Next Article in Journal
Towards Commercial Gas Production from Hydrate Deposits
Next Article in Special Issue
Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy
Previous Article in Journal
Short-Term Load Forecasting for Electric Power Systems Using the PSO-SVR and FCM Clustering Techniques
Previous Article in Special Issue
A Review of Recent Advances on the Effects of Microstructural Refinement and Nano-Catalytic Additives on the Hydrogen Storage Properties of Metal and Complex Hydrides
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Recent Progress in Metal Borohydrides for Hydrogen Storage

1
Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577, Japan
2
Department of the Environment, Energy and Mobility (EMPA), Abt. 138 “Hydrogen & Energy”, Überlandstrasse 129, 8600 Dübendorf, Switzerland
3
Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA
*
Author to whom correspondence should be addressed.
Energies 2011, 4(1), 185-214; https://doi.org/10.3390/en4010185
Submission received: 23 November 2010 / Revised: 22 December 2010 / Accepted: 17 January 2011 / Published: 24 January 2011
(This article belongs to the Special Issue Hydrogen Storage)

Abstract

:
The prerequisite for widespread use of hydrogen as an energy carrier is the development of new materials that can safely store it at high gravimetric and volumetric densities. Metal borohydrides M(BH4)n (n is the valence of metal M), in particular, have high hydrogen density, and are therefore regarded as one such potential hydrogen storage material. For fuel cell vehicles, the goal for on-board storage systems is to achieve reversible store at high density but moderate temperature and hydrogen pressure. To this end, a large amount of effort has been devoted to improvements in their thermodynamic and kinetic aspects. This review provides an overview of recent research activity on various M(BH4)n, with a focus on the fundamental dehydrogenation and rehydrogenation properties and on providing guidance for material design in terms of tailoring thermodynamics and promoting kinetics for hydrogen storage.

1. Introduction

Development of advanced hydrogen storage materials for onboard hydrogen storage systems is regarded as a key prerequisite for widespread adoption of fuel cell vehicles. For commercial vehicle applications, hydrogen storage materials must possess all the following capabilities: high gravimetric hydrogen density, adequate hydrogenation-dehydrogenation temperature/rate, cycling stability, and low cost [1].
Metal borohydrides M(BH4)n (n indicates the valence of M) have high gravimetric hydrogen densities and thus have attracted great interest for use in hydrogen storage [2]. The gravimetric hydrogen densities and physical properties of various M(BH4)n [3] are shown in Figure 1 and Table 1, respectively.
Figure 1. Elements M formed M(BH4)n, their gravimetric hydorgne densities in the unit of mass%. Asterisks indicate compounds stabilizaed at room temperature by coordiantion with ligands. Brackets indicate compounds reported to be unstable at room temperature but may be isolated at low temperature [3]. Reproduced with permission from reference 3.
Figure 1. Elements M formed M(BH4)n, their gravimetric hydorgne densities in the unit of mass%. Asterisks indicate compounds stabilizaed at room temperature by coordiantion with ligands. Brackets indicate compounds reported to be unstable at room temperature but may be isolated at low temperature [3]. Reproduced with permission from reference 3.
Energies 04 00185 g001
Table 1. Density of M(BH4)n and hydrogen density in M(BH4)n [3]. Reproduced with permission from reference 3.
Table 1. Density of M(BH4)n and hydrogen density in M(BH4)n [3]. Reproduced with permission from reference 3.
M(BH4)nCAS No.Density (g/mol)Density (g/cm3)Hydrogen Density (mass%)Hydrogen Density (kg/m3)
LiBH416949-15-821.780.6618.5122.1
NaBH416940-66-237.831.0710.7114.5
KBH413762-51-153.941.177.587.8
RbBH420346-99-0100.311.924.076.8
CsBH4-147.752.422.765.3
Be(BH4)217440-85-638.700.70220.8146.0
Mg(BH4)216903-37-053.990.98914.9147.4
Ca(BH4)217068-95-069.76(1.07)11.6(124.1)
Mn(BH4)2-84.62(1.24)9.5(117.8)
Al(BH4)316962-07-571.510.7916.9133.5
Zr(BH4)412370-59-1150.61.17910.7126.2
Hf(BH4)453608-70-1237.61.656.8112.2
Densities in brackets shows the value calculated from the crystal structure.
First-principles calculations of the electronic structures of M(BH4)n show that they are nonmetallic and have relatively large energy gaps of 1.8−6.8 eV. A boron atom forms covalent bonds with four surrounding H atoms to form [BH4] anions, the charge of which is compensated by metal cations Mn+. The electronic structures indicate that charge transfer from the metal cations Mn+ to the [BH4] anions is a key feature determining the thermodynamic stability of M(BH4)n [4,5,6,7,8].
Some M(BH4)n have been used as “one-way” hydrogen sources that release the hydrogen on contact with water (via hydrolysis) [9,10,11]. Because the hydrolysis reaction is highly irreversible, such materials are certainly not candidates for reversible hydrogen storage. In this review, we focus on the recent progress in the dehydrogenation and rehydrogenation reactions of M(BH4)n at controlled temperature and hydrogen pressure. Some several excellent reviews on M(BH4)n are also available [2,12,13,14,15,16,17,18].

2. Fundamentals of Hydrogen Storage Properties

The study of M(BH4)n as a candidate hydrogen storage material started with LiBH4 [19]. It releases 13.8 mass% of hydrogen by decomposition into LiH and B [19,20,21,22,23,24,25]. The dehydrogenation process at a low heating rate (0.5 K/min) exhibits three distinct desorption peaks, which indicates that it involves several intermediate steps [25]. This was recently explained by the formation of Li2B12H12 as an intermediate compound, evidenced by Raman and solid-state CP/MAS NMR analyses, as well as theoretical prediction [26,27,28,29]. Li2B12H12 has a cubic crystal structure with Pa3 symmetry [30]. A mechanistic explanation of the formation of Li2B12H12 indicates that the diborane or higher borane species formed during the decomposition of LiBH4 would react with the remaining LiBH4 to afford Li2B12H12 and possibly even Li2B10H10 [31]. To understand the mechanism of dehydrogenation better, intensive investigations on the dynamics have been performed, including on the rotational and vibration motions of BH4 tetrahedra; the atomic motions of H, Li, and B; H–D exchange in BH4 units, etc. [32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50]. The enthalpy ΔΗ and entropy ΔS of dehydrogenation were found to be 74 kJ mol−1 H2 and 115 J K−1 mol−1 H2, respectively, based on the pressure-concentration-temperature (PCT) isotherm measurement [51].
Dehydrogenation of LiBH4 is reversible, because the end products lithium hydride (LiH) and boron absorb hydrogen at 873 K in a hydrogen pressure of 35 MPa for 12 h [23] or at 1000 K under a hydrogen pressure of 15 MPa for over 10 h [25] to form LiBH4. The high rehydrogenation temperature of above 873 K might be due to the sluggish kinetics of rehydrogenation, which requires recombination of the dehydrogenated LiH and B, that is, breaking of the rigid boron lattice, and the subsequent diffusion of Li and B atoms toward each other would be mainly responsible for the sluggish kinetics. The sluggish kinetics can be enhanced by preparing a homogenous dispersion of Li and B atoms on an atomic level. For example, forming a binary LiBx compound (e.g., Li7B6, LiB3, and LiB, etc.) has been proved to significantly improve the reaction kinetics of LiBH4 formation over that of the Li/B mixture [51,52,53]. In addition, the formation of LiBH4 might be related to diborane B2H6 [53,54,55].
Mg(BH4)2 releases approximately 14.9 mass% of hydrogen when heated up to 870 K [56,57,58,59,60,61,62,63,64,65,66]. The dehydrogenation process is found to also proceed through multiple steps together with the formation of intermediate compounds [62,63,65], as summarized in Figure 2. Thus far, one of the intermediate compounds has been theoretically predicted and experimentally confirmed as being MgB12H12 [28,29,62,65,66,67,68,69,70] similar to that in the case of LiBH4 [26]. The lowest energy configuration of MgB12H12 was predicted as being monoclinic in the space group C2/m (No. 12) [29]. Anhydrous MgB12H12 cannot be obtained from simple thermal decomposition of Mg(H2O)6B12H12·6H2O [71]. The apparent enthalpy and entropy for the conversion of Mg(BH4)2 to MgH2 were estimated from PCT measurement to be 39 kJ mol−1 H2 and 91 J K−1 mol−1 H2 [56], respectively. In a later work, different values were reported: ΔΗ = 57 kJ mol−1 H2 and ΔS = 128 J K−1 mol−1 H2 [62]. These differences might originate from differences in the measurement conditions. For example, a shorter equivalent judgment time will lead to a higher plateau due to the sluggish kinetics.
Figure 2. The dehydrogenation processes of Mg(BH4)2 based on the respective reports. Question mark indicates the possibility of the formation of an intermediate compound during the dehydrogenation.
Figure 2. The dehydrogenation processes of Mg(BH4)2 based on the respective reports. Question mark indicates the possibility of the formation of an intermediate compound during the dehydrogenation.
Energies 04 00185 g002
Rehydrogenation of Mg(BH4)2 occurs at 543 K in a hydrogen pressure of 40 MPa for 48 h. Approximately 6.1 mass% of hydrogen is rehydrogenated through the formation of MgB12H12 [62,66]. The formation of MgB12H12, rather than Mg(BH4)2, after rehydrogenation may be explained from the viewpoint of the crystal (cluster) structure. The formation of Mg(BH4)2 is more thermodynamically favorable than that of MgB12H12 from the dehydrogenated products (MgH2 and boron) at 573 K. However, for the formation of Mg(BH4)2, the B–B bonds in the icosahedral cluster of B should be broken and the B atoms should spatially migrate to form [BH4]. The barrier against breaking of the B–B bonds and migration of the B atoms is probably too high to overcome under the present rehydrogenation conditions [66]. However, it is almost the same boron icosahedral clusters in between B and MgB12H12 that facilitate the formation of [B12H12]2−. In other words, the formation of Mg(BH4)2 requires higher temperature and pressure to overcome the aforementioned barriers. This was proven in a recent study: partial formation of Mg(BH4)2 was confirmed in rehydrogenation experiments carried out at 663 K in a hydrogen pressure of 90 MPa for 3 days [72]. In addition, Mg(BH4)2 can be prepared by hydrogenation of MgB2 at 673 K under a hydrogen pressure of 90 MPa for a few days [73]. This hydrogenation reaction can be greatly promoted by using nanostructures with grain boundary defects introduced by mechanical milling [73,74,75]. Recently, Mg(BH4)2 was found to be formed by hydrogenation of Mg(B3H8)2 at 523 K under a hydrogen pressure of 12 MPa [76].
Ca(BH4)2 was theoretically predicted to release 9.6 mass% of hydrogen according to the following reaction [77]:
Ca(BH4)2 = 2/3 CaH2 + 1/3 CaB6 +10/3 H2
Experimentally, approximately 9.0 mass% of hydrogen was released when Ca(BH4)2 was heated to 800 K [78,79,80]. This value shows good agreement with that predicted by Equation 1. The presence of two endothermic peaks corresponding to dehydrogenation suggests the formation of intermediate compounds, which is confirmed by the powder X-ray diffraction (XRD) analyses of the dehydrogenated products that were heated to approximately 663 K [78] and after the plateau in the PCT profile measured at 593 K [79]. The intermediate compound is suggested to be a CaB2Hx compound having a HgCl2-type structure with Pnma symmetry according to the high-resolution synchrotron radiation powder XRD measurement [81]. By contrast, the proposed CaB2Hx was predicted to be both structurally unstable and too high in energy to be a dehydrogenation intermediate based on the plane wave density functional theory calculations [82]. The formation of CaB12H12 as an intermediate compound is suggested by the experiment and first-principle calculations [29,69,70,83]. A pure CaB12H12 compound has been synthesized and the crystal structure has been determined to be monoclinic with C2/c symmetry [84]. Identification of the intermediate compound is expected to increase our understanding of the dehydrogenation process of Ca(BH4)2. The enthalpy and entropy change for the first step of dehydrogenation are estimated to be ΔΗ = 87 kJ mol−1 H2 and ΔS = 158 J K−1 mol−1 H2 [80], respectively.
Regarding the rehydrogenation properties of pure Ca(BH4)2, no tangible data are available. Ca(BH4)2 has been predicted theoretically to have limited viability as a reversible storage material for on-board storage due to the formation of a stable intermediate compound of CaB12H12 [83]. It was found that the ball-milled mixtures of CaB12H12 and CaH2 do not produce Ca(BH4)2 during the rehydrogenation test at 670 K in a hydrogen pressure of 100 MPa [84]. With additives, approximately 57% of the Ca(BH4)2 is obtained by rehydrogenation at 623 K in a hydrogen pressure of 10 MPa [85,86,87].
Y(BH4)3 releases approximately 7.8 mass% of hydrogen when heated to 773 K [88,89,90,91,92,93]. This value is almost equal to the theoretical dehydrogenation content (7.5 mass%) according to the assumed reaction:
Y(BH4)3 = YH2 + 3 B + 5 H2
The whole reaction process of Y(BH4)3 on heating to 773 K is summarized as follows: (1) phase transformation, (2) melting, (3) decomposition of Y(BH4)3 into an intermediate compound and YH3, (4) decomposition of the intermediate compound, and (5) decomposition of YH3 into YH2 [89]. Approximately 1.1–1.3 mass% of hydrogen was rehydrogenated at 573 K in a hydrogen pressure of 35 MPa for 24 h [89]. Similar to that of Y(BH4)3, a multistep dehydrogenation process were also confirmed in Ce(BH4)3 [94]. In addition, there are several other M(BH4)n (e.g., M = Zn, Al, Ti, Mn and Zr) [95,96,97,98,99,100,101,102,103]. Most of these were found to be irreversible due to their low melting temperatures and the release of diborane with hydrogen.

