and If is the filtering result.

2. A current zero-drift estimator to reduce the zero-drift, where Îzd is the estimated zero-drift of
current measurement and Ic = If − Îzd is the “clean” result.
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3. A coulomb counting estimator to implement open-loop estimation ̂SoC1.

4. A H∞ filter to realize robust closed-loop estimation under model uncertainty and inaccuracy, where
Vm is the measured terminal voltage and ̂SoC2 is the estimated SoC.

5. A data fusion component to achieve the final estimation ŜoC by balancing ̂SoC1 and ̂SoC2.

Section 2 firstly analyzes the quasi-random property of battery current in driving process, and then
applies nonlinear diffusion filter to achieve better noise reduction performance than linear digital filter
and wavelet based filter. In Section 3, based on the estimation error of coulomb counting method obtained
at each SoC calibration available time, a self-learning strategy is proposed to estimate the zero-drift
of current measurement. In Section 4, we introduce H∞ filter to robustly estimate SoC and conduct
simulations to compare performance with conventional EKF. In Section 5, a data fusion unit is designed
to obtain the final SoC value and the overall estimation framework has been demonstrated in simulation.
Conclusions and future works are given in Section 6.

Figure 1. The proposed robust SoC estimation framework.
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2. Current Denoising Using Nonlinear Diffusion Filter

Battery is a typical less-information system, where complex multi-parameter electrochemical reaction
occurs inside, while only terminal voltage, bus current and surface temperature can be measured outside.
SoC, one of the internal states, has to be estimated according to the limited external variables. Thus, the
measurement accuracies of these variables are crucial for SoC estimation.

2.1. Property Analysis of Current Measurement

A power battery package usually consists of tens of, even hundreds of, series/paralle connected
cells to generate large charge/discharge current varying in ±300A [33]. However the precision of
commercialized current sensors is around ±1%, resulting a maximum error of ±3A. The error is
non-ignorable for SoC estimation. Moreover, although the peak current can reach 300A, the current
in most time is less than 100A, thus the ±3A noise becomes comparatively larger in percentage.



Energies 2010, 3 1658

Another distinct difficulty is that the signal possesses quasi-random property, which leads to the
failure of traditional filters. Figure 2 illustrates a typical current profile of Prius driving on cycle UDDS,
which is simulated by Advisor [34]. Battery current is determined by the demands of motor and/or
generator, which primarily depend on the driving behaviors. Since how to drive a vehicle is limited
by road conditions and usually disturbed by various unexpected events, such as crawl by traffic jam,
scram to avoid pedestrians crossing the street, sudden acceleration for overtaking and so forth, the erratic
driving will definitely result in quasi-random current on power bus. Analysis in frequency domain further
depicts the property of battery current, as shown in Figure 3. The current signal, with 100 Hz sampling
frequency, expands in the whole frequency domain and is hard to determine a cut-off frequency which
separates signal from noise.

Figure 2. Current profile of Prius driving on cycle UDDS.

 

Figure 3. Frequency analysis of current profile of Prius driving on cycle UDDS.

 

Noise reduction essentially requires the property difference between signal and noise in some way.
As discussed above, the similar frequency property between current signal and noise causes the difficulty
in applying traditional filters, e.g., low-pass filter, to isolate noise.

The variation of real current signal is caused by driving behaviors, which usually leads to a
comparative large degree of change. However the current noise is often produced by the precisions
of measurement units, electromagnetic interference, vehicle vibrations and so on, which typically varies
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in a small range. Therefore, based on the degree of change, i.e., the difference, we apply the nonlinear
diffusion filter to reduce noise.

2.2. Nonlinear Diffusion Filter

Nonlinear Diffusion Filter (NDF) was firstly proposed in image processing field to nonlinearly
eliminate the oscillation in small range while keep the variation in large scale [35].

Denoting k and i as the discrete time and iteration index, the iterative equation of nonlinear diffusion
filter is described as

I(k, i + 1) = I(k, i) + ∆t × cl(k, i) × [I(k − 1, i) − I(k, i)]

+∆t × cr(k, i) × [I(k + 1, i) − I(k, i)]
(1)

where initial iteration I(k, 1) is set as the measured data sequence Im(k), the last iteration I(k,N) is the
filtering result If (k), and N is the iteration time.

