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Abstract: The potential use of satellite observed nighttime lights for estimating  
carbon-dioxide (CO2) emissions has been demonstrated in several previous studies. 
However, the procedures for a moderate resolution (1 km2 grid cells) global map of fossil 
fuel CO2 emissions based on nighttime lights are still in the developmental phase. We 
report on the development of a method for mapping distributed fossil fuel CO2 emissions 
(excluding electric power utilities) at 30 arc-seconds or approximately 1 km2 resolution 
using nighttime lights data collected by the Defense Meteorological Satellite Program’s 
Operational Linescan System (DMSP-OLS). A regression model, Model 1, was initially 
developed based on carbon emissions from five sectors of the Vulcan data produced by the 
Purdue University and a nighttime satellite image of the U.S. The coefficient derived 
through Model 1 was applied to the global nighttime image but it resulted in 
underestimation of CO2 emissions for most of the world’s countries, and the states of the 
U.S. Thus, a second model, Model 2 was developed by allocating the distributed CO2 

emissions (excluding emissions from utilities) using a combination of DMSP-OLS 
nighttime image and population count data from the U.S. Department of Energy’s (DOE) 
LandScan grid. The CO2 emissions were distributed in proportion to the brightness of the 
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DMSP nighttime lights in areas where lighting was detected. In areas with no DMSP 
detected lighting, the CO2 emissions were distributed based on population count, with the 
assumption that people who live in these areas emit half as much CO2 as people who live 
in the areas with DMSP detected lighting. The results indicate that the relationship between 
satellite observed nighttime lights and CO2 emissions is complex, with differences between 
sectors and variations in lighting practices between countries. As a result it is not possible 
to make independent estimates of CO2 emissions with currently available coarse resolution 
panchromatic satellite observed nighttime lights. However, the nighttime lights image in 
conjunction with the population grid can help in more accurate disaggregation of national 
CO2 emissions to a moderate resolution spatial grid. 

Keywords: CO2 grid; nighttime satellite image; LandScan population grid 
 

1. Introduction  

Since the beginning of the Industrial Revolution, the world’s population has continued to increase, 
adding each subsequent billion in a span of fewer years than ever before. The world hit the 4 billion 
mark in 1974, 5 billion just 13 years later, in 1987, and passed the 6 billion milestone 12 years later in 
1999 [1]. The world population is likely to reach 7 billion in the latter half of 2011, again in a span of 
12 years [2]. Population growth has led to land use change through intensification of agriculture, and 
improved contemporaneous increases in average standards of living have substantially increased 
energy use [1]. Changing land use and increased fossil fuel combustion for meeting the growing 
energy demand are the primary causes for augmented carbon dioxide (CO2) concentration in the 
atmosphere [3]. The anthropogenic contribution in global warming is substantial and is evident in the 
rising global and ocean temperatures, extensive melting of snow and ice, and rise in the global average 
sea level [3]. The need for quantification of anthropogenic fossil fuel CO2 emissions in the atmosphere 
at finer spatial and temporal resolutions has been felt by the scientific and policymaking communities 
since the last decade [4]. From the policy-making perspective it is necessary to construct emission 
inventories in order to monitor and agree upon emission reduction targets [5]. Spatial distribution of 
emissions is also an important input to “atmospheric-inversion” methods, which combine CO2 
concentration measurements with transport and process models to estimate land and ocean CO2 
sources and sinks [6–9]. Anthropogenic CO2 emissions disrupt the equilibrium of the carbon cycle and 
makes it all the more important to monitor the spatial distribution of CO2 emissions.  

Most of the existing inventory on the spatial distribution of CO2 emissions is available on a national 
basis. The U.S. Department of Energy’s Carbon Dioxide Information Analysis Center (CDIAC) and 
the International Energy Agency (IEA) provide a global database of CO2 emissions for countries. The 
national geographic distribution of CO2 emissions has been disaggregated to finer resolutions (1° grid 
resolution) using population density grids as proxy measures [10–13]. Although the population density 
grid provides a reasonably good proximate measure of CO2 emissions at a spatial resolution of 1°, it is 
not capable of providing satisfactory maps depicting geographic distribution of CO2 emissions at a 
resolution finer than this. This is because the population density grids do not depict transportation links 
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and emissions from power stations. Moreover, the census data on which these population density grids 
are based are collected at specific spatial units and disaggregating these data to the source regions is 
problematic [13].  