3. Improvement of Hydrogen Storage Properties

3.1. Tailoring Thermodynamics

In principle, the Gibbs free energy for a certain reaction determines the reaction temperature. Taking into account that the entropy change ΔS mainly comes from the gaseous hydrogen (i.e., a constant S0H2 = 130 J・K−1 mol−1 H2), enthalpy change ΔΗ becomes the specific indicator to evaluate thermodynamic stability. For metal borohydrides, ΔΗ is calculated from the difference in the heat of formation between the product and starting materials. Therefore, two main approaches to tailor the thermodynamic stabilities from both sides—the starting materials and products—are expected: (a) destabilization of M(BH4)n and (b) stabilization of dehydrogenation products, as shown in Figure 3.
Figure 3. Schematic illustration of two main approaches to tailor the thermodynamic stabilities of metal borohydrides M(BH4)n: (a) destabilization of M(BH4)n and (b) stabilization of dehydrogenation products.
Figure 3. Schematic illustration of two main approaches to tailor the thermodynamic stabilities of metal borohydrides M(BH4)n: (a) destabilization of M(BH4)n and (b) stabilization of dehydrogenation products.
Energies 04 00185 g003
One approach to reducing the enthalpy change ΔΗdeh is the destabilization of M(BH4)n, as illustrated in Figure 3. The thermodynamic stabilities for the series of metal borohydrides M(BH4)n (M = Li, Na, K, Mg, Ca, Sc, Zr, Hf, Cu, Zn, and Al; n = 1–4) have been systematically investigated using first-principles calculations [104]. A good correlation between the predicted heat of formation ΔΗform of M(BH4)n and the Pauling electronegativity χP of M is found, which suggests that the χP is a useful indicator to estimate the thermodynamic stability of M(BH4)n.
The enthalpy change ΔΗdeh of the dehydrogenation of M(BH4)n correlates not only with the stability of M(BH4)n, but also with the stability of the products. The dehydrogenation reactions were assumed as the following equation:
M(BH4)n = MHm + n B + (4nm)/2 H2
In the case of no MHm formation, direct decomposition into elements was assumed. Then, the ΔΗdeh of the dehydrogenation was estimated using the reported values of ΔΗprod and predicted ΔΗform:
ΔΗdeh = ΔΗprod − ΔΗform
A good correlation between ΔΗdeh and χP was also obtained according to the theoretical prediction. Furthermore, it is expected that M(BH4)n with χP ≥ 1.5 are thermodynamically unstable [3]. The dehydrogenation properties were experimentally investigated using thermal desorption analysis during the heating process for milling samples [104,105,106]. A good correlation between Td (defined as the temperature of the first peak) and χP was confirmed experimentally, and was similar to that predicted by the first-principles calculations. Therefore, both the theoretical prediction and the experimental results consistently indicate that Td can be roughly estimated by considering χP as an indicator.
Inspired by this finding, an approach of producing multi cation borohydrides MM’(BH4)n, in which M and M’ have different electronegativities has been proposed to precisely tailor the thermodynamic stability [107]. Several typical samples has been synthesized, including LiZr(BH4)5, Li2Zr(BH4)6, LiK(BH4)2, LiSc(BH4)4, KSc(BH4)4, and so on [107,108,109,110,111,112,113,114,115,116,117]. Note that some samples were reported to form a large [M’(BH4)n]m complex anion units such as [Sc(BH4)4] [109,117], rather than the bimetallic borohydrides. Most of the MM’(BH4)n exhibit moderate thermodynamic stabilities between M(BH4)n and M’(BH4)n. The appropriate combination of cations might be an effective method for adjusting the thermodynamic stability of metal borohydrides, similar to the conventional “alloying” method for hydrogen storage alloys. The detailed dehydrogenation-rehydrogenation properties of the recently synthesized MM’(BH4)n are given in Table 2.
Table 2. Hydrogen storage properties of bimetallic borohydrides, MM’(BH4)n.
Table 2. Hydrogen storage properties of bimetallic borohydrides, MM’(BH4)n.
BorohydridesHydrogen (mass%)Conditions: temp (K) [pressure (MPa)]Reference
IdealObs (First Dehyd)Obs (Rehyd)First DehydRehyd
ZrLi(BH4)511.7595–873[107]
ZrLi2(BH4)612.5650–873[107]
LiK(BH4)210.6653–[108]
LiSc(BH4)414.54.38–6.4 m415–673673 [7][109,111]
LiZn2(BH4)5 *9.5238–473[112]
NaZn2(BH4)5 *8.8241–[112]
NaSc(BH4)412.70.97 m440–750[113]
Na2Mn(BH4)410.12.9393[114]
KSc(BH4)411.24.4 p470–580[117]
LiBH4/Mg(BH4)216.012.52.5513–773673 [10][115]
xLiBH4 + (1-x)Ca(BH4)2 (0 < x < 1)9.6–18.510 (x = 0.4, 0.6)4 (x = 0.4)473–773673 [9][116]
* represents that the release of B2H6 in the decomposition process; m indicates the value referred to the mixture of metal borohydride with side products, while p indicates the value referred to the pure metal borohydride.
The other approach to reducing enthalpy change ΔΗdeh is the stabilization of dehydrogenated products by the combination of M(BH4)n with elements, metal hydrides, complex hydrides, and so on. A typical example for this approach is the 2 LiBH4 + MgX system [118]. Pure LiBH4 releases approximately 13.8 mass% of hydrogen according to the following reaction:
LiBH4 = LiH + B + 3/2 H2
The enthalpy and entropy for Equation 5 have been predicted to be 66.6 kJ mol−1 H2 and 97.4 J K−1 mol−1 [119], respectively, which means Td (in 0.1 MPa H2) is approximately 683 K. This temperature is too high for practical applications, although the combination with Mg-based compounds clearly results in a large reduction of ΔΗdeh. Dehydrogenation of the LiBH4/MgH2 system proceeds as follows:
2 LiBH4 + MgH2 = 2 LiH + MgB2 + 4 H2
In this case, due to the formation of MgB2, ΔΗdeh was reduced to 45.8 kJ mol−1 H2 and Td (in 0.1 MPa H2) decreased to approximately 441 K [120]. At the same time, a significant destabilization of LiBH4 due to combination with the LiNH2 system was reported [121], as indicated by the much higher dehydrogenation pressure of the combined materials than that of LiBH4 alone. Due to these significant destabilization effects, a large number of combination materials have been developed. The recent progress on these combination systems [120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185] is summarized in Table 3.
This approach not only reduces the enthalpy of the dehydrogenation, which decreases Td, but also kinetically enhances the rehydrogenation reaction. That is, in contrast to the formation of pure LiBH4 (from right to left in Equation 5) discussed in Section 2, LiBH4 and MgH2 form simultaneously (from right to left in Equation 6) under fairly moderate conditions: 5 MPa hydrogen pressure in the temperature range 523–573 K [136]. The difference between these two reactions is attributed to the different crystal structures and boron bonding of pure boron and MgB2, as shown in Figure 4. That is, in pure boron, the common building blocks are icosahedral units that consist of 12 boron atoms, and each atom is connected to five other atoms via covalent bonds. By contrast, in MgB2, each boron atom is connected to a maximum of three other boron atoms. The recent activities of the above-mentioned metal boride systems [136,186,187,188,189,190,191,192] are summarized in Table 4.
Figure 4. Schematic illustrations of (a) B12 icosahedral unit in boron and (b) layer structure of MgB2.
Figure 4. Schematic illustrations of (a) B12 icosahedral unit in boron and (b) layer structure of MgB2.
Energies 04 00185 g004
Table 3. Hydrogen storage properties of the combination systems of M(BH4)n with metal hydrides, complex hydrides, metals, etc.
Table 3. Hydrogen storage properties of the combination systems of M(BH4)n with metal hydrides, complex hydrides, metals, etc.
ReactionHydrogen (mass%)Conditions: temp (K) [pressure (MPa)]Theor/Exp ∆Hdehyd (kJ mol−1 H2)Reference
IdealObs (First Dehyd)Obs (Rehyd)First DehydRehyd
LiBH4 + 1/2 MgH2 = LiH + 1/2 MgB2 + 2 H211.58.0–10.68.0–10543–723503–723 [10]T 50.4–66.8/E 40.5[29,120,124,134,135,136,142,145,156,168,172,186]
LiBH4 + 2 LiNH2 = Li3BN2 + 4 H211.97.8–120.1622–673573 [5]E 23[121,123,124,127,128,129,130,132,149,160,166]
LiBH4 + 1/2 Al = LiH + 1/2 AlB2 + 3/2 H28.66.8–7.25–7.6553–823573–773
[10–15.5]
T 18.8–57.9[134,135,137,163,164,165]
LiBH4 + 1/2 LiAlH4 = 3/2 LiH + 1/2 AlB2 + 9/4 H211.16–104.8–5.1327–773623–873 [4–7][157]
LiBH4 + 1/2 Mg = LiH + 1/2 MgB2 + 3/2 H28.95.6648–773T 46.4[134,135]
LiBH4 + 1/6 CaH2 = LiH + 1/6 CaB6 + 10/6 H211.75.1–11.19–11.1423–773673 [10]T 45.4–66.5[19,135,137,142,144,168]
LiBH4 + 1/2 ScH2 = LiH + 1/2 ScB2 + 2 H28.94.5553–723T 34.1[134,135,142,143]
LiBH4 + 1/6 CeH2 = LiH + 1/6 CeB6 + 10/6 H27.46.1–6.26.0443–723623 [10]T 44.1[144,168,177]
LiBH4 + 1/4 YH3 = LiH + ¼ YB4 + 15/8 H28.47.2623[168]
LiBH4 + 1/4 MgH2 + 1/4 Al = LiH + 1/4 MgAlB4 + 7/4 H210.09.46533–673673 [4]E 57[159]
Ca(BH4)2 + MgH2 = CaH2 + MgB2 + 4 H28.47.1623–723T 47[135]
Ca(BH4)2 + MgH2 = 2/3 CaH2 + 1/3 CaB6 + Mg + 13/3 H29.18.15.5593–773623 [9]T 45[187]
Mg(BH4)2 + LiNH2 = Li-Mg + BN-related + 5 H213.111.4433–873[174]
NaBH4 + 1/2 MgH2 = Na + 1/2 MgB2 + 5/2 H29.996330–723723 [5]T 62[183,186]
NaBH4 + 2 NaNH2 = Na3BN2 + 4 H2 *7.0500–773[173]
x LiBH4 + y (LiNH2)2 + z (MgH2) = Li3BN2 + Mg3N2 + LiH + H2453 [15][140,141,155]
x:y:z = 2:1:113.08.52.9413–743
  2:0.5:113.68.63.7413–743
  2:1:211.86.63.1428–743
  1:1:111.35.62.7428–743
  3:1:1.513.49.1413–743
* represents that the release of NH3 in the decomposition process: T and E represent the theoretic and experimental values, respectively.
Table 4. Hydrogen storage properties of metal borides and metal hydrides systems.
Table 4. Hydrogen storage properties of metal borides and metal hydrides systems.
ReactionHydrogen (mass%)Conditions: temp (K) [pressure (MPa)]Reference
IdealObs (First Hyd)Obs (Dehyd)First HydDehyd
LiH + 1/2 MgB2 + 2 H2 = LiBH4 + 1/2 MgH211.53.2–113.0–8.0538–673 [9–35]538–723 [0–0.6][120,145,182,186,187]
LiF + 1/2 MgB2 + H2 = LiBH4−yFy + 1/2 MgF2 + LiH1−xFx6.66.4663 [6]693 [0.5][189]
Li7Sn2 + 7/2 MgB2 + 14 H2 = 7 LiBH4 + 7/4 Mg2Sn + 1/4 Sn5.92.5–3573–673 [20–30][186]
CaH2 + MgB2 + 4H2 = Ca(BH4)2 + MgH28.44.7–7573–673 [20–35][186,187]
NaH + 1/2 MgB2 + 2 H2 = NaBH4 + 1/2 MgH27.96.2–6.7573–673 [20–35][186]
1/3 CaB6 + 2/3 CaH2 + 10/3 H2 = Ca(BH4)29.64.8623 [10]543–573[186]
2/3 CaH2 + 1/3 CaB6 + 1/2 Mg + 23/6 H2 = Ca(BH4)2 + 1/2 MgH29.34.9–5.9623–673 [9][192]
MgNi2.5B2 + 2 LiH + 4 MgH2 + 4H2 = 2 LiBH4 + 5/2 Mg2NiH42.51.01.0623 [16]613 [0.4][167]
MgB2 + 4 H2 = Mg(BH4)214.911.0673 [95][73,74]