As iterative step, a large ∆t stands for a long diffusion period in each iteration, leading to smoother
results, however, with the risk of unstable iteration process. In contrast, too small ∆t causes a slow
diffusion process, requiring more iterations to achieve a satisfactory result.

cl(k, i) and cr(k, i), generally denoted by c(k, i), are the left and right diffusion coefficients
respectively, which control the degree to smooth the values between the kth datum and its left or right
neighbor. The smaller c(k, i) is, the harder to smooth. As discussed above, a large change of current
has high possibility to be real signal while a small one usually suffers from noise. Thus, we set c(k, i)

inversely proportioned to the signal difference, using the conventional equation:

cl(k, i) =
1

1 +
[

I(k−1,i)−I(k,i)
κ

]2 (2)

and
cr(k, i) =

1

1 +
[

I(k+1,i)−I(k,i)
κ

]2 (3)

where κ is gradient modulus threshold that controls the conduction.

2.3. Adaptive-κ Strategy

Equations (2) and (3) indicate that the performance of nonlinear diffusion filter depends on the
selection of κ. In general, a noisy signal with low Signal-Noise-Ratio (SNR) requires a large κ to enhance
the smoothing effect. However, the SNR of noisy signal is an unknown value and has to be estimated
indirectly. Based on the character of battery current, an adaptive κ selection method is proposed as the
following steps.

1. Calculate the differential signal ∆Im(k) of the original signal Im(k).

∆Im(k) = Im(k + 1) − Im(k) (4)

2. Establish the set ∆s in which the absolute values of differential signal are smaller than 5A. The
reason to remove higher differential data is that they are likely caused by driving behavior, i.e., the
real current change.

∆s = {∆Im(k) | |∆Im(k)| < 5} (5)
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3. Calculate the standard deviation std(∆s) of the elements in set ∆s. To some extent, std(∆s) is an
indicator of the SNR of signal. The smaller std(∆s) is, the larger SNR is.

4. Adaptively determine κ according to std(∆s). In this study, we first fix the iteration time
N = 20 × fs (fs stands for sampling frequency) and the iterative step ∆t = 0.6, then the
relationship between κ and std(∆s) is experimentally determined by the below piecewise function.

κ =

 min(std(∆s)/10, 2) std(∆s) > 2.2

max(std(∆s) × 1.76 − 3.652, 0) std(∆s) < 2.2
(6)

Remark: As nonlinear diffusion filter requires the right neighbors (future data) to smooth the current
datum, the filter has to delay for a percoid. In this work, the iteration time N = 20 × fs will result in 20
seconds delay, which is small enough to be negligible because SoC changes slowly.

2.4. Performance Comparison

To demonstrate the efficacy of nonlinear diffusion filter with adaptive-κ, performance comparison
with the traditional lowpass filter and wavelet filter are conducted. The lowpass filter is implemented
by Butterworth method with trial-and-error determined cutoff frequency fcut = 0.9 × (fs/2) and the
wavelet filter uses level-dependent thresholds determined by Birge-Massart strategy [36].

The real current profiles are produced by Advisor. We select the well-developed “Prius jpn” vehicle
model and three typical driving cycles: the highway “HWFET”, the suburban “WVUSUB”, and the
urban “MANHATTAN”. The real current is corrupted by white noises with SNR from 0dB to 20dB.

The performance index Reduced Root-Mean-Square of Errors (RRMSoE) is defined as below.

RRMSoE[A] = rms(I, Im) − rms(I, If ) (7)

and

RRMSoE[%] =
rms(I, Im) − rms(I, If )

rms(I, Im)
× 100% (8)

where

rms(I1, I2) =

√√√√ 1

L

L∑
i=1

(I1(i) − I2(i))2 (9)

I , Im and If are the real current, measured noisy current and filtering result respectively, L is the length
of data.