From a satellite remote sensing perspective, it is possible to measure the CO2 concentration in the 
atmosphere at coarse spatial resolution using high spectral resolution infrared interferometer data. 
Examples of such systems include the Japanese Greenhouse Gas Observing Satellite (GOSAT) and 
NASA’s planned Orbiting Carbon Observatory (OCO). With data from these systems the CO2 signal 
from major urban centers are diffused and spatially offset from the sources due to the coarse spatial 
resolution, atmospheric transport, mixing, and retention of CO2 in the atmosphere. Thus it is difficult 
to discern increases or decreases in CO2 emissions from specific cities or towns from systems such as 
GOSAT by themselves. Application of inversion methods to detect changes in fossil fuel carbon 
emissions would require surface maps of fossil fuel CO2 emissions. There are databases that list the 
locations and estimated emissions for electric power utilities (e.g., Carbon Monitoring for Action 
“CARMA”). This leaves the spatial distribution of non-point sources (from vehicles, homes and 
businesses) as a major gap in the mapping of fossil fuel CO2 emissions that would enable inversion 
modeling changes in emissions based on GOSAT or OCO style data.  

The Defense Meteorological Satellite Program’s Operation Linescan System (DMSP-OLS)  
satellite-observed nightlight data acts as a suitable proximate measure for mapping the distribution of 
CO2 emissions at a finer spatial resolution. Elvidge et al. [14] was the first to identify the correlation 
between lit area of lights and CO2 emissions. Doll et al. [15] built upon this relationship and created 
the first global grid of CO2 emissions at 1° × 1° resolution. A 6-month 1-kilometer stable light 
composite acquired between October 1994 and March 1995 was used in this study. Country level 
relationships between lit area and CO2 emissions were used to create global maps of these parameters. 
This map was then compared to CDIAC’s CO2 emissions map. Comparison with CDIAC’s CO2 
emissions map showed that the emissions map created from the nighttime lights resulted in an 
underestimation of CO2 emissions for most countries. However, the nighttime lights image did a 
superior job in mapping the spatial distribution of the emissions [16]. Under- and over-estimation of 
CO2 emissions predicted from the nighttime image is expected because countries usually have more or 
less emissions than what is predicted from the nighttime lights, as the lights and CO2 emissions do not 
always have a direct linear relationship. This was observed in the case of many of the former Soviet 
Republics by Doll et al. [15]. The authors noted that many of the former Soviet Republics appeared to 
have more emissions than what was predicted from the nighttime lights [16]. 

Other recent efforts at developing a fine resolution CO2 emissions map is the one by  
Rayner et al. [17].They developed a “model-data synthesis” approach called the “Fossil Fuel Data 
Assimilation System” (FFDAS). Using two main datasets—the gridded population data and satellite 
observed nighttime lights they produced global fossil fuel CO2 emission fields based on the Kaya 
identity. Realizing the saturation of the nighttime lights as a major problem in areas of high light 
intensity, they developed a “global correction factor” which was used to correct the saturation errors in 
the nighttime lights image. Then, these ‘corrected’ spatial data were used to create the fine resolution CO2 
emissions map.  

Oda and Maksyutov [13] have developed a global high resolution annual CO2 emission inventory 
for the years 1980–2007, named Open-source Data Inventory of Anthropogenic CO2 emission 
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(ODIAC) to inform the observational data collected by satellites such as the Japanese Greenhouse gas 
Observing SATellite (GOSAT), especially for CO2 emissions regional flux inversions study. They 
estimated national emissions using global energy consumption statistics. Emissions from power plants 
were estimated separately using the Carbon Monitoring for Action (CARMA) database. The CARMA 
CO2 emissions were directly mapped on power plant locations using the coordinate information, and 
the residual emissions (total emissions minus power generation emission) were distributed using the 
nighttime lights image as a proxy. Since the nighttime image is available in 30 arc-second grid 
(approximately 1 km), the CO2 emission map was also mapped at a resolution of 1 km2. In order to 
correct for the saturation of lights in the city centers in the stable light images, Oda and 
Maksyutov [13] obtained radiance values from the 1996–1997 radiance-calibrated nighttime image, 
and using a conversion equation converted the digital number (DN) values between 0–254 for all the 
stable light images of the years 1980–2007 to radiance values. Oda and Maksyutov [13] determined 
the spatial distribution of emissions based on a linear correlation between nightlights and CO2 emissions, 
and also assumed it to be uniform over different countries, though in actuality the relationship maybe 
strongly country-dependent. They have discussed these drawbacks in their paper.  