3.2. Promoting Kinetics

M(BH4)n dehydrogenates via stepwise reactions accompanied by the formation of intermediate compounds. Although the rate-controlling step has not been determined, the complicated dehydrogenation feature makes the promotion of kinetics rather challenging. There are two approaches that have been extensively studied to reduce the reaction barrier: (a) appropriate additives with catalytic abilities and (b) the nanoconfinement approach.
Complex hydrides including alanates, amides, and borohydrides are commonly known to exhibit sluggish kinetics. Since Bogdanovic et al. found that the addition of Ti-based compounds significantly promoted the dehydrogenation-rehydrogenation reactions of NaAlH4 [193], the development of complex hydrides for hydrogen storage has significantly increased. Stimulated by this finding, a large number of additives from oxides, halides, metals, and carbon-based materials to M(BH4)n have been examined [19,20,58,87,101,130,144,150,161,168,170,171,191,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210]; the corresponding dehydrogenation and rehydrogenation properties are summarized in Table 5. For instance, the most effective additive for LiBH4 was found to be the mixture of 0.2 MgCl2 + 0.1 TiCl3, in which approximately 5 mass% of hydrogen was released from 333 K and 4.5 mass% of hydrogen was rehydrogenated at 873 K in 7 MPa H2 [195]. The addition of TiCl3 was also proved to be effective for Mg(BH4)2, the starting dehydrogenation temperature of which was reduced to 361 K [58]. Titanium isopropoxide was reported to be an effective additive for the combination system of 2 LiBH4 + MgH2 [136]. According to the X-ray absorption spectroscopy analysis, titanium isopropoxide was demonstrated to form a disordered TiO2 anatase during ball milling with 2 LiBH4 + MgH2. After several dehydrogenation-rehydrogenation cycles, Ti species were demonstrated to change to Ti2O3 and TiB2 [181]. Similar phenomena were reported for most additives, and the oxidation states of the initial additives vary with cycling experiments, though the catalytic mechanism is still uncertain.
The dehydrogenation-rehydrogenation reactions of M(BH4)n are accompanied by the diffusion of constituent elements such as M, B, and H. The relatively high reaction temperature further prolongs the diffusion distance and enlarges the crystallite size of M and B, thus further degrading the hydrogen storage properties. Fabricating and maintaining the nanosized metal borohydrides is expected to be an effective way to overcome the aforementioned barriers. One known approach is to incorporate hydrogen storage materials into nanoporous materials. It was first applied in the NH3BH3 system [211] and good improvement was obtained: The dehydrogenation temperature was largely decreased and the amount of borazine gas (an impurity) was significantly reduced. Recently, this approach was introduced for M(BH4)n materials, and some recent achievements [160,212,213,214,215,216,217,218,219,220,221,222] are summarized in Table 6.
By the incorporation into nanoporous carbon scaffolds with a 13-nm pore size, the dehydrogenation rates of LiBH4 were found to be up to 50 times faster than those in the bulk materials measured at 573 K [212]. In addition, the capacity loss over three cycles was reduced from 72% for bulk LiBH4 to ~40% for nanoconfined LiBH4. Further, a recent report confirmed the synergetic effects of nanoconfinement and Ni addition on the dehydrogenation and rehydrogenation properties of LiBH4. The nanoconfinement of the mixture of LiBH4 and Ni addition in a nanoporous carbon scaffold shows a higher rehydrogenation rate and larger rehydrogenation amount than those of the samples without Ni addition at 593 K in a hydrogen pressure of 4 MPa [220]. This suggests that the combination of nanoconfinement and additives would be a valid way to improve the hydrogen storage properties of M(BH4)n.
Table 5. Hydrogen storage properties of M(BH4)n with additives (oxides, halides, carbon, etc.).
Table 5. Hydrogen storage properties of M(BH4)n with additives (oxides, halides, carbon, etc.).
M(BH4)nAdditivesHydrogen (mass%)Conditions: temp (K) [pressure (MPa)]Toxic ByproductReference
TypeAmountObs (First Dehyd)Obs (Rehyd)First DehydRehyd
LiBH4SiO210–25 mass%9–10 m423–873[19,20,204]
TiO225–80 mass%4–9 m3.5–8.3 m373–873873 [7–10][197,209]
ZrO225 mass%8–9 m448–873[197]
V2O325 mass%8–9 m8 m448–873873 [10][197]
SnO225 mass%8–9 m448–873[197]
Nb2O550–80 mass%4–6 m373–873[209]
Fe2O350–66.7 mass%5.7–9 m373–873[209]
V2O550–66.7 mass%5.7–9 m373–873[209]
TiCl310–88 mass%2.8–9.2 m3.4 m373–873773 [7]B2H6[197,208]
CoCl25–100 mol%10.5–18.3 p503–873B2H6[213]
TiH210–50 mol%6–15 m2.5–4.5 m573–873773 [7][208]
TiF310–50 mol%6.4–14 m0.2–4.0 m373–773623–773[7–10]B2H6[208,211]
ZnF210–50 mol%3.7–7 m1–4 m393–773773 [7]B2H6[208]
mixture of MgCl2/TiCl330 mol%5 m4.5 m333–873873 [7][198]
Mg10–20 mol%9 m333–873[198]
Al20 mol%7.8 m3.5 m353–873873 [10][198]
Sc33 mol%2.9 m673–773[134]
Ti33 mol%2.5 m673–773[134]
V33 mol%4.4 m673–773[134]
Cr33 mol%4.4 m673–773[134]
LiBH4MgH280 mass%8.8–9.2 m8.5 m627–853673 [10][126,172]
graphite30 mass%9.9 p2.6 p663–773673 [10][212]
activated carbon30 mass%11.2 p4.6 p623–773673 [10][212]
single-walled carbon nanotubes30 mass%11.4 -12.3 p3.7 p553–773673 [10][205,212]
single-walled carbon nanotubes9.1–50 mass%5–11.8 p3.7–6.1 p723 (iso)673 [10][207]
mesoporous carbon50 mass%7 m6 m605–873623 [3][200]
mixture of TiF3/SiO250 mass%8.3 m4 m343–823773 [4.5][204]
Pt/C10–50 mass%9.2–15.7 m6.1 m553–973873 [3][206]
LiBH4 + 1/2MgH2Ti-iso5–10 mol%6.5–8.4 m6.0 m673 (iso)623 [5][170,136]
Zr-iso10 mol%5.5 m673 (iso)[150]
ZrCl410 mol%7.5 m673 (iso)[150]
SiO25 mol%9.3 m673 (iso)[136]
VCl35 mol%9.1 m673 (iso)[136]
graphite10 mass%9.5 p723 (iso)[168]
carbon nanofibers10 mass%10.0 p723 (iso)[168]
activated carbon10 mass%10.0 p723 (iso)[168]
single-walled carbon nanotubes10 mass%10.0 p6.7 p~573–773673 [7.5][168]
muti-walled carbon nanotubes10 mass%10.0 p723 (iso)[168]
TiF35 mol%9.7 p573 (iso)[72]
Li3BN2H8Pt/Vulcan carbon1–10 mass%9–13 m1.4 m388–673423 [8.4]NH3[130]
Pd5–10 mass%11.8–13 m473–673[130]
PdCl28.3 mass%10.4 m473–673[130]
CoCl25 mass%8–10 m388–493[149]
Li4BN3H10NiCl211 mass%7.6 p433–673NH3[161]
Ca(BH4)2 + MgH2Ti-iso1 mass%7.1 m523–723[190]
Ca(BH4)2NbF52 mol%8.3 m4.6–5.0 m~593–823623 [9][87]
NbCl52 mol%4.1–5.0 m3.1–4.5 m~593–823623 [9][87]
TiF32 mol%4.1–5.0 m2.5–4.2 m~593–823623 [9][87]
TiCl32 mol%4.1–5.0 m3.5–4.4 m~593–823623 [9][87]
Mg(BH4)2TiCl325 mass%13.7 p361–800[58]
TiO225 mass%13.7 p483–800[58]
m indicates the value referred to the mixture of metal borohydride with side products, while p indicates the value referred to the pure metal borohydride.
Table 6. Hydrogen storage properties of M(BH4)n confined by nanoporous materials.
Table 6. Hydrogen storage properties of M(BH4)n confined by nanoporous materials.
ReactionType of Nano Scaffold (size (nm))Loading Ratio (mass%)Hydrogen (mass%)Conditions: temp (K) [pressure (MPa)]Reference
Obs (First Dehyd)Obs (Rehyd)First DehydRehyd
LiBH4 = LiH + B + 3/2 H2Nanoporous Carbon (13–25)25–504.6–6.4 m 503–873673 [10][212]
Activated carbon (1.75–3.2)28.411.2 p6.6 p493–773573 [5][213]
Mesoporous carbon (4)333.4 m473–773[214]
Nanoporous Carbon (2)8.8 p493–673[219]
Li3BN2H8 = Li3BN2 + 4 H2 *Nanoporous carbon scaffolds (16 ± 3)3311.1 p3.8 p523–673573 [5][160]
activated carbon AX-21 (2)3310.7 p4.0 p438–673573 [5][160]
Mg(BH4)2 = MgB2 + 4 H2Activated carbon (<2)44 ± 36.0 m443–773[216]
LiBH4 + 3.75 mass%NiNanoporous carbon (2–3)2514 p10 p473–673593 [4][220]
LiBH4 + 1/2 MgH2 = LiH + 1/2 MgB2 + 2 H2Nanoporous carbon aerogel (~21)4.7 m4 m533–743643–663 [5–10][221]
* represents that the release of NH3 in the decomposition process; m indicates the value referred to the mixture of metal borohydride with side products, while p indicates the value referred to the pure metal borohydride.

4. Conclusions

Metal borohydrides M(BH4)n with an extremely high hydrogen density, have been regarded as potential candidates for on-board hydrogen storage. The high reaction temperature and sluggish kinetics, however, decrease their potential for practical applications. In order to overcome these barriers, a number of efforts have been devoted to improving the hydrogen storage properties in both thermodynamic and kinetic areas. The thermodynamic stability of M(BH4)n can be predicted and tailored by considering the electronegativity of M. The multistep reaction pathway together with the formation of an intermediate compound such as M(B12H12)n/2, might account for the high reaction temperature and slow kinetics. The suppression of the formation of M(B12H12)n/2 can be realized by the combination of M(BH4)n with other hydrides or metals. This approach changes the reaction pathway, and therefore, improves the hydrogen storage properties in both thermodynamic and kinetic areas. Regarding the improvement of reaction kinetics, both additives and nanoconfinement have been proved to be vital.
None of the current materials can fulfill the requirements of on-board hydrogen storage for fuel cell vehicles; therefore, continued efforts are required to develop novel materials. According to theoretical predications, many M(BH4)n have the potential to release hydrogen at a moderate temperature, and the sluggish kinetics are considered to be mainly responsible for the high reaction temperature. Effective strategies to achieve fast reaction kinetics will be an important research direction to achieve practical success with metal borohydrides.

Acknowledgments

Financial support received from NEDO (New Energy and Industrial Technology Development Organization, in collaboration with Toyota Central R&D Labs., Inc.); GCOE (Global COE program, Tohoku University); DOE (Department of Energy) and European Commission is greatly appreciated.