As an example, Figure 4 illustrates the HWFET case with 15dB SNR noise. The top subfigure
describes the real current signal and the noisy signal. It is clear that the real signal dominates the large
variance. Added noises appear as burrs. The errors of filtering results are given in the bottom subfigure.
Without a doubt, the lowpass filter gives poor performance, even worse than noisy signal, because it
simultaneously removes the real signal in high frequency zone. Basically, any frequency based filter
is difficult to handle this problem. Wavelet filter, focusing on both scale and time aspects, has better
results than lowpass filter but still fails to keep the large variation of real signal. The nonlinear diffusion
filter successfully removes the noise appearing as burrs while keeps the real signal which possesses large
variation in morphology.



Energies 2010, 3 1661

Figure 4. Filtering results of HWFET current profile corrupted by noise with 15dB SNR.

 

The total results are given in Table 1, where each value is the average of 100 independent random
tests. It is clear that the adaptive-κ strategy efficiently estimates the equivalent SNR in each case and
hence calculates a suitable κ to achieve satisfactory denoising.

Table 1. Reduced RMS of denoising errors based on different filters.

Highway(HWFET) Suburban(WVUSUB) Urban(MANHATTAN)
SNR Lowpass Wavelet Ada-κ NDF Lowpass Wavelet Ada-κ NDF Lowpass Wavelet Ada-κ NDF
[dB] [A] [%] [A] [%] [A] [%] [A] [%] [A] [%] [A] [%] [A] [%] [A] [%] [A] [%]

0 -2.05 -21.98 2.98 31.95 5.53 59.41 0.00 -0.04 4.82 52.09 6.68 72.15 -0.14 -1.22 5.57 49.58 6.76 60.23
2 -2.62 -35.47 1.57 21.26 4.11 55.53 -0.24 -3.29 3.85 52.35 5.33 72.53 -0.43 -4.83 4.33 48.50 5.77 64.69
4 -3.14 -53.41 0.41 7.02 2.82 47.93 -0.44 -7.58 3.07 52.52 4.04 69.25 -0.70 -9.85 3.27 46.15 4.32 60.94
6 -3.77 -80.85 -0.58 -12.34 1.86 39.84 -0.67 -14.52 2.42 52.15 2.99 64.44 -0.99 -17.66 2.35 41.75 3.10 55.14
8 -4.24 -114.45 -1.42 -38.27 1.08 29.03 -0.91 -24.73 1.88 51.01 2.18 59.30 -1.33 -29.67 1.53 34.28 2.11 47.13

10 -4.73 -160.50 -2.11 -71.68 0.71 24.00 -1.16 -39.61 1.44 49.30 1.58 54.08 -1.63 -45.89 0.86 24.24 1.44 40.53
12 -5.16 -220.51 -2.67 -114.30 0.70 29.84 -1.40 -60.15 1.06 45.47 1.29 55.32 -1.96 -69.49 0.28 10.00 1.06 37.72
14 -5.51 -296.75 -3.12 -168.11 0.94 50.74 -1.63 -88.11 0.72 39.25 1.20 64.90 -2.24 -100.18 -0.21 -9.19 0.93 41.54
16 -5.81 -393.55 -3.49 -236.44 0.80 54.51 -1.84 -125.45 0.43 29.53 0.93 63.17 -2.52 -141.40 -0.63 -35.24 1.00 56.34
18 -6.07 -517.99 -3.78 -322.74 0.63 53.77 -2.03 -174.06 0.18 15.67 0.73 62.35 -2.76 -195.17 -0.96 -67.62 0.76 53.99
20 -6.28 -674.39 -4.02 -431.19 0.49 52.57 -2.20 -237.73 -0.02 -2.45 0.57 62.03 -2.96 -263.57 -1.23 -109.44 0.59 52.19

3. Self-learning Strategy for Current Zero-Drift Reduction

Although the nonlinear diffusion filter has the ability to remove the oscillatory noise, it can not handle
the zero-drift problem which causes the baseline shift. Zero-drift, actually the non-zero mean of noise, is
the source making coulomb counting obtain divergent result and negatively affecting the performances
of other estimators.