Gurney et al. [18] at Purdue University have created a Vulcan U.S. fossil fuel CO2 emissions 
inventory for the year 2002. The total carbon emissions grid is available in 10 km as well as 0.1 degree 
resolution and the sectoral carbon emissions are available at 0.1 degree resolution. The Vulcan dataset 
was developed based on fine scale reported inventory by individual source economic sectors, and is 
perhaps the best available carbon emissions inventory available for the U.S. at such a fine spatial and 
temporal resolution. The Vulcan dataset will be discussed in greater details in a later section.  

In this paper, we have built upon the previous efforts at creating a global CO2 emissions grid from 
the nighttime satellite image and population grid and have tried to address some of the drawbacks of 
the previous studies. Two separate models were built, Model 1 and Model 2. Model 1 was developed 
based solely on the statistical correlation between the nighttime lights and selected Vulcan sectors. The 
coefficient derived from Model 1 was applied to the nighttime lights of the world to estimate global 
CO2 emissions. Since the Vulcan emissions data for the U.S. is the best available fine resolution data 
for any country of the world, it was hypothesized that the coefficients derived through Model 1 when 
applied to the global nighttime image would provide fairly accurate estimations of CO2 emissions for 
other countries as well. However, Model 1 did not provide satisfactory results and so Model 2 was 
developed. In Model 2, CO2 emissions were allocated using a combination of DMSP nighttime lights 
and DOE Landscan population count data.  

2. Data Sources  

2.1. Nighttime Lights Imagery 

In Model 1, the DMSP-OLS nighttime image of 2000 was used to calculate the light intensity 
values for all the lit areas of the U.S. corresponding to the surface grid extent of the Vulcan dataset. 
For Model 2, the DMSP-OLS nighttime image was used to compute the sum of light intensity values 
of all the administrative units, demarcate the population in the lit and dark areas of the world, and to 
distribute the estimated CO2 emissions from the lit areas. A merged stable lights and radiance-calibrated 
image of 2000 was used in this study (Figure 1). The National Geophysical Data Center (NGDC) of 
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the National Oceanic and Atmospheric Administration (NOAA) has been archiving and processing 
Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime 
lights data since 1994. The stable lights data of 2000 were composited from hundreds of cloud-free 
orbits for the year 2000, with the ephemeral light sources, such as fires and lightning removed [19]. 
The stable lights data suffer from saturation of light intensity values in the brightly lit city centers. The 
radiance-calibrated images, on the other hand, are produced by combining images collected at different 
gain settings (high, medium, and low), and thus can help to deal with the problem of saturation of city 
centers and also provide a much better view of the internal structure of cities [20]. Merging the stable 
lights and radiance-calibrated image of 2000 therefore makes it possible to include the best features of 
both types of nighttime lights dataset. For this study, the lights produced by gas flaring activities were 
masked out. CO2 emissions from gas flares are excluded from national emissions reporting based on 
fossil fuel consumption. The gas flares were masked out of the nighttime lights based on the 
delineations developed by Elvidge et al. [21].  

Figure 1. Merged stable lights and radiance-calibrated DMSP-OLS nighttime image of 2000. 

 

The spatial resolution of the smoothed nighttime lights data is 2.7 km. However, the images are 
geolocated to 30 arc-second grids, which is approximately 1 km2 at the equator. The latitudinal extent 
of the image is from 75°N to 65°S and the longitudinal extent is from 180°W to 180°E.  

2.2. LandScan Population Grid  

The LandScan population grid of 2000 was used in Model 2 to derive the total population in the lit 
and dark areas of the administrative units and also to distribute the estimated CO2 emission values in 
the dark areas of the world where there are settlements but no lights (Figure 2). The LandScan 
population dataset is a progressive series of spatially disaggregated global population count datasets 
that is produced by the Department of Energy at Oak Ridge National Laboratory. The LandScan model 
uses spatial data and image analysis techniques, in conjunction with a multi-variable dasymetric 
modeling approach, to allocate sub-national level census counts to each grid cell based on proximity to 
roads, slope, land cover, and other information within an administrative boundary. The cells represent 
ambient population counts in integer values. Ambient population takes into account the movement of 
people for work or travel and not only where people sleep. The dataset has a spatial resolution of 
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30 arc-seconds [22]. In order to match the geographic extent of the nighttime image, the LandScan 
population grid was cropped to 75°N (originally extends to 84°N) and the southern latitudinal extent 
was cropped to 65°S (originally extends to 90°S).  