References

  1. Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
  2. Orimo, S.; Nakamori, Y.; Eliseo, J.; Züttel, A.; Jensen, C.M. Complex Hydrides for Hydrogen Storage. Chem. Rev. 2007, 107, 4111–4132. [Google Scholar] [CrossRef] [PubMed]
  3. Nakamori, Y.; Orimo, S. Borohydrides as hydrogen storage materials. In Solid-State Hydrogen Storage; Walker, G., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2008; pp. 420–449. [Google Scholar]
  4. Miwa, K.; Ohba, N.; Towata, S.; Nakamori, Y.; Orimo, S. First-principles Study on Lithium Borohydride LiBH4. Phys. Rev. B 2004, 69, 245120. [Google Scholar] [CrossRef]
  5. Ge, Q. Structure and Energetics of LiBH4 and Its surfaces: A First-Principles Study. J. Phys. Chem. A 2004, 108, 8682–8690. [Google Scholar] [CrossRef]
  6. Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg. Structrual Stability of Alkali Boron Tetrahydrides ABH4 (A = Li, Na, K, Rb, Cs) From First Principle Calculation. J. Alloys Compd. 2005, 387, 97–104. [Google Scholar] [CrossRef]
  7. Łodziana, Z.; Vegge, T. Structural Stability of Complex Hydrides: LiBH4 Revisited. Phys. Rev. Lett. 2004, 93, 14550. [Google Scholar] [CrossRef]
  8. Orgaz, E.; Membrillo, A.; Castañeda, R.; Aburto, A. Electronic Structure of Ternary Hydrides Based on Light Elements. J. Alloys Compd. 2005, 404–406, 176–180. [Google Scholar] [CrossRef]
  9. Schlesinger, H.I.; Brown, H.C.; Finholt, A.E.; Gilbreath, J.R.; Hoekstra, H.R.; Hyde, E.K. Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen. J. Am. Chem. Soc. 1953, 75, 215–219. [Google Scholar] [CrossRef]
  10. Liu, B.H.; Li, Z.P.; Suda, S. Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride. J. Alloys Compd. 2006, 415, 288–293. [Google Scholar] [CrossRef]
  11. Wang, P.; Kang, X.D. Hydrogen-rich boron-containing materials for hydrogen storage. Dalton Trans. 2008, 40, 5400–5413. [Google Scholar] [CrossRef] [PubMed]
  12. Grochala, W.; Edwards, P.P. Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen. Chem. Rev. 2004, 104, 1283–1315. [Google Scholar] [CrossRef] [PubMed]
  13. Sakintuna, B.; Lamari-Darkrimb, F.; Hirscherc, M. Metal Hydride Materials for Solid Hydrogen Storage: A review. Int. J. Hydrogen Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
  14. Chen, P.; Zhu, M. Recent progress in hydrogen storage. Mater. Today. 2008, 11, 36–43. [Google Scholar] [CrossRef]
  15. Rönnebro, E. Development of group II borohydrides as hydrogen storage materials. Curr. Opin. Solid State Mater. Sci. 2010. [Google Scholar] [CrossRef]
  16. George, L.; Saxena, S.K. Structural Stability of Metal Hydrides, Alanates and Borohydrides of Alkali and Alkali-Earth Elements: A Review. Int. J. Hydrogen Energy 2010, 35, 5454–5470. [Google Scholar] [CrossRef]
  17. Jain, I.P.; Jain, P.; Jain, A. Novel hydrogen storage materials: A review of lightweight complex hydrides. J. Alloys Compd. 2010, 503, 303–339. [Google Scholar] [CrossRef]
  18. Hagemann, H.; Černý, R. Synthetic approaches to inorganic borohydrides. Dalton Trans. 2010, 39, 6006–6012. [Google Scholar] [CrossRef] [PubMed]
  19. Züttel, A.; Wenger, P.; Rentsch, S.; Sudan, P. LiBH4 A New Hydrogen Storage Material. J. Power Sources 2003, 118, 1–7. [Google Scholar] [CrossRef]
  20. Züttel, A.; Rentsch, S.; Fischer, P.; Wenger, P.; Sudan, P.; Mauron, Ph.; Emmenegger, Ch. Hydrogen Storage Properties of LiBH4. J. Alloys Compd. 2003, 356–357, 515–520. [Google Scholar] [CrossRef]
  21. Nakamori, Y.; Orimo, S. Destabilization of Li-based Complex Hydrides. J. Alloys Compd. 2004, 370, 271–275. [Google Scholar] [CrossRef]
  22. Orimo, S.; Nakamor, Y.; Züttel, A. Material Properties of MBH­4 (M = Li, Na, and K). Mater. Sci. Eng. B 2004, 108, 51–53. [Google Scholar] [CrossRef]
  23. Orimo, S.; Nakamori, Y.; Kitahara, G.; Miwa, K.; Ohba, N.; Towata, S.; Züttel, A. Dehydriding and Rehydriding Reactions of LiBH4. J. Alloys Compd. 2005, 404–406, 427–430. [Google Scholar] [CrossRef]
  24. Nakamori, Y.; Orimo, S.; Tsutaoka, T. Dehydriding Reaction of Metal Hydrides and Alkali Borohydrides Enhanced by Microwave Irradiation. Appl. Phys. Lett. 2006, 88, 112104. [Google Scholar] [CrossRef]
  25. Züttel, A.; Borgschulte, A.; Orimo, S. Tetrahydroborates as New Hydrogen Storage Materials. Scripta Mater. 2007, 56, 823–828. [Google Scholar] [CrossRef]
  26. Orimo, S.; Nakamori, Y.; Ohba, N.; Miwa, K.; Aoki, M.; Miwa, S.; Züttel, A. Experimental Studies on Intermediate Compound of LiBH4. Appl. Phys. Lett. 2006, 89, 021920. [Google Scholar] [CrossRef]
  27. Ohba, N.; Miwa, K.; Aoki, M.; Noritake, T.; Towata, S.; Nakamori, Y.; Orimo, S.; Züttel, A. First-Principles Study on the Stability of Intermediate Compounds of LiBH4. Phys. Rev. B 2006, 74, 075110. [Google Scholar] [CrossRef]
  28. Hwang, S.-J.; Bowman, R.C., Jr.; Reiter, J.W.; Rijssenbeek, J.; Soloverchik, G.L.; Zhao, J.-C.; Kabbour, H.; Ahn, C.C. NMR Confirmation for Formation of [B12H12]2− Complexes during Hydrogen Desorption from Metal Borohydrides. J. Phys. Chem. C 2008, 112, 3164–3169. [Google Scholar] [CrossRef]
  29. Ozolin, V.; Majzoub, E.H.; Wolverton, C. First-Principles Predition of Thermodynamically Reversible Hydrogen Storage Reactions in the Li-Mg-Ca-B-H. System. J. Am. Chem. Soc. 2009, 131, 230–237. [Google Scholar] [CrossRef] [PubMed]
  30. Her, J.-H.; Yousufuddin, M.; Zhou, W.; Jalisatgi, S.S.; Kulleck, J.G.; Zan, J.A.; Hwang, S.-J.; Bowman, R.C., Jr.; Udovic, T.J. Crystal Structure of Li2B12H12: A Possible Intermediate Phase in the Decomposition of LiBH4. Inorg. Chem. 2008, 47, 9757–9759. [Google Scholar] [CrossRef] [PubMed]
  31. Friedrichs, O.; Remhof, A.; Hwang, S.-J.; Züttel, A. Role of Li2B12H12 for the Formation and Decomposition of LiBH4. Chem. Mater. 2009, 22, 3265–3268. [Google Scholar] [CrossRef]
  32. Soulié, J-Ph.; Renaudin, G.; Černy, R.; Yvon, K. Lithium Boro-hydride LiBH4. I. Crystal Structure. J. Alloys Compd. 2002, 346, 200–205. [Google Scholar] [CrossRef]
  33. Renaudin, G.; Gomes, S.; Hagemann, H.; Keller, L.; Yvon, K. Structural and Spectroscopic Studies on the Alkali Borohydrides MBH4 (M = Na, K, Rb, Cs). J. Alloys Compd. 2004, 375, 98–106. [Google Scholar] [CrossRef]
  34. Frankcombe, T.J.; Kroes, G.-J. Quasiharmonic Approximation Applied to LiBH4 and Its Decomposition Products. Phys. Rev. B 2006, 73, 174302. [Google Scholar] [CrossRef]
  35. Hartman, M.R.; Rush, J.J.; Udovic, T.J.; Bowman, R.C., Jr.; Hwang, S.-J. Structure and Vibrational Dynamics of Isotopically Labeled Lithium Borohydride Using Neutron Diffraction and Spectroscopy. J. Solid State Chem. 2007, 180, 1298–1305. [Google Scholar] [CrossRef]
  36. Łodziana, Z.; Züttel, A.; Zielinski, P. Titanium and Native Defects in LiBH4 and NaAlH4. J. Phys: Condens. Matter. 2008, 20, 465210. [Google Scholar] [CrossRef]
  37. Borgschulte, A.; Züttel, A.; Hug, P.; Racu, A.-M.; Schoenes, J. Hydrogen-Deuterium Exchange in Bulk LiBH4. J. Phys. Chem. A 2008, 112, 4749–4753. [Google Scholar] [CrossRef] [PubMed]
  38. Buchter, F.; Łodziana, Z.; Mauron, Ph.; Remhof, A.; Friedrichs, Q.; Borgschulte, A.; Züttel, A.; Sheptyakov, D.; Strässle, Th.; Ramirez-Cuesta, A.J. Dynamical Properties and Temperature Induced Molecular Disordering of LiBH4 and LiBD4. Phys. Rev. B 2008, 78, 094302. [Google Scholar] [CrossRef]
  39. Skripov, A.V.; Soloninin, A.V.; Filinchuk, Y.; Chernyshov, D. Nuclear Magnetic Resonance Study of Rotational Motion and The Phase transition in LiBH4. J. Phys. Chem. C 2008, 112, 18701–18705. [Google Scholar] [CrossRef]
  40. Corey, R.L.; Shane, D.T.; Bowman, R.C., Jr.; Conradi, M.S. Atomic Motions in LiBH4 by NMR. J. Phys. Chem. C 2008, 112, 18706–18710. [Google Scholar] [CrossRef]
  41. Gremaud, R.; Łodziana, Z.; Hug, P.; Willenberg, B.; Racu, A.-M.; Schoenes, J.; Ramirez-Cuesta, A.J.; Clark, S.J.; Refson, K.; Züttel, A.; Borgschulte, A. Evidence for Hydrogen Transport in Deuterated LiBH4 from Low-Temperature Raman-Scattering Measurement and First-Principles Calculations. Phys. Rev. B 2008, 80, 100301. [Google Scholar] [CrossRef]
  42. Filinchuk, Y.; Chernyshov, D.; Nevidomskyy, A.; Dmitriev, V. High-Pressure Polymorphism as a Step towards Destabilization of LiBH4. Angew. Chem. Int. Ed. 2008, 47, 529–532. [Google Scholar] [CrossRef]
  43. Shane, D.T.; Bowman, R.C., Jr.; Conradi, M.S. Exchange of Hydrogen Atoms between BH4 in LiBH4. J. Phys. Chem. C 2009, 113, 5039–5042. [Google Scholar] [CrossRef]
  44. Ramzan, M.; Ahuja, R. Ab initio Molecular Dynamics Study of the Hydrogen-Deuterium Exchange in Bulk Lithiumborohydride (LiBH4). Appl. Phys. Lett. 2009, 94, 141903. [Google Scholar] [CrossRef]
  45. Hagemann, H.; Filinchuk, Y.; Chernyshov, D.; van Beek, W. Lattice Anharmonicity and Structural Evolution of LiBH4: an Insight from Raman and X-ray Diffraction Experiments. Phase Transitions 2009, 82, 344–355. [Google Scholar] [CrossRef]
  46. Andresen, E.R.; Gremaud, R.; Borgschulte, A.; Ramirez-Cuesta, A.J.; Züttel, A.; Hamm, P. Vibrational Dynamics of LiBH4 by Infrared Pump-Probe and 2D Spectroscopy. J. Phys. Chem. A 2009, 113, 12838–12846. [Google Scholar] [CrossRef] [PubMed]
  47. Hao, S.; Sholl, D.S. The Role of Interstitial H2 in Hydrogen Diffusion in Light Metal Borohydrides. Phys. Chem. Chem. Phys. 2009, 11, 11106–11109. [Google Scholar] [CrossRef] [PubMed]
  48. Galvez-Ruiz, J.C.; Sanchez, M. Structural Analysis of Alkali Metal Tetrahydroborates: The Role of Metal and Coordination from in the [BH4] Anion Structure. J. Mol. Struc.: Theochem. 2009, 908, 114–116. [Google Scholar] [CrossRef]
  49. Remhof, A.; Gremaud, R.; Buchter, F.; Lodziana, Z.; Embs, J.P.; Ramirez-Cuesta, A.J.; Borgschulte, A.; Züttel, A. Hydrogen Dynamics in Lightweight Tetrahydroborates. Z. Phys. Chem. 2010, 224, 263–278. [Google Scholar] [CrossRef]
  50. Remhof, A.; Lodziana, Z.; Martelli, P.; Friedrichs, O.; Züttel, A.; Skripov, A.V.; Embs, J.P.; Strässle, T. Rotational Motion of BH4 Units in MBH4 (M = Li, Na, K) from Quasielastic Neutron Scattering and Density Functional Calculations. Phys. Rev. B 2010, 81, 214304. [Google Scholar] [CrossRef]
  51. Mauron, P.; Buchter, F.; Friedrichs, O.; Remhof, A.; Bielmann, M.; Zwichy, C.N.; Züttel, A. Stability and Reversibility of LiBH4. J. Phys. Chem. B 2008, 112, 906–910. [Google Scholar] [CrossRef] [PubMed]