In this section, we propose a self-learning strategy to estimate the zero-drift of current measurement.
To establish the self-learning system, it is necessary to know the estimation error, equally the real SoC.
In practice, the truth value of SoC can be obtained when (1) battery is full charged, (2) OCV is available
or (3) higher accurate result is obtained somehow. In these calibration-available moments, we can not
only reset the SoC estimation but also calculate the zero-drift using the error of coulomb counting, as
deduced in the following.
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The discrete recursive equation of coulomb counting is described as

̂SoC1(k) = ̂SoC1(k − 1) +
Ic(k)η(k)Ts

Qfull

(10)

where ̂SoC1(k) is the estimated SoC at time k, Ic(k) is the “clean” current, Qfull is the charge stored
in the full-charged battery, and Ts is the sampling period. ̂SoC1(0) is initialized by SoC-OCV mapping
table or other advanced methods at each start time or reset to true value at each calibration-available
time.

η(k) is the coulombic efficiency or ampere-hour efficiency. Strictly speaking, it is a time-variant
parameter, depending on temperature, SoC and other relative states. The basic way to determine
coulombic efficiency is establishing its value table according to the manufacturers’ datasheets or testing
data [37]. The mass utilization of coulomb counting in practical application has demonstrated its
feasibility and validity. In addition, adaptive learning and on-line estimation strategies can strengthen
the accuracy of coulombic efficiency estimation [6,7,29]. Moreover, since the accuracy of the coulomb
counting primarily depends on measurement of the battery current and estimation of the initial SoC [7],
the error of coulombic efficiency will be neglected in this paper.

To analyze the zero-drift of current measurement, we denote the truth value of current as I(k), the
residual noise affecting coulomb counting estimator as In(k), and the truth value of SoC as SoC(k). The
“clean” current accumulated in coulomb counting method actually is expressed by

Ic(k) = I(k) + In(k) (11)

and ̂SoC1(k) = ̂SoC1(k − 1) + Ic(k)η(k)Ts

Qfull

= ̂SoC1(0) +

k∑
i=0

Ic(k)η(i)Ts

Qfull

= ̂SoC1(0) +
Ts

(
k∑

i=0

I(i)η(i)+
k∑

i=0

In(i)η(i)

)
Qfull

=

 ̂SoC1(0) +
Ts

k∑
i=0

I(i)η(i)

Qfull

 +
Ts

k∑
i=0

In(i)η(i)

Qfull

(12)

Since ̂SoC1(0) is initialized at each start time by SoC-OCV mapping table or advanced algorithms or
is reset to “true” value at each calibration-available moment, its error is small enough to be neglected in
tolerance range. Therefore we have

̂SoC1(0) = SoC(0) (13)

̂SoC1(k) = SoC(k) +
Ts

k∑
i=0

In(i)η(i)

Qfull

(14)

E
( ̂SoC1(k) − SoC(k)

)
= E


Ts

k∑
i=0

In(i)η(i)

Qfull

 =
Ts

k∑
i=0

η(i)

Qfull

E (In(i)) (15)
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At each calibration-available time k∗, the truth value SoC(k∗) is available, thus

̂SoC1(k
∗) − SoC(k∗) =

Ts

k∗∑
i=0

η(i)

Qfull

E (In(i)) (16)

The zero-drift of current measurement Îzd actually is the mean of noise:

Îzd = E {In(i)} =
Qfull

[ ̂SoC1(k
∗) − SoC(k∗)

]
Ts

k∗∑
i=0

η(i)
(17)

At each calibration available moment, Îzd is updated by equation (17), which enables online tracking
of zero-drift.

To demonstrate the availability and efficacy, a simulation based on Advisor has been conducted to
track SoC of Prius driving successively on the cycles HWFET, WVUSUB, MANHATTAN, NEDC,
US06, and NYCC. After completion of each cycle, a half-hour stop allows the battery OCV available.
When vehicle starts the new driving cycle, BMS will reset SoC to real value and re-estimate zero-drift.
The SNR of current measurement is set to 0dB. The zero-drift Izd is set to 0.5A in the 1st-3rd cycles and
1A in the 4th-6th cycles. BMS firstly denoises the current by ada-κ NDF and then removes the zero-drift
by subtracting estimation value Îzd.