Figure 2. LandScan population grid of 2000. 

 

2.3. Vulcan Data  

The Vulcan fossil fuel carbon emission inventory provides a unique spatial depiction of the carbon 
emissions for key functional sectors. The currently available Vulcan dataset is for the year 2002. It was 
produced at Purdue University along with other collaborators at Colorado State University and 
Lawrence Berkeley National Laboratory [18] and was based primarily on emission inventories. The 
data cover the continental U.S. at a spatial resolution of 0.1° × 0.1°, reporting carbon emissions in 
units of tonnes of carbon/hour/gridcell. The longitudinal direction has 650 gridcells, and the latitudinal 
direction has 280 gridcells and the time dimension has 8,760 timesteps. Inputs include carbon emission 
inventory data from the Environmental Protection Agency (EPA), National Emission Inventory (NEI) 
and other data on mobile sources, power plants, and U.S. census data. All emitting locations are 
geocoded to latitude, longitude, and postal address. Emissions from fixed locations are divided among 
residential, commercial, industrial, utilities and cement production sectors. The transport sector 
contains three separate components: on road or mobile sector emissions (mobile transport using 
designated roadways), non-road emissions (e.g., boats, trains, all terrain vehicles (ATVs), and 
emissions associated with air travel (airports and airborne craft)) (Figures 3).  

2.4. Reported Carbon-Dioxide (CO2) Emissions Data—Countries of the World and States of the U.S.  

Reported total CO2 emissions data, for the year 2000, for all the countries of the world were 
retrieved from United Nations Millennium Indicators website [23] although the primary data source is 
the Carbon Dioxide Information Analysis Center (CDIAC). CDIAC housed in the Department of 
Energy’s (DOE) Oak Ridge National Laboratory is one of the primary sources of climate change data. 
CO2 emissions data in thousand metric tonnes for 206 countries were procured from CDIAC’s data 
repository. Data on CO2 emissions for only two countries, Liechtenstein and Monaco, were taken from 
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United Nations Framework Convention on Climate Change (UNFCCC) as emission values for these 
two countries were not available from CDIAC’s data repository [23]. 

Figure 3. Vulcan sectoral carbon emissions data, 2002. Note that a contrast enhancement 
was applied to each image to reveal the spatial features. 

 

The total CO2 emissions data for the states of the U.S. were available from the U.S. Environmental 
Protection Agency’s (EPA) website. The EPA provides state CO2 emission inventories from fossil fuel 
combustion, by end-use sector (commercial, industrial, residential, transportation, and electric power), 
in million metric tonnes of carbon dioxide from 1990 through 2007 [24]. We used the data of 2000 for 
our analysis.  

The reported CO2 emissions with the electric power plant emissions subtracted from them  
(Figure 4) were used to compare the estimated CO2 emissions derived through multiplying the 
nighttime lights grid with the coefficient derived through Model 1, and in Model 2 the non-utility CO2 
emissions were distributed using the nighttime lights grid and the LandScan population grid.  
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Figure 4. Reported non-utility CO2 emissions data in thousand tonnes, 2000.  

 

2.5. Carbon-Dioxide (CO2) Emissions Data from Electric Power Plants—Countries of the World and 
States of the U.S.  

The nighttime lights satellite images can account for the distribution of the CO2 emissions but 
cannot fully articulate intense emission from major point sources, such as power plants [13]. 
Therefore, power plant CO2 emissions data were subtracted from reported total CO2 emissions data for 
all administrative units. Power plant emissions data for all countries of the world were obtained from 
the Carbon Monitoring for Action (CARMA), which is a huge database including information on the 
carbon emissions of over 50,000 power plants and 4,000 power companies worldwide. The CARMA 
power plant CO2 emissions data of all countries were compared with the data obtained from the World 
Resources Institute and they were 99% correlated [25]. The data for all the available countries were 
downloaded. The data were in ‘short’ or ‘U.S. tons’, and were converted to metric tonnes by 
multiplying the values with the conversion factor of 0.90718474.  

CO2 emissions from electric power plants for the states of the U.S. which were derived from EPA 
are the point source emissions. These emission values were subtracted from the total CO2 emissions 
(sum of commercial, industrial, residential, transportation) for the states of the U.S.  