  52. Friedrichs, O.; Buchter, F.; Borgschulte, A.; Remhof, A.; Zwicky, C.N.; Mauron, P.H.; Bielmann, M.; Züttel, A. Direct Synthesis of Li[BH4] and Li[BD4] from the Elements. Acta Mater. 2007, 56, 949–954. [Google Scholar] [CrossRef]
  53. Remhof, A.; Friedrichs, O.; Buchter, F.; Mauron, P.H.; Züttel, A.; Wallacher, D. Solid-State Synthesis of LiBD4 Observed by In Situ Neutron Diffraction. Phys. Chem. Chem. Phys. 2008, 10, 5859–5862. [Google Scholar] [CrossRef] [PubMed]
  54. Friedrichs, O.; Borgschulte, A.; Kato, S.; Buchter, F.; Gremaud, R.; Remhof, A.; Züttel, A. Low-Temperature Synthesis of LiBH4 by Gas-Solid Reaction. Chem. Eur. J. 2009, 15, 5531–5534. [Google Scholar] [CrossRef] [PubMed]
  55. Friedrichs, O.; Remhof, A.; Borgschulte, A.; Buchter, F.; Orimo, S.; Züttel, A. Breaking the passivation—the road to a solvent fee borohydride synthesis. Phys. Chem. Chem. Phys. 2010, 12, 10919–10922. [Google Scholar] [CrossRef] [PubMed]
  56. Matsunaga, T.; Buchter, F.; Mauron, P.; Bielman, M.; Nakamori, Y.; Orimo, S.; Ohba, N.; Miwa, K.; Towata, S.; Züttel, A. Hydrogen Storage Properties of Mg(BH4)2. J. Alloys Compd. 2008, 459, 583–588. [Google Scholar] [CrossRef]
  57. Chłopek, K.; Frommen, C.; Léon, A.; Zabara, O.; Fichtner, M. Synthesis and Properties of Magnesium Tetrahydroborate, Mg(BH4)2. J. Mater. Chem. 2007, 17, 3496–3503. [Google Scholar] [CrossRef]
  58. Li, H.-W.; Kikuchi, K.; Nakamori, Y.; Miwa, K.; Towata, S.; Orimo, S. Effects of Ball Milling and Additives on Dehydriding Behaviors of Well-crystallized Mg(BH4)2. Scripta Mater. 2007, 57, 679–682. [Google Scholar] [CrossRef]
  59. Riktor, M.D.; Sørby, M.H.; Chłopek, K.; Fichtner, M.; Buchter, F.; Züttel, A.; Hauback, B.C. In Situ Synchrotron Diffraction Studies of Phase Transitions and Thermal Decomposition of Mg(BH4)2 and Ca(BH4)2. J. Mater. Chem. 2007, 17, 4939–4942. [Google Scholar] [CrossRef]
  60. Matsunaga, T.; Buchter, F.; Miwa, K.; Towata, S.; Orimo, S.; Züttel, A. Magnesium borohydride: A New Hydrogen Storage Material. Renew. Energy 2008, 33, 193–196. [Google Scholar] [CrossRef]
  61. Varin, R.A.; Chiu, Ch.; Wronski, Z.S. Mechano-Chemical Activation Synthesis (MCAS) of Disordered Mg(BH4)2 Using NaBH4. J. Alloys Compd. 2008, 462, 201–208. [Google Scholar] [CrossRef]
  62. Li, H.-W.; Kikuchi, K.; Nakamori, Y.; Ohba, N.; Miwa, K.; Towata, S.; Orimo, S. Dehydriding and Rehydriding Processes of Well-Crystallized Mg(BH4)2 Accompanying with Formation of Intermediate Compounds. Acta Mater. 2008, 56, 1342–1347. [Google Scholar] [CrossRef]
  63. Hanada, N.; Ch1opek, K.; Frommen, C.; Lohstroh, W.; Fichtner, M. Thermal Decomposition of Mg(BH4)2 Under He flow and H2 Pressure. J. Mater. Chem. 2008, 18, 2611–2614. [Google Scholar] [CrossRef]
  64. Yan, Y.; Li, H.-W.; Nakamori, Y.; Ohba, N.; Miwa, K.; Towata, S.; Orimo, S. Differential Scanning Calorimetry Measurements of Magnesium Borohydride Mg(BH4)2. Mater. Trans. 2008, 49, 2751–2752. [Google Scholar] [CrossRef]
  65. Soloveichika, G.L.; Gao, Y.; Rijssenbeek, J.; Andrus, M.; Kniajanski, S.; Bowman, R.C., Jr.; Hwangc, S.-J.; Zhao, J.-C. Magnesium Borohydride as a Hydrogen Storage Material: Properties and Dehydrogenation Pathway of Unsolvated Mg(BH4)2. Int. J. Hydrogen Energy 2009, 34, 916–928. [Google Scholar] [CrossRef]
  66. Li, H.-W.; Miwa, K.; Ohba, N.; Fujita, T.; Sato, T.; Yan, Y.; Towata, S.; Chen, M.W.; Orimo, S. Formation of Intermediate Compound with B12H12 Cluster: Experimental and Theoretical Studies on Magnesium Borohydride Mg(BH4)2. Nanotechnology 2009, 20, 204013. [Google Scholar] [CrossRef] [PubMed]
  67. Ozolins, V.; Majzoub, E.H.; Wolverton, C. First-Principles Prediction of a Ground State Crystal Structure of Magnesium Borohydride. Phys. Rev. Lett. 2008, 100, 135501. [Google Scholar] [CrossRef]
  68. van Setten, M.J.; Lohstroh, W.; Fichtner, M. A New Phase in the Decomposition of Mg(BH4)2: First-Principles Simulated Annealing. J. Mater. Chem. 2009, 19, 7081–7087. [Google Scholar] [CrossRef]
  69. Kulkarni, A.D.; Wang, L.L.; Johnson, D.D.; Sholl, D.S.; Johnson, J.K. First-principles Characterization of Amorphous Phases of MB12H12, M = Mg, Ca. J. Phys. Chem. C 2010, 114, 14601–14605. [Google Scholar]
  70. Li, S.; Willis, M.; Jena, P. Reaction Intermediates during the Dehydrogenation of Metal Borohydrides: A Cluster Perspective. J. Phys. Chem. C 2010, 114, 16849–16854. [Google Scholar] [CrossRef]
  71. Chen, X.; Lingam, H.K.; Huang, Z.; Yisgedu, T.; Zhao, J.-C.; Shore, S.G. Thermal Decomposition Behavior of Hydrated Magnesium Dodecahydrododecaborates. J. Phys. Chem. Lett. 2010, 1, 201–204. [Google Scholar] [CrossRef]
  72. Newhouse, R.J.; Stavila, V.; Hwang, S.-J.; Klebanoff, L.E.; Zhang, J.Z. Reversibility and Improved Hydrogen Release of Magnesium Borohydride. J. Phys. Chem. C 2010, 114, 5224–5232. [Google Scholar] [CrossRef]
  73. Severa, G.; Rönnebro, E.; Jensen, C.M. Direct Hydrogenation of Magnesium Boride to Magnesium Borohydride: Demonstration of >11 Weight Percent Reversible Hydrogen Storage. Chem. Commun. 2010, 46, 421–423. [Google Scholar] [CrossRef]
  74. Li, H.-W.; Matsunaga, T.; Yan, Y.; Maekawa, H.; Ishikiriyama, M.; Orimo, S. Nanostructure-induced hydrogenation of layered compound MgB2. J. Alloys Compd. 2010, 505, 654–656. [Google Scholar] [CrossRef]
  75. Pistidda, C.; Garroni, S.; Dolci, F.; Bardají, E.G.; Khandelwal, A.; Nolis, P.; Dornheim, M.; Gosalawit, R.; Jensen, T.; Cerenius, Y.; Suriñach, S.; Baró, M.D.; Lohstroh, W.; Fichtner, M. Synthesis of amorphous Mg(BH4)2 from MgB2 and H2 at room temperature. J. Alloys Compd. 2010, 508, 212–215. [Google Scholar] [CrossRef]
  76. Chong, M.; Karkamkar, A.; Autrey, T.; Orimo, S.; Jalisatgi, S.; Jensen, C.M. Reversible dehydrogenation of magnesium borohydride to magnesium triborane in the solid state under moderate conditions. Chem. Commun. 2011, 47, 1330–1332. [Google Scholar] [CrossRef]
  77. Miwa, K.; Aoki, M.; Noritake, T.; Ohba, N.; Nakamori, Y.; Towata, S.; Züttel, A.; Orimo, S. Thermodynamical Stability of Calcium Borohydride Ca(BH4)2. Phys. Rev. B 2006, 74, 155122. [Google Scholar] [CrossRef]
  78. Kim, J.-H.; Jin, S.-A.; Shim, J.-H.; Cho, Y.W. Thermal Decomposition Behavior of Calcium Borohydride Ca(BH4)2. J. Alloys Compd. 2008, 461, L20–L22. [Google Scholar] [CrossRef]
  79. Aoki, M.; Miwa, K.; Noritake, T.; Ohba, N.; Matsumoto, M.; Li, H.-W.; Nakamori, Y.; Towata, S.; Orimo, S. Structural and Dehydriding Properties of Ca(BH4)2. Appl. Phys. A 2008, 92, 601–605. [Google Scholar] [CrossRef]
  80. Mao, J.; Guo, Z.; Poh, C.K.; Ranjbar, A.; Guo, Y.; Yu, X.; Liu, H. Study on the dehydrogenation kinetics and thermodynamics of Ca(BH4)2. J. Alloys Compd. 2010, 500, 200–205. [Google Scholar] [CrossRef]
  81. Riktor, M.D.; Sørby, M.H.; Chopek, K.; Fichtner, M.; Haubac, B.C. The Identification of a Hitherto Unknown Intermediate Phase CaB2HX from Decomposition of Ca(BH4)2. J. Mater. Chem. 2009, 19, 2754–2759. [Google Scholar] [CrossRef]
  82. Frankcombe, T.J. Calcium Borohydride for Hydrogen Storage: A Computational Study of Ca(BH4)2 Crystal Structures and the CaB2Hx Intermediate. J. Phys. Chem. C 2010, 114, 9503–9509. [Google Scholar] [CrossRef]
  83. Wang, L.-L.; Graham, D.D.; Robertson, I.M.; Johnson, D.D. On the Reversibility of Hydrogen-Storage Reactions in Ca(BH4)2: Characterization via Experiment and Theory. J. Phys. Chem. C 2009, 113, 20088–20096. [Google Scholar] [CrossRef]
  84. Stavila, V.; Her, J.-H.; Zhou, W.; Hwang, S.-J.; Kim, C.; Ottley, L.A.M.; Udovic, T.J. Probing the structure, stability and hydrogen storage properties of calcium dodecahydro-closo-dodecaborate. J. Solid State Chem. 2010, 183, 1133–1140. [Google Scholar] [CrossRef]
  85. Rönnebro, E.; Majzoub, E.H. Calcium Borohydride for Hydrogen Storage: Catalysis and Reversibility. J. Phys. Chem. B 2007, 111, 12045–12047. [Google Scholar] [CrossRef] [PubMed]
  86. Kim, J.-H.; Jin, S.-A.; Shim, J.-H.; Cho, Y.W. Reversible Hydrogen Storage in Calcium Borohydride Ca(BH4)2. Scripta Mater. 2008, 58, 481–483. [Google Scholar] [CrossRef]
  87. Kim, J.-H.; Shim, J.-H.; Cho, Y.W. On the Reversibility of Hydrogen Storage in Ti- and Nb-catalyzed Ca(BH4)2. J. Power Sources. 2008, 181, 140–143. [Google Scholar] [CrossRef]
  88. Sato, T.; Miwa, K.; Nakamori, Y.; Ohoyama, K.; Li, H.-W.; Noritake, T.; Aoki, M.; Towata, S.; Orimo, S. Experimental and computational studies on solvent-free rare-earth metal borohydrides R(BH4)3 (R = Y, Dy, and Gd). Phys. Rev. B 2008, 77, 104114. [Google Scholar] [CrossRef]
  89. Yan, Y.; Li, H.-W.; Sato, T.; Umeda, N.; Miwa, K.; Towata, S.; Orimo, S. Dehydriding and rehydriding properties of yttrium borohydride Y(BH4)3 prepared by liquid-phase synthesis. Int. J. Hydrogen Energy 2009, 34, 5732–5736. [Google Scholar] [CrossRef]
  90. Frommen, C.; Aliouane, N.; Deledda, S.; Fonnelop, J.E.; Grove, H.; Lieutenant, K.; Llamas-Jansa, I.; Sartori, S.; Sorby, M.H.; Hauback, B.C. Crystal structure, polymorphism, and thermal properties of yttrium borohydride Y(BH4)3. J. Alloys Compd. 2010, 496, 710–716. [Google Scholar] [CrossRef]
  91. Ravnsbæk, D.B.; Filinchuk, Y.; Cerny, Radovan.; Ley, M.B.; Haase, D.; Jakobsen, H.J.; Skibsted, J.; Jensen, T.R. Thermal Polymorphism and Decomposition of Y(BH4)3. Inorg. Chem. 2010, 49, 3801–3809. [Google Scholar] [CrossRef] [PubMed]
  92. Lee, Y.-S.; Shim, J.-H.; Cho, Y.W. Polymorphism and Thermodynamics of Y(BH4)3 from First Principles. J. Phys. Chem. C 2010, 114, 12833–12837. [Google Scholar] [CrossRef]
  93. Jaroń, T.; Grochala, W. Y(BH4)3—an Old–New Ternary Hydrogen Store aka Learning from a Multitude of Failures. Dalton Trans. 2010, 39, 160–166. [Google Scholar] [CrossRef]
  94. Gennari, F.C.; Esquivel, M.R. Synthesis and Dehydriding Process of Crystalline Ce(BH4)3. J. Alloys Compd. 2009, 485, L47–L51. [Google Scholar] [CrossRef]
  95. Jeon, E.; Cho, Y.W. Mechanochmical Synthesis and Thermal Decomposition of Zinc Borohydride. J. Alloys Compd. 2006, 422, 273–275. [Google Scholar] [CrossRef]