Figure 5 shows the SoC tracking results comparing the performances using or not using zero-drift
self-learning strategy and Table 2 summarizes the numerical indexes of each cycle, including the average
(ave) of absolute SoC estimation errors and the standard deviation (std) of errors in each cycle. In the
first driving cycle HWFET, since we have no prior knowledge about zero-drift, its estimation value is
set to 0 and therefore reaches the same SoC tracking performance with conventional method. In the
following two cycles, OCV is available at each start time to calibrate SoC and calculate estimation error
of the previous cycle, which allows the update of Îzd. The estimation values of zero-drift are 0.4895 A
and 0.4952 A respectively, which are very close to real zero-drift 0.5 A. Thus, the estimation error of
proposed method is obviously smaller than conventional algorithm. In the 4th cycle, the real zero-drift
is changed to 1A, aiming at testing the self-adaptive ability of learning strategy. As the learning strategy
determines zero-drift by using the error in last cycle, the one cycle delay causes that Îzd = 0.4987 can not
fully compensate the real 1A drift and results nonconvergent SoC estimation. In the following cycles, the
large error updates the Îzd to be 0.9863 and 0.9967 in 5th and 6th cycles respectively. The self-adaptive
ability leads to satisfactory performance in the last two cycles.

Table 2. Numerical results of SoC tracking using or not using self-learning strategy (unit
[%]).

SoC estimation methods HWFET WVUSUB MANHATTAN NEDC US06 NYCC
ave std ave std ave std ave std ave std ave std

Conventional Ah 4.71 2.71 9.87 6.22 6.20 4.04 16.21 9.36 7.74 4.36 7.16 4.86
Ah with self-learning 4.71 2.71 1.34 0.96 1.23 0.95 8.24 4.77 1.42 1.65 0.96 0.50
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Figure 5. SoC estimation results based on conventional coulomb counting and the proposed
coulomb counting with self-learning strategy (white noise with 0dB SNR, zero-drift 0.5A
for the 1st-3rd cycles and 1A for the 4th-6th cycles). The gray bars between cycles represent
half-hour stops which allow OCV available.

 

Although the proposed framework significantly improves the performance of conventional coulomb
counting method, it inherently is an open loop estimator which does not take the measurable voltage
into consideration. It only self-corrects estimation results at calibration moments but can not revise the
errors during driving process. Therefore, in the following sections, we introduce H∞ filter to establish
closed-loop estimation of SoC and apply a data fusion unit to determine the final SoC value.

4. Robust SoC Estimation using H∞ Filter

Battery is a typical time-variant system, with tight relation to ambient temperature, life age, and
SoC. Online identification is the popular strategy to solve time-variant problem, however, at the cost of
high time consumption and inaccurate identification result due to noises. An alternative way is robust
estimation technique, which constructs a suboptimal filter with the ability to minimize the maximum
estimation error caused by noises and uncertainties of system model.

In pace with the development of H∞ control theory, researchers have shown great interest in H∞

filter[38,39]. A good introduction and review can be found in [40]. In contrary to Kalman filter, H∞

filter is proposed to handle estimation problems under uncertain model structure, model parameters and
system noises. It has two main features: (1) do not require any assumptions of the disturbances and
model uncertainties; (2) minimize the estimation error in the worst situation. Therefore, it is more
applicable than Kalman filter in practical application.

4.1. H∞ Filter Algorithm

Denoting x as the system state vector, y the output vector, u the input vector, w the process noise, and
v the measurement noise, a system state space equations are expressed as:
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xk+1 = Akxk + Bkuk + Γkwk

yk = Ckxk + Dkuk + vk (18)

The suboptimal H∞ filtering problem is formalized as: given estimation error bounder γ > 0, find an
estimation of ẑk = Ff (u0, · · · , uk, y0, · · · , yk) such that

inf
Ff

sup
x0,w∈H2,v∈H2

‖zk − ẑk‖2
2

‖x0 − x̂0‖2
P−1

0
+ ‖wk‖2

2 + ‖vk‖2
2

< γ2 (19)

where zk = Lkxk is the estimation goal, i.e., the linear combination of system states, Lk is user-defined
state weight matrix, and ‖χk‖2

2 =
∑k

i=0 χ∗
i χi .