3. Methods and Results 

The estimated CO2 emissions grid of the world which was created from the DMSP-OLS nighttime 
lights image and the LandScan population grid were developed through experimentation with two 
models. Model 1, based solely on the correlation between the nighttime lights and the Vulcan 
dataset did not give satisfactory results, and so Model 2 was developed. The two models are 
discussed separately.  

3.1. Model 1 

Visual comparison of the Vulcan sector images indicates that several of the sectors are correlated to 
nighttime lights. To investigate this further we used a stepwise linear regression to determine the best 
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combination of Vulcan sectors for estimating the brightness of the DMSP nighttime lights. The basis 
of this development is that the DMSP sensor measures lighting across multiple sectors, with lights 
detected in residential areas, along streets and roads, in commercial centers, at airports and in 
industrial areas. To develop this model we first aggregated the nighttime lights to match the spatial 
resolution of the Vulcan data. A stepwise regression using the JMP statistical software indicated that 
the carbon emissions from the five sectors - mobile, commercial, residential, industrial, and aircraft 
sectors, which together account for about 57% of total carbon emissions in the continental U.S., also 
provide the best model and the highest coefficient of determination (R2 = 0.67) when regressed against 
the nighttime lights of the U.S. (Table 1). Inclusion of any or all of the remaining three sectors 
(utilities, non-road, and cement) in the subsequent models of the stepwise regression had a negligible 
effect on the correlation. The five sectors which together provide the highest R2 with the lights of the 
U.S. in the stepwise regression model were added up (Figures 5a,b) and a regression model (Model 1, 
Figure 6) was developed to derive the coefficient, which was applied on a global basis. For this regression 
model the intercept was taken as zero implying that carbon emissions are zero when the light intensity 
value is zero.  

Figure 5. (a) Vulcan mobile, commercial, residential, aircraft, and industrial sectors added 
together; (b) DMSP-OLS Nighttime lights of the U.S., 2000. 

 

The coefficient derived through Model 1 (β1US) was multiplied with the light intensity value in each 
pixel of the nighttime lights image of continental U.S., to derive the modeled carbon emissions grid of 
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the U.S. At this point we were interested to evaluate the goodness of fit of the nighttime lights 
emission model vis-a-vis the five individual Vulcan sectors (mobile, residential, commercial, aircraft, 
industrial). An outlier image for each of the five sectors was calculated by subtracting the nighttime 
lights based emissions grid from the Vulcan carbon emissions grid of each of the five sectors 
separately, retaining only the positive values. Examination of these outlier images indicated that the 
nighttime lights based model was systematically underestimating the CO2 emissions in several of the 
sectors. To develop a metric for this underestimation we divided the sum of the outliers in each of the 
sector by the total carbon emissions of each of the sectors and calculated a percentage underestimation. 
The underestimation was highest for the mobile and industrial sectors (Table 1).  

Figure 6. Model 1—The regression model of the nighttime lights of the U.S. and the 
Vulcan carbon emissions data of the five sectors (mobile, commercial, residential, aircraft, 
and industrial sectors) combined. 

 
CO2p′ = β1US * Lp, (1) 
where, CO2p′ = Estimated CO2 emission for each pixel p  
Lp = Light intensity value for each pixel p in the nighttime lights image 
β1US = slope coefficient derived through Model 1 (Value of β1 US = 51678) 

The coefficient derived through Model 1 (β1US) was also multiplied with the light intensity value of 
each pixel (Lp) in the global nighttime lights grid and the value of 3.67 (ratio of the molecular weight 
of CO2 (44) to the atomic weight of carbon (12) = 44/12 = 3.67, as the Vulcan data is provided in 
terms of the mass of carbon atom) to get the estimated CO2 emission values for each 1 km2 pixel in the 
nighttime lights grid (CO2p′) (Equation1). The estimated CO2 emissions were then aggregated to the 
administrative units, CO2i′, where “i” corresponds to each administrative unit.  

The CO2 emissions from electric power utilities reported by CARMA and EPA were subtracted 
from the reported CO2 emission values obtained from CDIAC and UNFCCC for the countries, and 
EPA for the states of the U.S. Plotting the aggregated estimated CO2 emissions of the administrative 
units (CO2i′) against the non-utility reported CO2 emission values (CO2i), provided a correlation 

R2 = 0.35 
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coefficient of 0.86. However, the CO2 emissions were underestimated for most of the administrative 
units, except for a few (Figure 7).  