  96. Srinivasan, S.; Escobar, D.; Jurczyk, M.; Goswami, Y.; Stefanakos, E. Nanocatalyst Doping of Zn(BH4)2. J. Alloys. Compd. 2008, 462, 294–302. [Google Scholar] [CrossRef]
  97. Titov, L.V.; Eremin, E.R. Complex of Aluminum Borohydride with Calcium Borohydride. Russ. Chem. B. 1975, 24, 1095–1096. [Google Scholar] [CrossRef]
  98. Fang, Z.Z.; Ma, L.P.; Kang, X.D.; Wang, P.J.; Wang, P.; Cheng, H.M. In situ Formation and Rapid Decomposition of Ti(BH4)3 by Mechanical Milling LiBH4 with TiF3. Appl. Phys. Lett. 2009, 94, 044104. [Google Scholar] [CrossRef]
  99. Gennari, F.C.; Albanesi, L.F.; Rios, I.J. Synthesis and Thermal Stability of Zr(BH4)4 and Zr(BD4)4 Produced by Mechanochemical Processing. Inorg. Chim. Acta. 2009, 362, 3731–3737. [Google Scholar] [CrossRef]
  100. Łodziana, Z. Multivalent metal tetrahydroborides of Al, Sc, Y, Ti, and Zr. Phy. Rev. B 2010, 81, 144108. [Google Scholar] [CrossRef]
  101. Choudhury, P.; Srinivasan, S.S; Bhethanabotla, V.R.; Goswami, Y.; McGrath, K.; Stefanakos, E.K. Nano-Ni Doped Li-Mn-B-H System as a New Hydrogen Storage Candidate. Int. J. Hydrogen Energy. 2009, 34, 6325–6334. [Google Scholar]
  102. Varin, R.A.; Zbroniec, L. The Effects of Ball Milling Nanometric Nickel on the Hydrogen Desorption from Lithium Borohydride and Manganese Chloride (3 LiBH4 + MnCl2) Mixture. Int. J. Hydrogen Energy. 2010, 35, 3588–3597. [Google Scholar] [CrossRef]
  103. Černý, R.; Penin, N.; Hagemann, H.; Filinchuk, Y. The First Crystallographic and Spectroscopic Characterization of a 3d-Metal Borohydride: Mn(BH4)2. J. Phys. Chem. C 2009, 113, 9003–9007. [Google Scholar]
  104. Nakamori, Y.; Miwa, K.; Ninoyiya, A.; Li, H.; Ohba, N.; Towata, S.; Züttel, A.; Orimo, S. Correlation between Thermodynamical Stabilities of Metal Borohydrides and Cation Electronegativities: First-Principles Calculations and Experiments. Phys. Rev. B 2006, 74, 045126. [Google Scholar] [CrossRef]
  105. Nakamori, Y.; Li, H.-W.; Mastuo, M.; Miwa, K.; Towata, S.; Orimo, S. Development of Metal Borohydrides for Hydrogen Storage. J. Phys. Chem. Sol. 2008, 69, 2292–2296. [Google Scholar] [CrossRef]
  106. Sugiyama, J.; Ikedo, Y.; Noritake, T.; Ofer, O.; Goko, T.; Månsson, M.; Miwa, K.; Ansaldo, E.J.; Brewer, J.H.; Chow, K.H.; Towata, S. Microscopic Indicator for Thermodynamic Stability of Hydrogen Storage Materials Provided by Positive Muon-Spin Rotation. Phys. Rev. B 2010, 81, 092103. [Google Scholar] [CrossRef]
  107. Li, H.-W.; Orimo, S.; Nakamori, Y.; Miwa, K.; Ohba, N.; Towata, S.; Züttel, A. Materials Designing of Metal Borohydrides: Viewpoints from Thermodynamically Stabilities. J. Alloys Compd. 2007, 446–447, 315–318. [Google Scholar] [CrossRef]
  108. Nickels, E.A.; Jones, M.O.; David, W.I.F.; Johnson, S.R.; Lowton, R.L.; Sommariva, M.; Edwards, P.P. Tuning the Decomposition Temperature in Complex Hydrides: Synthesis of a Mixed Alkali Metal Borohydride. Angew. Chem. Int. Ed. 2008, 47, 2817–2819. [Google Scholar] [CrossRef]
  109. Hagemann, H.; Longhini, M.; Kaminski, J.W.; Wesolowski, T.A.; Černy, R.; Penin, N.; Sørby, M.H.; Hauback, B.C.; Severa, G.; Jensen, C.M. LiSc(BH4)4: A Novel Salt of Li+ and Discrete Sc(BH4)4 Complex Anions. J. Phys. Chem. A 2008, 112, 7551–7555. [Google Scholar] [CrossRef] [PubMed]
  110. Seballos, J.; Zhang, J.Z.; Rönnebro, E.; Herberg, J.L.; Majzoub, E.H. Metastabilility and Crystal Structure of the Bialkali Complex Metal Borohydride NaK(BH4)2. J. Alloys Compd. 2009, 476, 446–450. [Google Scholar] [CrossRef]
  111. Kim, C.; Hwang, S.-J.; Bowman, R.C., Jr.; Reiter, J.W.; Zan, J.A.; Kulleck, J.G.; Kabbour, H.; Majzoub, E.H.; Ozolins, V. LiSc(BH4)4 as a Hydrogen Storage Material: Multinuclear High-Resolution Solid-State NMR and First-Principles Density Functional Theory Studies. J. Phys. Chem. C 2009, 113, 9956–9968. [Google Scholar] [CrossRef]
  112. Ravnsbæk, D.; Filinchuk, Y.; Cerenius, Y.; Jakobsen, H.J.; Besenbacher, F.; Skibsted, J.; Jensen, T.R. A Series of Mixed-Metal Borohydrides. Angew. Chem. Int. End. 2009, 48, 6659–6663. [Google Scholar] [CrossRef]
  113. Černý, R.; Severa, G.; Ravnsbæk, D.B.; Filinchuk, Y.; D’Anna, V.; Hagemann, H.; Haase, D.; Jensen, C.M.; Jensen, T.R. NaSc(BH4)4: A Novel Scandium-Based Borohydride. J. Phys. Chem. C 2010, 114, 1357–1364. [Google Scholar] [CrossRef]
  114. Severa, G.; Hagemann, H.; Longhini, M.; Kaminski, J.W.; Wesolowski, T.A.; Jensen, C.M. Thermal Desorption, Vibrational Spectroscopic, and DFT Computational Studies of the Complex Manganese Borohydrides Mn(BH4)2 and [Mn(BH4)4]2. J. Phys. Chem. C 2010, 114, 15516–15521. [Google Scholar] [CrossRef]
  115. Fang, Z.Z.; Kang, X.D.; Wang, P.; Li, H.-W.; Orimo, S. Unexpected Dehydrogenation Behavior of LiBH4/Mg(BH4)2 Mixture Associated with the In Situ Formation of Dual-Cation Borohydride. J. Alloys Compd. 2010, 491, L1–L4. [Google Scholar] [CrossRef]
  116. Lee, J.Y.; Ravnsbæk, D.; Lee, Y.-S.; Kim, Y.; Cerenius, Y.; Shim, J.-H.; Jensen, T.R.; Hur, N.H.; Cho, Y.W. Decomposition Reactions and Reversibility of the LiBH4-Ca(BH4)2 Composite. J. Phys. Chem. C 2009, 113, 15080–15086. [Google Scholar] [CrossRef]
  117. Černý, R.; Ravnsbæk, D.B.; Severa, G.; Filinchuk, Y.; D’Anna, V.; Hagemann, H.; Haase, D.; Skibsted, J.; Jensen, C.M.; Jensen, T.R. Structure and Characterization of KSc(BH4)4. J. Phys. Chem. C 2010, 114, 19540–19549. [Google Scholar] [CrossRef]
  118. Vajo, J.J.; Olson, G.L. Hydrogen Storage in Destabilized Chemical Systems. Scripta Mater. 2007, 56, 829–834. [Google Scholar] [CrossRef]
  119. NIST Webbook. Available online: http://webbook.nist.gov/chemistry (accessed on 12 January 2011).
  120. Vajo, J.J.; Skeith, S.L.; Mertens, F. Reversible Storage of Hydrogen in Destabilized LiBH4. J. Phys. Chem. B 2005, 109, 3719–3722. [Google Scholar] [CrossRef] [PubMed]
  121. Aoki, M.; Miwa, K.; Noritake, T.; Kitahara, G.; Nakamori, Y.; Orimo, S.; Towata, S. Destabilization of LiBH4 by Mixing with LiNH2. Appl. Phys. A 2005, 80, 1409–1412. [Google Scholar] [CrossRef]
  122. Johnson, S.R.; Anderson, P.A.; Edwards, P.P.; Gameson, I.; Prendergast, J.W.; Al-Mamouri, M.; Book, D.; Harris, I.R.; Speight, J.D.; Walton, A. Chemical Activation of MgH2, a New route to Superior Hydrogen Storage Materials. Chem. Commun. 2005, 22, 2823–2825. [Google Scholar] [CrossRef]
  123. Pinkerton, F.E.; Meisner, G.P.; Meyer, M.S.; Balogh, M.P.; Kundrat, M.D. Hydrogen Desorption Exceeding Ten Weight Percent from the New Quaternary Hydride Li3BN2H8. J. Phys. Chem. B 2005, 109, 6–8. [Google Scholar] [CrossRef] [PubMed]
  124. Alapati, S.V.; Johnson, J.K.; Sholl, D.S. Identification of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations. J. Phys. Chem. B 2006, 110, 8769–8776. [Google Scholar] [CrossRef] [PubMed]
  125. Cho, Y.W.; Shim, J.-H.; Lee, B.-J. Thermal Destabilization of Binary and Complex Metal Hydrides by Chemical Reaction: A Thermodynamic Analysis. Comput. Coupling Phase Diagr. Thermochem. 2006, 30, 65–59. [Google Scholar] [CrossRef]
  126. Yu, X.B.; Grant, D.M.; Walker, G.S. A New Dehydrogenation Mechanism for Reversible Multicomponent Borohydride Systems—the Role of Li-Mg Alloys. Chem. Commun. 2006, 37, 3906–3908. [Google Scholar] [CrossRef]
  127. Nakamori, Y.; Ninomiya, A.; Kitahara, G.; Aoki, M.; Noritake, T.; Miwa, K.; Kojima, Y.; Orimo, S. Dehydriding Reactions of Mixed Complex Hydrides. J. Power Sources. 2006, 155, 447–455. [Google Scholar] [CrossRef]
  128. Meisner, G.P.; Scullin, M.L.; Balogh, M.P.; Pinkerton, F.E.; Meyer, M.S. Hydrogen Release from Mixtures of Lithium Borohydride and Lithium Amide: A Phase Diagram Study. J. Phys. Chem. B 2006, 110, 4189–4192. [Google Scholar] [CrossRef]
  129. Noritake, T.; Aoki, M.; Towata, S.; Ninimiya, A.; Nakamori, Y.; Orimo, S. Crystal Structure Analysis of Novel Complex Hydrides Formed by Combination of LiBH4 an LiNH2. Appl. Phys. A 2006, 83, 277–279. [Google Scholar] [CrossRef]
  130. Pinkerton, F.E.; Meyer, M.S.; Meisner, G.P.; Balogh, M.P. Improved Hydrogen Release from LiB0.33N0.67H2.67 with Novel Metal Additives. J. Phys. Chem. B 2006, 110, 7967–7974. [Google Scholar] [CrossRef] [PubMed]
  131. Chater, P.A.; David, W.I.F.; Johnson, S.R.; Edwards, P.P.; Anderson, P.A. Synthesis and Crystal Structure of Li4BH4(NH2)3. Chem. Commun. 2006, 23, 2439–2441. [Google Scholar] [CrossRef]
  132. Noritake, T.; Aoki, M.; Towata, S.; Ninomiya, A.; Nakamori, Y.; Orimo, S. Crystal Structure Analysis of Novel Complex Hydrides Formed by the Combination of LiBH4 and LiNH2. Appl. Phys. A 2006, 83, 277–279. [Google Scholar] [CrossRef]
  133. Alapati, S.V.; Johnson, J.K.; Sholl, D.S. Stability Analysis of Doped Materials for Reversible Hydrogen Storage in Destabilized Metal Hydrides. Phys. Rev. B 2007, 76, 104108. [Google Scholar] [CrossRef]
  134. Yang, J.; Sudik, A.; Wolverton, C. Destabilizing LiBH4 with a Metal (M = Mg, Al, Ti, V, Cr, or Sc) or Metal Hydride (MH2 = MgH2, TiH2, CaH2). J. Phys. Chem. 2007, 111, 19134–19140. [Google Scholar]
  135. Siegel, D.J.; Wolverton, C.; Ozoliņš, V. Thermodynamics Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabilized Hydride Mixtures. Phys. Rev. B 2007, 76, 134102. [Google Scholar] [CrossRef]
  136. Bösenberg, U.; Doppiu, S.; Mosegaard, L.; Barkhordarian, G.; Eigen, N.; Borgschulte, A.; Jensen, T.R.; Cerenius, Y.; Gutfleisch, O.; Klassen, T.; Dornheim, M.; Bormann, R. Hydrogen Sorption Properties of MgH2–LiBH4 Composites. Acta Mater. 2007, 55, 3951–3958. [Google Scholar] [CrossRef]
  137. Kang, X.-D.; Wang, P.; Ma, L.-P.; Cheng, H.-M. Reversible Hydrogen Storage in LiBH4 Destabilized by Milling with Al. Appl. Phys. A 2007, 89, 963–966. [Google Scholar] [CrossRef]
  138. Pinkerton, F.E.; Meyer, M.S. Reversible Hydrogen Storage in the Lithium Borohydride—Calcium Hydride Coupled System. J. Alloys Compd. 2008, 464, L1–L4. [Google Scholar] [CrossRef]
  139. Wolverton, C.; Siegel, D.J.; Akbarzadeh, A.R.; Ozoliņš, V. Discovery of Novel Hydrogen Storage Materials: An Atomci Scale Computional Approach. J. Phys.: Condens. Matter 2008, 20, 064228. [Google Scholar] [CrossRef]
  140. Sudik, A.; Yang, J.; Halliday, D.; Wolverton, C. Hydrogen Storage Properties in (LiNH2)2-LiBH4-(MgH2)x Mixture (x = 0.0–1.0). J. Phys. Chem. C 2008, 112, 4384–4390. [Google Scholar] [CrossRef]