The solution of the suboptimal H∞ filtering problem can be calculated by the following recursion
formulas:

x̂k+1,k = Akx̂k + Bkuk (20)

Rk =

 I 0

0 −γ2I

 +

 Ck

Lk

 Pk

[
CT

k LT
k

]
(21)

Pk+1 = AkPkA
T
k + ΓkΓ

T
k − AkPk[C

T
k LT

k ]R−1
k

 Ck

Lk

 PkA
T
k (22)

Kk+1 = Pk+1C
T
k+1

[
I + Ck+1Pk+1C

T
k+1

]−1

(23)

x̂k+1 = x̂k+1,k + Kk+1(yk+1 − Ck+1x̂k+1,k − Dk+1uk+1) (24)

ẑk+1 = Lk+1x̂k+1 (25)

under the conditions that [Ak Γk] has full rank and

P−1
k + CT

k Ck − γ−2LT
k Lk > 0 for all k (26)

¿From the above formulas, it is clear that if L(k) = I and γ → ∞, H∞ filter degrades to be Kalman
filter. Thus, Kalman filter is a special situation of H∞ filter with infinite H∞ norm, and hence results in
the worse robustness.

4.2. Battery Modeling

As shown in Figure 6, we apply battery RC equivalent circuit model in this paper [10]. The RC model
consists of a bulk capacitor Cb and a surface capacitor Cs, which simulate energy storage and dynamic
property of the battery respectively. Output resistance Ro, surface resistance Rs and bulk resistance Rb

are used to model the internal resistance of battery.
By selecting state vector as the voltages of bulk and surface capacitors xk = [Vbk, Vsk]

′, system input
as bus current uk = Ik, output as terminal voltage yk = Vok, and sampling time as Ts, the discrete state
space equation (18) are concrete into the following matrixes.

A =

 1 − Ts

Cb(Rb+Rs)
Ts

Cb(Rb+Rs)
Ts

Cs(Rb+Rs)
1 − Ts

Cs(Rb+Rs)

 (27)
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B =

 −RsTs

Cb(Rb+Rs)
−RbTs

Cs(Rb+Rs)

 (28)

C =
[

Rs

Rb+Rs

Rb

Rb+Rs

]
(29)

D = −Ro −
RbRs

Rb + Rs

(30)

The SoC for the RC model was estimated by using the voltages of the two capacitors. Since Cb

represents the bulk energy in the battery, it contributes the majority of SoC, as expressed in the below
equations. ̂SoC2(k) =

1

21

[
20 ̂SoCCb

(k) + ̂SoCCs(k)
]

(31)

where ̂SoCCb
(k) = FOCV −SoC(Vbk) = FOCV −SoC(xk(1)) (32)̂SoCCs(k) = FOCV −SoC(Vsk) = FOCV −SoC(xk(2)) (33)

and FOCV −SoC(·) is the function mapping OCV to SoC. It usually is predetermined by manufactory’s
datasheet or experimental testing data.

Figure 6. Battery RC Model.

Cs Cb

Rs RbRo

i
Vo

 

Model parameters essentially will change in the running process. A kind of 6.5 Ah Prismatic
Panasonic NiMH Battery has been tested at NREL Battery Thermal Management Lab and corresponding
model parameters are provided by Advisor [34]. Figure 7 shows the change in resistances of resistors
versus temperature and SoC. Taking the output resistor as an example, it is clear that the maximum
resistance is 0.0216Ω, more than 3 times of the minimum value 0.0071Ω. The significant variation of
model parameters is worthy of paying special attention in the design of SoC estimator. Other resistors
and capacitors have the similar properties.

Figure 7. Resistance variance of resistors in RC model. 
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               SOC                  SOC                  SOC 

Since the model error is hard to determine aforehand, we leave this difficulty to H∞ filter and estimate
Γ only according to current noise. The measured current u = Ic = I + In, where I is the clean signal
and In is the current noise. Therefore, Bu = BI + BIn = BI + Bw, i.e., Γ = B.
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4.3. Performance Comparison

To demonstrate the performance of H∞ filter, simulation experiments are conducted to compare the
SoC estimation errors among model output, result of Kalman filter and result of H∞ filter.

As demonstrated above, adaptive-κ nonlinear diffusion filter has the ability to remove the current
noise and self-learning strategy can compensate the zero-drift. Therefore, we fix the SNR of current
noise to 10 dB and zero-drift to 0.5 A, which simulates the residual noises after the two noise reduction
steps. The experiments aims at verifying the filters’ abilities to handle the modeling error, thus we apply
a fixed model with parameters setting to their maximum, average, and minimum values of each cycle
respectively. The inaccurate model parameters includes the resistances of Rb,Rs,Ro and capacitance of
Cc. Since Cb is determined by the nominal capacity of battery, rather than identification, no modeling
error is added to it.