Table 1. Coefficient of determination derived from the stepwise regression, percentage 
contribution of each sector to the total carbon emissions, and the underestimation 
percentages of each of the five Model 1 sectors. 

Vulcan sectoral carbon 
emission R2 % Contribution of each sector 

to the total carbon emissions 
% 

Underestimation 
Mobile  0.6433 27.94 20.43 
Non-road 0.3724 3.14  
Residential  0.3628 6.36 2.62 
Commercial  0.3116 4.12 7.38 
Aircraft 0.1398 1.19 6.25 
Industrial 0.0555 17.56 37.24 
Utilities  0.0130 38.81  
Cement 0.0011 0.87  
    
Aircraft, Mobile, Residential, 
Commercial, Industrial 0.6708 57.17 

 

(in the stepwise regression)    

Figure 7. Reported non-utility CO2 emission values versus modeled (Model 1) CO2 

emission values for the countries of the world and the states of the U.S. 

 

3.2. Model 2 

A single coefficient derived from the U.S. Model 1 resulted in underestimation of CO2 emissions 
for most of the countries and even most states in the U.S. We attribute this to variations in CO2 
emissions that are independent of the quantity of light emitted to the sky and variations in lighting use 
patterns between countries. Similar results were alluded to in previous studies [13,15]. Moreover, 
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regressing the sum of lights against the reported CO2 emission values of the administrative units 
(Figure 8) show that countries such as Canada are brighter compared to their CO2 emission values, 
whereas, countries such as China have higher CO2 emission than what is estimated from the nighttime 
light intensity values.  

Figure 8. Regression relationship between sum of lights and reported non-utility CO2 
emissions for all countries and states of the U.S. 

 

Furthermore, although the nighttime lights can identify the locations for the CO2 emissions from the 
lit areas of the world, there are more than 1.6 billion people living in areas with no DMSP light 
detections [26].  

As a result of these considerations, we began the development of a Model 2, which performs a 
spatial allocation of the reported CO2 emissions (minus the emissions from electric power utilities) 
based on nighttime lights and population count. An attempt was made to use lights and population 
count together; however this regression yielded a negative slope for population and negative CO2 
emissions for many grid cells. To resolve this problem we developed a model which estimated CO2 
emissions in lit areas based on the DMSP nighttime lights and the CO2 emissions in areas without 
DMSP lights based on population count. We proceeded with the assumption that people living in areas 
with no detected DMSP lighting have half the CO2 emissions as people living in the lit areas of an 
individual country.  

In actuality, the CO2 emissions per capita from the rural areas (corresponding to the darker areas of 
the nighttime lights image) vary from one country to another. For example, CO2 emissions per capita 
in the U.S. are higher in rural (non-illuminated) areas [27], whereas, CO2 emissions per capita in India 
are lower in rural areas. Again, for the quarter of the world’s population in darkness, the percentage 
varies between countries. In a recent paper estimating the electrification rates of countries using the 
nighttime satellite image [26] it was estimated that only about 1% of the U.S. population is in 
darkness, whereas about 25% of the population is in darkness in China and India. Thus, the factor with 



Energies 2010, 3              
 

 

1907

which the nighttime lights pixel should be multiplied to get the CO2 emissions per capita from the non-
illuminated rural areas is a variable. In the absence of a better known number the 0.5 factor was used 
as a placeholder for demonstrating the CO2 production of non-illuminated areas. Ultimately it would 
be ideal to produce a map of this parameter that varies from country to country. Future research will 
undoubtedly improve the characterization of this parameter. 

At first a mask of the lit areas of the world was created from the nighttime lights grid. This mask 
was overlaid on the LandScan population grid and the sum of population of the lit areas of each 
administrative unit was extracted (SOPLi). Similarly, a mask of the dark areas of the world was created 
from the nighttime image and was overlaid on the population grid to extract sum of population of the 
dark areas of each administrative unit (SOPDi). The reported non-utility CO2 emissions of the 
administrative units (CO2i) were distributed between the dark and lit areas based on the following 
equation (Equation 2).  