  141. Yang, J.; Sudik, A.; Siegel, D.J.; Halliday, D.; Drews, A.; Carter, R.O., III; Wolverton, C.; Lewis, G.J.; Sachtler, J.W.A.; Low, J.J.; Faheem, S.A.; Lesch, D.A.; Ozoliņš, V. A Self-Catalyzing Hydrogen-Storage Material. Angew. Chem. Int. Ed. 2008, 47, 882–887. [Google Scholar] [CrossRef]
  142. Alapati, S.V.; Johnson, J.K.; Sholl, D.S. Large-Scale Screening of Metal Hydride Mixtures for High-Capacity Hydrogen Storage from First-Principle Calculations. J. Phys. Chem. C 2008, 112, 5258–5262. [Google Scholar] [CrossRef]
  143. Purewal, J.; Hwang, S.-J.; Bowman, R.C., Jr.; Rönnebro, E.; Fultz, B.; Ahn, C. Hydrogen Sorption Behavior of the ScH2-LiBH4 System: Experimental Assesment of Chemical Destabilization Effects. J. Phys. Chem. C 2008, 112, 8481–8485. [Google Scholar] [CrossRef]
  144. Jin, S.-A.; Lee, Y.-S.; Shim, J.-H.; Cho, Y.W. Reversible Hydrogen Storage in LiBH4-MgH2 (M = Ce, Ca). J. Phys. Chem. C 2008, 112, 9520–9524. [Google Scholar] [CrossRef]
  145. Wan, X.; Markmaitree, T.; Osborn, W.; Shaw, L.L. Nanoengineering-Enabled Solid-State Hydrogen Uptake and Release in the LiBH4 Plus MgH2 System. J. Phys. Chem. C 2008, 112, 18232–18243. [Google Scholar] [CrossRef]
  146. Langmi, H.W.; McGrady, G.S. Ternary Nitrides for Hydrogen Storage: Li-B-N, Li-Al-N and Li-Ga-N Systems. J. Alloys Compd. 2008, 466, 287–292. [Google Scholar] [CrossRef]
  147. Jin, S.-A.; Shim, J.-H.; Cho, Y.W.; Yi, K.-W.; Zabara, O.; Fichtner, M. Reversible Hydrogen Storage in LiBH4-Al-LiH Composite Powder. Scripta Mater. 2008, 58, 963–965. [Google Scholar] [CrossRef]
  148. Fan, M.-Q.; Sun, L.-X.; Zhang, Y.; Xu, F.; Zhang, J.; Chu, H.-L. The Catalytic Effect of Additive Nb2O5 on the Reversible Hydrogen Storage Performances of LiBH4-MgH2 Composite. Int. J. Hydrogen Energy. 2008, 33, 74–80. [Google Scholar] [CrossRef]
  149. Tang, W.S.; Wu, G.T.; Liu, T.; Wee, A.T.S.; Yong, C.K.; Xiong, Z.; Hor, T.S.; Chen, P. Cobalt-Catalyzed Hydrogen Desorption from the LiNH2-LiBH4 System. Dalton Trans. 2008, 18, 2395–2399. [Google Scholar] [CrossRef] [PubMed]
  150. Bösenberg, U.; Vainio, U.; Pranzas, P.K.; Bellosta von Colbe, J.M.; Goerigk, G.; Welter, E.; Dornheim, M.; Schreyer, A.; Bormann, R. On the Chemical State and Distribution of Zr- and V-Based Additives in Reactive Hydride Composites. Nanotechnology 2009, 20, 204003. [Google Scholar] [CrossRef] [PubMed]
  151. Wang, P.J.; Ma, L.P.; Fang, Z.Z.; Kang, X.D.; Wang, P. Improved Hydrogen Storage Properties of Li-Mg-B-H System by Milling with Titanium Trifluoride. Energy Environ. Sci. 2009, 2, 120–123. [Google Scholar] [CrossRef]
  152. Du, A.J.; Smith, S.C.; Yao, X.D.; Sun, C.H.; Li, L.; Lu, G.Q. First Principle Study of Hydrogen of MgB2: An Important Step toward Reversible Hydrogen Storage in the Coupled LiBH4/MgH2 System. J. Nanosci. Nanotechnol. 2009, 9, 4388–4391. [Google Scholar] [CrossRef] [PubMed]
  153. Yang, J.; Hirano, S. Improving the Hydrogen Reaction Kinetics of Complex Hydrides. Adv. Mater. 2009, 21, 1–6. [Google Scholar]
  154. Graetz, J.; Chaudhuri, S.; Salguero, T.T.; Vajo, J.J.; Meyer, M.S.; Pinkerton, F.E. Local bonding and atomic environments in Ni-catalyzed complex hydrides. Nanotechnology 2009, 20, 204007. [Google Scholar] [CrossRef] [PubMed]
  155. Sudik, A.; Yang, J.; Siegel, D.J.; Wolverton, C.; Carter, R.O., III; Drews, A.R. Impact of Stoichiometry on the Hydrogen Storage Properties of LiNH2-LiBH4-MgH2 Ternary Composites. J. Phys. Chem. C 2009, 113, 2004–2013. [Google Scholar] [CrossRef]
  156. Walker, G.S.; Grant, D.M.; Price, T.C.; Yu, X.B.; Legrand, V. High Capacity Multicomponent Hydrogen Storage Materials: Investigation of the Effect of Stoichimetry and Decomposition Conditions on the Cycling Behaviour of LiBH4–MgH2. J. Power Sources 2009, 194, 1128–1134. [Google Scholar] [CrossRef]
  157. Mao, J.F.; Guo, Z.P.; Liu, H.K.; Yu, X.B. Reversible Hydrogen Storage in Titanium-Catalyzed LiAlH4-LiBH4. J. Alloys. Compd. 2009, 487, 434–438. [Google Scholar] [CrossRef]
  158. Puszkiel, J.A.; Gennari, F.C. Reversible Hydrogen Storage in Metal-Doped Mg-LiBH4 Composites. Scripta Mater. 2009, 60, 667–670. [Google Scholar] [CrossRef]
  159. Zhang, Y.; Tian, Q.; Chu, H.L.; Zhang, J.; Sun, L.; Sun, J.; Wen, Z. Hydogen De/Resorption Properties of the LiBH4-MgH2-Al System. J. Phys. Chem. C 2009, 113, 21964–21969. [Google Scholar] [CrossRef]
  160. Wu, H.; Zhou, MI.; Wang, K.; Udovic, T.J.; Rush, J.J.; Yildirim, T.; Bendersky, L.A.; Gross, A.F.; van Atta, S.L.; Vajo, J.J.; Pinkerton, F.E.; Meyer, M.S. Size Effects on the Hydrogen Storage Properties of Nanoscaffolded Li3BN2H8. Nanotechnology 2009, 20, 204002. [Google Scholar] [CrossRef] [PubMed]
  161. Pinkerton, F.E.; Meyer, M.S. Hydrogen Desorption Behavior of Nickel-Chloride-Catalyzed Stoichiometric Li4BN3H10. J. Phys. Chem. C 2009, 113, 11172–11176. [Google Scholar] [CrossRef]
  162. Kim, J.W.; Friedrichs, O.; Ahn, J.-P.; Kim, D.H.; Kim, S.C.; Remhof, A.; Chung, H.-S.; Lee, J.; Shim, J.-H.; Cho, Y.W.; Züttel, A.; Oh, K.H. Microstructural Change of 2LiBH4/Al with Hydrogen Sorption cycling: Separation of Al and B. Scripta Mater. 2009, 60, 1089–1092. [Google Scholar] [CrossRef]
  163. Friedrichs, O.; Kim, J.W.; Remhof, A.; Buchter, F.; Borgschulte, A.; Wallacher, D.; Cho, Y.W.; Fichtner, M.; Oh, K.H.; Züttel, A. The Effect of Al on the Hydrogen Sorption Mechanism of LiBH4. Phys. Chem. Chem. Phys. 2009, 11, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
  164. Blanchard, D.; Shi, Q.; Boothroyd, C.B.; Vegge, T. Reversibility of Al/Ti Modified LiBH4. J. Phys. Chem. C 2009, 113, 14059–14066. [Google Scholar] [CrossRef]
  165. Zhang, Y.; Tian, Q.; Zhang, J.; Liu, S.-S.; Sun, L.-X. The Dehydrogenation Reactions and Kinetics of 2LiBH4-Al Composite. J. Phys. Chem. C 2009, 113, 18424–18430. [Google Scholar] [CrossRef]
  166. Singer, J.P.; Meyer, M.S.; Speer, R.M., Jr.; Fischer, J.E.; Pinkerton, F.E. Determination o the Phase Behavior of (LiNH2)c(LiBH4)1−c Quaternary Hydride through in Situ X-ray Diffraction. J. Phys. Chem. C 2009, 113, 18927–18934. [Google Scholar] [CrossRef]
  167. Li, W.; Vajo, J.J.; Cumberland, R.W.; Liu, P.; Hwang, S.-J.; Kim, C.; Bowman, R.C., Jr. Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage. Phys. Chem. Lett. 2010, 1, 69–72. [Google Scholar] [CrossRef]
  168. Wang, P.-J.; Fang, Z.-Z.; Ma, L.-P.; Kang, X.-D.; Wang, P. Effect of Carbon Addition on Hydrogen Storage Behaviors of Li-Mg-B-H System. Int. J. Hydrogen Energy 2010, 35, 3072–3075. [Google Scholar] [CrossRef]
  169. Shim, J.-H.; Lim, J.-H.; Rather, S.-U.; Lee, Y.-S.; Reed, D.; Kim, Y.; Book, D.; Cho, Y.W. Effect of Hydrogen Back Pressure on Dehydrogenation Behavior of LiBH4-Based Reactive Hydride Composites. Phys. Chem. Lett. 2010, 1, 59–63. [Google Scholar] [CrossRef]
  170. Deprez, E.; Muñoz-Márquez, M.A.; Roldán, M.A.; Prestipino, C.; Javier Palomares, F.; Bonatto Minella, C.; Bösenberg, U.; Dornheim, M.; Bormann, R.; Fernández, A. Oxidation State and Local Structure of Ti-Based Additives in the Reactive Hydride Composite 2 LiBH4 + MgH2. J. Phys. Chem. 2010, 114, 3309–3317. [Google Scholar]
  171. Bösenberg, U.; Kim, J.W.; Gosslar, D.; Eigen, N.; Jensen, T.G.; Bellosta von Colbe, J.M.; Zhou, Y.; Dahms, M.; Kim, D.H.; Günther, R.; Cho, Y.W.; Oh, K.H.; Klassen, T.; Bormann, R.; Dornheim, M. Role of Additives in LiBH­4-MgH2 Reactive Hydride Composites for Sorption Kinetics. Acta Mater. 2010, 58, 3381–3389. [Google Scholar] [CrossRef]
  172. Price, T.C.; Grant, D.M.; Legrand, V.; Walker, G.S. Enhanced Kinetics for the LiBH4:MgH2 Multi-Component Hydrogen Storage System–The Effects of Stoichiometry and Decomposition Environment on Cycling Behaviour. Int. J. Hydrogen Energy 2010, 35, 4154–4161. [Google Scholar] [CrossRef]
  173. Somer, M.; Acar, S.; Koz, C.; Kokal, I.; Höhn, P.; Cardoso-Gil, R.; Aydemir, U.; Akselrud, L. α- and β-Na2[BH4][NH2]: Two Modifications of a Complex Hydride in the System NaNH2-NaBH4; Syntheses, Crystal Structures, Thermal Analyses, Mass and Vibrational Spectra. J. Alloys Compd. 2010, 491, 98–105. [Google Scholar] [CrossRef]
  174. Yu, X.B.; Guo, Y.H.; Sun, D.L.; Yang, Z.X.; Ranjbar, A.; Guo, Z.P.; Liu, H.K.; Dou, S.X. A Combined Hydrogen Storage System of Mg(BH4)2-LiNH2 with Favorable Dehydrogenation. J. Phys. Chem. C 2010, 114, 4733–4737. [Google Scholar] [CrossRef]
  175. Mao, J.; Guo, Z.; Leng, H.; Wu, Z.; Guo, Y.; Yu, X.; Liu, H. Reversible Hydrogen Storage in Destabilized LiAlH4−MgH2−LiBH4 Ternary-Hydride System Doped with TiF3. J. Phys. Chem. C 2010, 114, 11643–11649. [Google Scholar] [CrossRef]
  176. Ravnsbæk, D.B.; Jensen, T.R. Tuning hydrogen storage properties and reactivity: Investigation of the LiBH4-NaAlH4 sytem. J. Phys Chem. Sol. 2010, 71, 1144–1149. [Google Scholar] [CrossRef]
  177. Mauron, P.; Bielmann, M.; Remhof, A.; Züttel, A.; Shim, J.-K.; Cho, Y.W. Stability of the LiBH4/CeH2 Composite System Determined by Dynamic pcT Measurements. J. Phys. Chem. C 2010, 114, 16801–16805. [Google Scholar] [CrossRef]
  178. Bösenberg, U.; Ravnsbæk, D.B.; Hagemann, H.; D’Anna, V.; Minella, C.B.; Pistidda, C.; van Beek, W.; Jensen, T.R.; Bormann, R.; Dornheim, M. Pressure and Temperature Influence on the Desorption Pathway of the LiBH4-MgH2 Composite System. J. Phys. Chem. C 2010, 114, 15212–15217. [Google Scholar] [CrossRef]
  179. Zeng, L.; Miyaoka, H.; Ichikawa, T.; Kojima, Y. Superior Hydrogen Exchange Effect in the MgH2-LiBH4 System. J. Phys. Chem. C 2010, 114, 13132–13135. [Google Scholar] [CrossRef]
  180. Crosby, K.; Shaw, L.L. Dehydriding and re-hydriding properties of high-energy ball milled LiBH4 + MgH2 mixture. Int. J. Hydrogen Energy 2010, 35, 7519–7529. [Google Scholar] [CrossRef]
  181. Choudhury, P.; Bhethanabotla, V.R.; Stefanakos, E. First principles study to identify the reversible reaction step of a multinary hydrogen storage “Li-Mg-B-N-H” system. Int. J. Hydrogen Energy 2010, 35, 9002–9011. [Google Scholar] [CrossRef]
  182. Shaw, L.L.; Wan, X.; Hu, J.Z.; Kwak, J.H.; Yang, Z. Solid-State Hydriding Mechanism in the LiBH4-MgH2 System. J. Phys. Chem. C 2010, 114, 8089–8098. [Google Scholar] [CrossRef]