Battery model parameters are from the Panasonic Prismatic 6.5 Ah battery. The settings for Kalman
filter are experimentally optimized as initial states estimation error P = 0.01I , process noise variance
matrix Q = 0.0012I , and measurement noise variance matrix R = 0.012. The settings for H∞ filter are
L = [1, 1] and γ = 50. If γ fails to satisfy the condition equation (26), it will increase 10 step by step till
meets the requirement.

Figure 8 shows the SoC estimation results of Prius successively driving on HWFET, WVUSUB,
MANHATTAN, and NEDC driving cycles. Due to the non-zero mean of current noise and model error,
the accumulated errors totally are reflected on the model output, resulting a nonconvergent estimation
result. After a short time of oscillation, Kalman filter gradually converges to a stable estimation, however,
with stable errors. Zero-drift and model errors destroy its conditions to be an optimal filter. H∞ leads to
a faster convergence process than Kalman filter and achieves smaller stable errors.

Table 3 summarizes the numerical results. Obviously H∞ filter has the ability to estimate SoC of the
time-variant battery based on a set of fixed parameters. It outperforms Kalman filter no matter which
values the model parameters are fixed to. The robustness of H∞ filter is well demonstrated.

5. Data Fusion and System Overall Performance

From the results shown in Figures 5 and 8, it is clear that coulomb counting usually has good
estimation at the beginning period due to small accumulated errors, while the H∞ filter obtain better
performance in the latter period when it reaches convergent estimation. Therefore, one natural way
to make the best use of the advantages and bypass the disadvantages is to combine the results of two
estimators, weighting by time.

In the proposed framework, we design a simple data fusion unit to achieve the final SoC estimation
ŜoC(k) based on linear combination of ̂SoC1(k) and ̂SoC2(k). The weights of the two estimators are
expressed as the following equations, experimentally determined using trial and error method.

ŜoC(k) =


̂SoC1(k) t ≤ 5

ω1 × ̂SoC1(k) + ω1 × ̂SoC2(k) 5 < t < 10̂SoC2(k) t ≥ 10

(34)

where ω1 = −0.2t + 2, ω2 = 0.2t − 1 and t is the vehicle running time (unit [min]).
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Figure 8. SoC estimation results based on inaccurate battery model using the fixed average
values of real time-variant parameters (white noise with 10dB SNR and 0.5A zero-drift).
The gray bars between cycles represent half-hour stops which allow OCV available.

 

Table 3. Performance comparison of SoC estimation based on battery model using a set of
fixed parameters (Unit [%]). The inaccurate model parameters include resistances of Re, Rt,
Ro and capacitance of Cc, and are fixed to the their maximum, average and minimum values
in each driving cycle respectively. White noises with 10dB SNR and 0.5A zero-drift are also
added to the real current profile.

Highway (HWFET) Suburban (WVUSUB) Urban (MANHATTAN) European hybrid (NEDC)
Fix model parameters to Kalman Filter H∞ filter Kalman Filter H∞ filter Kalman Filter H∞ filter Kalman Filter H∞ filter

ave std ave std ave std ave std ave std ave std ave std ave std
Max. of parameters 4.38 1.41 2.92 2.03 3.99 1.44 1.71 1.59 4.00 1.98 1.35 2.32 3.57 1.22 1.60 1.61
Ave. of parameters 4.34 2.22 2.47 1.21 3.56 1.48 1.94 2.20 3.71 1.88 1.55 1.42 3.82 1.85 1.93 1.83
Min. of parameters 3.77 3.73 1.50 1.15 3.20 1.20 1.78 2.01 3.92 2.24 2.15 2.19 3.90 1.58 2.22 2.34

Since we have demonstrated coulomb counting with self-learning strategy outperforms conventional
method and H∞ filter achieves more robust estimation than Kalman filter in real vehicle driving
environment, the verification of availability and efficacy of the overall framework only requires to
compare its performance with the two single estimator.