CO2i = CO2Li + CO2Di (2) 

CO2i = (SOPLi * xi) + (SOPDi * xi/2) 

xi = CO2i/(SOPLi + SOPDi/2) 

Through Equation 2 the value of the variable “xi” for each administrative unit was derived. The 
variable xi was then multiplied with the sum of population in lit areas for each administrative unit i 
(SOPLi) and half of the variable xi, that is, xi/2, was multiplied with the sum of population in the dark 
areas for each administrative unit i (SOPDi). This provided the total CO2 emissions from the lit areas 
(CO2Li) and total CO2 emissions from the dark areas (CO2Di), respectively, for each administrative unit. 
(Equations 3 and 4).  

CO2Li = SOPLi * xi (3) CO2Di = SOPDi * (xi/2) (4) 

The CO2 emissions from the lit areas (CO2Li) were then divided by the sum of lights (in radiance 
units) for each administrative unit (SOLLi). This yielded the CO2 emissions per radiance unit for each 
administrative unit. Conversely, CO2 emissions from the dark areas (CO2Di) were divided by sum of 
population in the dark areas (SOPDi) to get CO2 emissions per person for the dark areas for each 
administrative unit. In order to distribute the CO2 emissions from the lit areas, each of the lit pixels of 
the nighttime lights grid (Lp) was multiplied by the CO2 emissions per radiance unit for that 
administrative unit (Equation 5). Conversely, to distribute the CO2 emissions from the dark areas the 
population count in each pixel of the dark areas of the population grid (PDp) were multiplied by the 
CO2 emissions per person for the dark areas for that administrative unit (Equations 6).  

CO2Lp′ = (CO2Li/SOLLi)* Lp (5) CO2Dp′ = (CO2Di/SOPDi)* PDp (6) 

These two separate CO2 emissions grid from the lit areas and the dark areas of the world (CO2Lp′ 
and CO2Dp′) were added to create the final estimated CO2 emissions grid (CO2p′) (Equation 7,  
Figure 9a).  

CO2p′ = CO2Lp′ + CO2Dp′ (7) 

The disaggregated CO2 emissions map represents values in tonnes assigned to 1 km2 pixels, or CO2 

emissions in tonnes/km2/year. In the disaggregated map the ocean pixels have a value of 0. Also, 
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pixels in the inaccessible areas of the world, such as the high mountainous areas and deserts, with no 
population or nighttime lights also have a value of 0. The major cities and urban areas of the world 
have CO2 emissions greater than 500 tonnes/km2/year. Areas of the world which have population but 
no lights have CO2 emissions less than 50 tonnes/km2/year. Figure 9(a) shows the CO2 emissions grid 
of the world, and Figures 9(b), (c), (d), and (e) show CO2 emissions of North-eastern United States, 
Japan, Eastern China, and Northern India, respectively.  

Figure 9. Estimated CO2 emissions grid in tonnes/km2/year. 

 

In order to check how well Method 2 worked in creating the disaggregated map of CO2 emissions, 
we aggregated the emissions in each pixel (CO2p′) to the level of the administrative units (CO2i′) and 
compared it to the reported non-utility CO2 emission values (CO2i). The relation between the estimated 
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and reported non-utility CO2 emissions at the level of the administrative units provided a correlation of 
coefficient of 1, implying perfect correlation between the reported and estimated variables.  

5. Discussion and Conclusion 

Two separate models were built for creating a disaggregated map of global non-utility CO2 
emissions. The first model was based on a regression relationship between the nighttime lights of the 
U.S. and the combined carbon emissions of the five sectors (residential, commercial, aircraft, 
industrial, and mobile sector) of the Vulcan data. The slope coefficient derived through this 
relationship (CO2 emissions per radiance) was multiplied with the global nighttime lights radiance data 
and this provided the estimated CO2 emissions grid. However, when this estimated CO2 emissions grid 
was aggregated to the level of the administrative units it was seen that CO2 emissions were 
underestimated for almost all administrative units. Thus, it was realized that a single coefficient 
derived through a regression relationship developed for the U.S would not enable accurate estimations 
of CO2 emissions for all administrative units. Based on the Vulcan data we found the underestimation 
to be highest (Table 1) in the industrial and mobile (streets, roads and highways) sectors. We attribute 
this underestimation in part to the inability of a single coefficient to adequately represent the 
differences that exist between carbon emissions across multiple sectors. For instance, on a per square 
kilometer basis the CO2 emissions from residential areas is undoubtedly lower than the emissions from 
a heavily trafficked highway of an industrial facility. Another aspect of the underestimation is that 
Model 1 assumes that the use of lighting in each country is comparable to the U.S. The vast 
underestimation of CO2 emissions in China under Model 1 suggests that China uses far less lighting 
per person than the U.S. Previous studies [19,26] have indicated that there are variations in lighting 
types, lighting fixtures, and lighting preferences that affect the brightness of satellite observed 
nighttime lights. In order to address these drawbacks Model 2 was developed.  