  183. Garroni, S.; Milanese, C.; Girella, A.; Marini, A.; Mulas, G.; Menéndez, E.; Pistidda, C.; Dornheim, M.; Suriñach, S.; Baró, M.D. Sorption Properties of NaBH4/MH2 (M = Mg, Ti) Powder System. Int. J. Hydrogen. Energy 2010, 35, 5434–5441. [Google Scholar] [CrossRef]
  184. Gennari, F.C.; Puszkiel, J.A. Enhanced Hydrogen Sorption Kinetics of Mg50Ni-LiBH4. J. Power Sources. 2010, 195, 3266–3274. [Google Scholar] [CrossRef]
  185. Hattrick-Simpers, J.R.; Maslar, J.E.; Niemann, M.U.; Chium, C.; Srinivasan, S.S.; Stefanakos, E.K.; Bendersky, L.A. Raman Spectroscopic Observation of Dehydrogenation in Ball-Milled LiNH2-LiBH4-MgH2 Nanoparticles. Int. J. Hydrogen Energy. 2010, 35, 6323–6331. [Google Scholar] [CrossRef]
  186. Barkhordarian, G.; Klassen, T.; Dornheim, M.; Bormann, R. Unexpected Kinetic Effect of MgB2 in Reactive Composites Containing Complex borohydrides. J. Alloys Compd. 2007, 440, L18–L21. [Google Scholar] [CrossRef]
  187. Barkhordarian, G.; Jensen, T.R.; Doppiu, S.; Bo1senberg, U.; Borgschulte, A.; Gremaud, R.; Cerenius, Y.; Dornheim, M.; Klassen, T.; Bormann, R. Formation of Ca(BH4)2 from Hydrogenation of CaH2 + MgB2 Composite. J. Phys. Chem. C 2008, 112, 2743–2749. [Google Scholar] [CrossRef]
  188. Hu, J.Z.; Kwak, J.H.; Y, Z.; Wan, X.; Shaw, L.L. Direct Observation of Ion Exchange in Mechanically Activated LiH + MgB2 System Using Ultrahigh Field Nuclear Magnetic Resonance Spectroscopy. Appl. Phys. Lett. 2009, 94, 141905. [Google Scholar] [CrossRef]
  189. Gosalawit-Utke, R.; Bellosta von Colbe, J.M.; Dornheim, M.; Jensen, T.R.; Cerenius, Y.; Minella, C.B.; Peschke, M.; Bormann, R. LiF−MgB2 System for Reversible Hydrogen Storage. J. Phys. Chem. C 2010, 114, 10291–10296. [Google Scholar] [CrossRef]
  190. Gonzalez-Silveira, M.; Gremaud, R.; Schreuders, H.; van Setten, M.J.; Batyrev, E.; Rougier, A.; Dupont, L.; Bardají, E.G.; Lohstroh, W.; Dam, B. In-Situ Deposition of Alkali and Alkaline Earth Hydride Thin Films To Investigate the Formation of Reactive Hydride Composites. J. Phys. Chem. C 2010, 114, 13895–13901. [Google Scholar] [CrossRef]
  191. Rongeat, C.; D’Anna, V.; Hagemann, H.; Borgschulte, A.; Züttel, A.; Schultz, L.; Gutfleisch, O. Effect of Additives on the Synthesis and Reversibility of Ca(BH4)2. J. Alloys Compd. 2010, 493, 281–287. [Google Scholar] [CrossRef]
  192. Kim, Y.; Reed, D.; Lee, Y.-S.; Shim, J.-H.; Han, H.N.; Book, D.; Cho, Y.W. Hydrogenation Reaction of CaH2-CaB6-Mg Mixture. J. Alloys Compd. 2010, 492, 597–600. [Google Scholar] [CrossRef]
  193. Bogdanović, B.; Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloy. Compd. 1997, 253–254, 1–9. [Google Scholar] [CrossRef]
  194. Au, M.; Jurgensen, A. Modified Lithium Borohydrides for Reversible Hydrogen Storage. J. Phys. Chem. B 2006, 110, 7062–7067. [Google Scholar] [CrossRef] [PubMed]
  195. Au, M.; Jurgensen, A.; Zeigler, K. Modified Lithium Borohydrides for Reversible Hydrogen Storage (2). J. Phys. Chem. B 2006, 110, 26482–26487. [Google Scholar] [CrossRef] [PubMed]
  196. Yu, X.B.; Wu, Z.; Chen, Q.R.; Li, Z.L.; Weng, B.C.; Huang, T.S. Improved Hydrogen Storage Properties of LiBH4 Destabilized by Carbon. Appl. Phys. Lett. 2007, 90, 034106. [Google Scholar] [CrossRef]
  197. Zhang, Y.; Zhang, W.-S.; Wang, A.-Q.; Sun, L.-X.; Fan, M.-Q.; Chu, H.-L.; Sun, J-C.; Zhang, T. LiBH4 Nanoparticles Supported by Disordered Mesoporous Carbon: Hydrogen Storage Performances and Destabilization Mechanisms. Int. J. Hydrogen Energy. 2007, 32, 3976–3980. [Google Scholar] [CrossRef]
  198. Varin, R.A.; Chiu, C.; Wronski, Z.S.; Calka, A. The Effects of Oxidized and Oxide-Free Boron on the Mg-B-H Nanohydrides Transformation in the Nearly Nanosized Powders. Solid State Phenom. 2007, 128, 47–52. [Google Scholar] [CrossRef]
  199. Mosegaard, L.; Møller, B.; Jørgensen, J.-E.; Filinchuk, Y.; Cerenius, Y.; Hanson, J.; Dimasi, E.; Besenbacher, F.; Jensen, T.R. Reactivity of LiBH4: In Situ Synchrotron Radian Powder X-ray Diffraction Study. J. Phys. Chem. C 2008, 112, 1299–1303. [Google Scholar] [CrossRef]
  200. Yin, L.; Wang, P.; Fang, Z.Z.; Cheng, H. Thermodynamically Tuning LiBH4 by Fluorine Anion Doping for Hydrogen Storage: A Density functional Study. Chem. Phys. Lett. 2008, 450, 318–321. [Google Scholar] [CrossRef]
  201. Zhang, Y.; Zhang, W.-S.; Fan, M.-Q.; Liu, S.-S.; Chu, H.-L.; Zhang, Y.-H.; Gao, X-Y.; Sun, L.-X. Enhanced Hydrogen Storage Performance of LiBH4-SiO2-TiF3 Composite. J. Phys. Chem. C 2008, 112, 4005–4110. [Google Scholar] [CrossRef]
  202. Fang, Z.Z.; Kang, X.D.; Dai, H.B.; Zhang, M.J.; Wang, P.; Cheng, H.M. Reversible Dehydrogenation of LiBH4 Catalyzed by As-Prepared Sing-Walled Carbon Nanotubes. Scripta Mater. 2008, 58, 922–925. [Google Scholar] [CrossRef]
  203. Xu, J.; Yu, X.B.; Zou, Z.Q.; Li, Z.L.; Wu, Z.; Akins, L.D.; Yang, H. Enhanced Dehydrogenation of LiBH4 Catalyzed by Carbon-Supported Pt Nanoparticles. Chem. Commun. 2008, 44, 5740–5742. [Google Scholar] [CrossRef]
  204. Fang, Z.-Z.; Kang, X.-D.; Wang, P.; Cheng, H.-M. Improved Reversible Dehydrogenation of Lithium Borohydride by Milling with As-Prepared Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2008, 112, 17023–17029. [Google Scholar] [CrossRef]
  205. Au, M.; Jurgensen, A.R.; Spencer, W.A.; Anto, D.A.; Pinkerton, F.E.; Hwang, S.-J.; Kim, C.; Bowman, R.C., Jr. Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides. J. Phys. Chem. C 2008, 112, 18661–18671. [Google Scholar] [CrossRef]
  206. Yu, X.B.; Grant, D.M.; Walker, G.S. Dehydrogenation of LiBH4 Destabilized with Various Oxides. J. Phys. Chem. C 2009, 113, 17945–17949. [Google Scholar] [CrossRef]
  207. Arnbjerg, L.M.; Ravnsbæk, D.B.; Filinchuk, Y.; Vang, R.T.; Cerenius, Y.; Besenbacher, F.; Jørgensen, J.-E.; Jakobsen, H.J.; Jensen, T.R. Structure and Dynamics for LiBH4-LiCl Solid Solutions. Chem. Mater. 2009, 21, 5772–5782. [Google Scholar] [CrossRef]
  208. Guo, Y.H.; Yu, X.B.; Gao, L.; Xia, G.L.; Guo, Z.P.; Liu, H.K. Significantly Improved Dehydrogenation of LiBH4 Destabilized by TiF3. Energy Environ. Sci. 2010, 3, 465–470. [Google Scholar] [CrossRef]
  209. Fang, Z.Z.; Kang, X.D.; Wang, P. Improved Hydrogen Storage Properties of LiBH4 by Mechanical Milling with Various Carbon Additives. J. Int. Hydrogen Energy 2010, 35, 8247–8252. [Google Scholar] [CrossRef]
  210. Zhang, B.J.; Liu, B.H. Hydrogen Desorption from LiBH4 destabilized by chlorides of transition metal Fe, Co, and Ni. Int. J. Hydrogen Energy 2010, 35, 7288–7294. [Google Scholar] [CrossRef]
  211. Gutowska, A.; Li, L.; Shin, Y.; Wang, C.M.; Li, X.S.; Linehan, J.C.; Smith, R.S.; Kay, B.D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Nanoscaffold Mediates Hydrogen Release and the Reactivity of Ammonia Borane. Angew. Chem. Int. Ed. 2005, 44, 3578. [Google Scholar] [CrossRef]
  212. Gross, A.F.; Vajo, J.J.; van Atta, S. L.; Olson, G.L. Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds. J. Phys. Chem. C 2008, 112, 5651–5657. [Google Scholar] [CrossRef]
  213. Fang, Z.Z.; Wang, P.; Rufford, T.E.; Kang, X.D.; Lu, G.Q.; Cheng, H.M. Kinetic- and Thermodynamic-Based Improvements of Lithium Borohydride Incorporated Into Activated Carbon. Acta Mater. 2008, 56, 6257–6263. [Google Scholar] [CrossRef]
  214. Cahen, S.; Eymery, J.-B.; Janot, R.; Tarascon, J.-M. Improvement of the LiBH4 Hydrogen Desorption by Inclusion into Mesoporous Carbons. J. Power Sources 2009, 189, 902–908. [Google Scholar] [CrossRef]
  215. Ingleson, M.J.; Barrio, J.P.; Bacsa, J.; Steiner, A.; Darling, G.R.; Jones, J.T.A.; Khimyak, Y.Z.; Rosseinsky, M.J. Magnesium Borohydride Confined in a Metal–Organic Framework: A Preorganized System for Facile Arene Hydroboration. Angew. Chem. Int. Ed. 2009, 48, 2012–2016. [Google Scholar] [CrossRef]
  216. Fichtner, M.; Zhao-Karger, Z.; Hu, J.; Roth, A.; Weidler, P. The Kinetic Properties of Mg(BH4)2 Infiltrated in Activated Carbon. Nanotechnology 2009, 20, 204029. [Google Scholar] [CrossRef] [PubMed]
  217. Ngene, P.; Adelhelm, P.; Beale, A.M.; de Jong, K.P.; de Jongh, P.E. LiBH4/SBA-15 Nanocomposites Prepared by Melt infiltration under Hydrogen pressure: Synthesis and Hydrogen Sorption Properties. J. Phys. Chem. C 2010, 114, 6163–6168. [Google Scholar] [CrossRef]
  218. Shane, D.T.; Corey, R.L.; McIntosh, C.; Rayhel, L.H.; Bowman, R.C., Jr.; Vajo, J.J.; Gross, A.F.; Conradi, M.S. LiBH4 in Carbon Aerogel Nanoscaffolds: An NMR Study of Atomic Motions. J. Phys. Chem. C 2010, 114, 4008–4014. [Google Scholar] [CrossRef]
  219. Liu, X.; Peaslee, D.; Jost, C.Z.; Majzoub, E.H. Controlling the Decomposition Pathway of LiBH4 via Confinement in Highly Ordered Nanoporous Carbon. J. Phys. Chem. C 2010, 114, 14036–14041. [Google Scholar] [CrossRef]
  220. Ngene, P.; van Zwienen, M.R.; de Jongh, P.E. Reversibility of the hydrogen desorption from LiBH4: A synergetic effect of nanoconfinement and Ni addition. Chem. Comm. 2010, 46, 8201–5203. [Google Scholar] [CrossRef] [PubMed]
  221. Nielsen, T.K.; Bösenber, U.; Gosalawit, R.; Dornheim, M.; Cerenius, Y.; Besenbacher, F.; Jensen, T.R. A Reversible Nanoconfined Chemical Reaction. ACS NANO 2010, 4, 3903–3908. [Google Scholar] [CrossRef] [PubMed]
  222. Sartori, S.; Knudsen, K.D.; Zhao-karger, Z.; Bardaji, E.G.; Muller, J.; Fichtner, M.; Hauback, B.C.; Sartori, S.; Knudsen, K.D.; Zhao-karger, Z.; Bardaji, E.G.; Muller, J.; Fichtner, M.; Hauback, B.C. Nanoconfined Magnesium Borohydride for Hydrogen Storage Application Investigation by SANS and SAXS. J. Phys. Chem. C 2010, 114, 18785–18789. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Li, H.-W.; Yan, Y.; Orimo, S.-i.; Züttel, A.; Jensen, C.M. Recent Progress in Metal Borohydrides for Hydrogen Storage. Energies 2011, 4, 185-214. https://doi.org/10.3390/en4010185

AMA Style

Li H-W, Yan Y, Orimo S-i, Züttel A, Jensen CM. Recent Progress in Metal Borohydrides for Hydrogen Storage. Energies. 2011; 4(1):185-214. https://doi.org/10.3390/en4010185

Chicago/Turabian Style

Li, Hai-Wen, Yigang Yan, Shin-ichi Orimo, Andreas Züttel, and Craig M. Jensen. 2011. "Recent Progress in Metal Borohydrides for Hydrogen Storage" Energies 4, no. 1: 185-214. https://doi.org/10.3390/en4010185

Article Metrics

Back to TopTop