The simulation environment is the same as the experiments given above. The SNR of white current
noise is fixed to 5dB and the zero-drift is set to 0.5A for the first 3 cycles and changed to 1A for the other
ones. To further test the robustness of the whole framework, we introduce the model error (Em) defined
as: Em = pm/pr, where pm is the model parameter, pr is the real parameter, p presents the arbitrary
parameters of Ro, Rs, Rb and Cc. The Em varies from 1.2 in the 1st cycle to 0.7 in the last cycle.

The estimation results are shown in Figure 9 and Figure 10 gives the averages of absolute estimation
errors and their standard deviations in each cycle. In the first cycle of HWFET, the zero-drift in
measurement of current as well as the model error results in the large error in coulomb counting and
H∞ filter. The fusion of the two approaches can reduce such error. In the following two cycles,
self-learning strategy estimates the zero-drift and compensates the error effectively. Although the other
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two approaches also show good performance, the hybrid approach outperforms them. In the forth cycle,
the drift is enlarged. The errors of H∞ filter and coulomb counting are the largest in the first 1/3 and
latter 2/3 sections respectively, while the hybrid approach has the least error. In the last two cycles,
self-learning estimates the zero-drift again. Consequently, Ah method performance is improve. Even
though the model error is enlarged, due to it robustness, H∞ filter converges to a small error after passing
through a short period of large-error region so that the fusion results still keep in good performance.

Figure 9. SoC estimation results of self-learning coulomb counting, H∞ filter and the overall
framework (white noise with 5dB SNR, zero-drift 0.5A for the 1st-3rd cycles and 1A for the
4th-6th cycles, model error changes from 1.2 to 0.7). The gray bars between cycles represent
half-hour stops which allow OCV available.

 

As a summary, the performance of coulomb counting and H∞ filter are dependent on the model
error, noise and zero-drift. Although they have slightly better performance in some region, the overall
performance by the hybrid method is the best among them.

6. Conclusions and Future Works

Noises produced by all kinds of interference in vehicle driving environment, zero-drifts caused by
sensors and measurement circuits, and model uncertainties due to the strong time-variant property of
batteries are incompatible with the prerequisites of the typical SoC estimation methods, such as coulomb
counting and model-based methods. Therefore, it is necessary to study the abilities of anti-noise
and self-adaption of SoC estimation and enhance estimation robustness in the presence of non-ideal
conditions.

In this study, we have proposed a framework to implement robust estimation of SoC in the application
of EVs. Firstly, the proposed adaptive-κ nonlinear diffusion filter has the ability to estimate the SNR of
noisy signal and reduce noises according to the degree of change. Since it catches the main difference in
characters of real signal and measured noises, it outperforms linear digital filter and wavelet based filter.
The zero-drift in the measurement of current then is estimated using the estimation error of coulomb
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counting at each SoC calibration available moment. This self-learning strategy works simply because
the accumulated error is mainly attributed to the non-zero mean of noise. H∞ filter is also introduced
to realize the robust estimation using a fixed model. Although the fixed model can not fully predict the
dynamics of a time-variant battery, the inherent robustness of H∞ filter successfully handles the model
uncertainty and the estimation gradually converges to stable tracking with small errors. Considering
the good performance of coulomb counting method at the early phase due to small accumulated errors
and the small stable estimation errors of H∞ after a period of convergence process, the data fusion
unit rationally and efficiently integrates the results of them with the time-dependant weights. The
availabilities and effectiveness of single components and overall framework have been demonstrated by
comparative studies with conventional approaches, under the testing conditions of noises with various
signal-noise-ratios, varying zero-drifts, and different model errors.

Figure 10. Numerical indexes of SoC estimation results of self-learning coulomb counting,
H∞ filter and the overall framework (white noise with 5dB SNR, zero-drift 0.5A for the
1st-3rd cycles and 1A for the 4th-6th cycles, model error changes from 1.2 to 0.7). The left
subfigure shows average absolute estimation error while the right subfigure illustrates their
standard deviation.

 

In the future, we will apply the SoC estimation framework into some real electric vehicles. It is
also necessary to collect the statistic properties of noises, zero-drifts and model errors in vehicle driving
environment so that mathematical analysis of robustness of this framework can be further studied.
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