To address these shortcomings with the available data sources we developed Model 2, which uses 
nighttime lights grid and the LandScan population grid to model the spatial distribution of reported 
CO2 emissions (minus those associated with electric power utilities). The use of LandScan population 
grid in estimating CO2 emissions proved to be advantageous because population count can serve as a 
proxy for estimating CO2 emissions in areas in the world which have no satellite detected lighting. 
Furthermore, since in the LandScan population model, sub-national level census accounts are allocated 
to each grid cell based on proximity to roads, slope, and land cover; transportation links are depicted in 
greater details in the LandScan population grid. Thus, inclusion of the LandScan population grid in the 
model for estimating CO2 emissions ensured the estimation of emissions from the transport linkages. 
These road linkages contributed to the outlier percentages from the Vulcan mobile sector emissions 
when the modeled carbon emissions grid of the U.S was created from its nighttime lights. Model 2 was 
developed with the assumption that per capita CO2 emissions from the dark areas of the world were 
one-half of the per capita emission in the lit areas. On the basis of this assumption, the total reported 
non-utility CO2 emissions were distributed into the lit and the dark areas of the world using the 
nighttime lights image and the LandScan population grid. In Model 2 the total CO2 emissions are 
constrained to match the reported values minus the component associated with electric power utilities. 
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It is important to note that DMSP nighttime lights indicate the spatial distribution for the majority 
of CO2 emissions but that they cannot articulate the variability that exists between sectors. If the CO2 

estimation coefficient is tuned to work well for residential and commercial sectors, the emissions for 
industrial and mobile will be underestimated. With higher spatial resolution and multispectral 
nighttime lights it would be possible to distinguish the lighting from residential, commercial/industrial, 
and transportation sectors [28,29]. While such a Nightsat sensor has not been built, the prospects for 
making improved CO2 emission grids with such data are clear. It may even be possible to estimate the 
CO2 emissions from electric power utilities with Nightsat data. Electric power utility emissions 
accounts for 40% of all carbon emissions in the United States and about one-quarter of global 
emissions [25]. Thus, by excluding the utility emissions, the CO2 emissions grid created from the 
nighttime lights image and population grid actually maps the distribution of about 75% of all 
distributed CO2 emissions.  

The method developed here is not an independent method for estimating CO2 as reported CO2 
emission values were used to set the coefficients for the spatial allocation performed in each 
administrative unit. However, it is an easy and quick method for estimating and mapping CO2 
emissions at a fine spatial resolution. Moreover, the availability of radiance-calibrated nighttime lights 
image has made it possible to map variability in distribution of CO2 emissions into bright urban cores, 
where previous nighttime lights products contained saturated data values. The NGDC at NOAA is 
currently producing a radiance-calibrated time series for the years 1996–97, 1999, 2000, 2003, 2004, 
and 2010. The method developed in this paper could be used to create disaggregate maps of CO2 
emissions for all of these years. However, it should be noted that the lack of on-board calibration for 
the DMSP nighttime visible band complicates the direct comparison of the data values across the  
time series. 

The greatest advantage of creating a disaggregated map of CO2 emissions is that it can be 
aggregated to different environmental, physical, and socio-economic units of analysis and can be 
easily integrated with other physical and environmental data available in gridded format. Such a fine 
resolution disaggregated map of CO2 emissions would also aid in CO2 emissions regional flux 
inversions studies. These model outputs can also inform the monitoring of the progress of countries as 
they move towards achieving emission reduction targets.  

Although not an entirely flawless method, the second model developed in this paper provides a 
simple, useful, and inexpensive technique to create a fine resolution CO2 grid of the entire planet. 
Model 2 was developed entirely as a proof of concept. With the availability of better CO2 emissions 
data from the dark as well as the lit areas of the world we hope to refine the method and create better 
fine resolution CO2 emissions grid. Our future endeavors will also include testing this methodology for 
estimating CO2 emissions for other years and also to include the CO2 emissions from gas flaring [21] 
observed in DMSP nighttime lights and electric power utilities based on locations and emission 
estimates from organizations such as CARMA.  
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