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Abstract: This paper presents an analysis of the energy exchange resulting from a 2D 
steady magnetohydrodynamics (MHD) flow past a permeable surface with partial slip in 
the presence of the viscous dissipation effect under convective heating boundary 
conditions. A magnetic field can effectively control the motion of an electrically 
conducting fluid in micro scale systems, which can be applied for fluid transportation. 
Local similarity solutions for the transformed governing equations are obtained, and the 
reduced ordinary differential equations solved numerically via an explicit Runge-Kutta (4, 5) 
formula, the Dormand-Prince pair and shooting method, which is valid for fixed positions 
along the surface. The effects of various physical parameters, such as the magnetic 
parameter, the slip coefficient, the suction/injection parameter, the Biot number, the 
Prandtl number and the Eckert number, on the flow and heat transfer characteristics are 
presented graphically and discussed. The results indicate that the heat transfer rate 
increases with the increase in Biot number, slip coefficient, suction and magnetic 
parameter, whereas it decreases with the increase in Eckert number and injection. 
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Nomenclature: 

a Biot number 
B magnetic induction [Wb m−2] 
Cf local skin-friction coefficient 
cp specific heat at constant pressure 

[J kg−1 K−1] 
Ec Eckert number 
f dimensionless function 
hf convective heat transfer coefficient 

[W m−2 K−1] 
K slip coefficient 
kT thermal conductivity [W m−1 K−1] 
l slip length [m] 
M magnetic parameter 
P Pressure [Pa] 
Pr Prandtl number 
Rex local Reynolds number 
Tf temperature of the hot fluid at the 

bottom of the plate [K] 
Tw temperature at the surface of the 

plate [K] 
T temperature of the fluid within the 

boundary layer [K] 

T∞ temperature of the ambient fluid 
[K] 

u∞ free stream velocity [m s−1] 
u, v the x-, y-components of velocity  

[m s−1] 
x, y distance along and normal to the 

plate [m]  
  
Greek 
α  thermal diffusivity [m2 s–1] 
η similarity variable 
θ dimensionless temperature 
μ dynamic viscosity [Pa s] 
ν∞ kinematic viscosity [m2 s−1] 
ρ fluid density [kg m–3] 
σ electrical conductivity of the fluid 

[S m–1] 
  
Subscripts 
s slip condition 
w surface condition 
∞ ambient condition 

 

1. Introduction 

The problem of slip MHD flow with viscous dissipation past a permeable surface has many 
important technological and industrial applications, especially in Microelectromechanical Systems 
(MEMS), such as micro MHD pumps [1], micromixing of physiological samples [2,3], biological 
transportation and drug delivery [4,5]. By producing Lorentz forces, the magnetic field is able to 
transport liquids in the mixing processes as an active micromixing technology method. Since most 
biological transportation applications based on magnetic fields are in the micro/nano systems [6–8], it 
is vital to consider the effect of velocity slip at the boundaries [9,10]. The permeability is another 
significant factor in micromixing of biological samples [2]. Therefore, transportation of conductive 
biological fluids in micro systems would greatly benefit from theoretical research in this area. Blood 
plasma, which is a Newtonian fluid, is very similar in physical properties to water. It is considered 
very important in blood flow modelling through arterial stenosis [11,12]. Most investigations assume 
that blood exists in the core region of the artery as a non-Newtonian fluid, whereas plasma is found in 
the peripheral layer as a Newtonian fluid [12]. 

Viscous dissipation effects are usually ignored in macro scale systems, in laminar flow in particular, 
except for very viscous liquids at comparatively high velocities. However, even for common liquids at 
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laminar Reynolds numbers, frictional effects in micro scale systems may change the energy equation [13]. 
Koo and Kleinstreuer [14] have investigated the effects of viscous dissipation on the temperature  
field using dimensional analysis and experimentally validated computer simulations. Three common 
working fluids—water, methanol and iso-propanol—in different conduit geometries have been 
considered in this study. The authors concluded that the channel size was a key factor that determines 
the impact of viscous dissipation. Furthermore, viscous dissipation effects may be very significant for 
fluids with high viscosities and low specific heat capacities, even at relatively low Reynolds numbers. 
Accordingly, the viscous dissipation term should be considered in the micro scale systems. 

Many researchers have studied, both analytically and numerically, slip boundary layer problems 
over different surface configurations. For example, the mass transfer effect on the moving wall 
boundary layer has been investigated by Fang [15], who later extended his work by considering the 
velocity slip at the wall [16]. Martin and Boyd [17] have analyzed the slip flow and heat transfer past a 
flat surface at constant wall temperature. Their results demonstrate that the boundary layer equations 
can be used to study flow at MEMS scale and provide useful information to study the effects of 
rarefaction on the shear stress and structure of the flow. According to their boundary layer theory, 
there is no temperature jump in liquid fluids. Yazdi et al. [18] have investigated the slip flow boundary 
layer past flat surface at constant heat flux boundary conditions. In a later work [19], they have 
considered the effect of permeability parameter on the slip flow regime. The findings of this study 
indicate that mass suction has a significant effect on the fluid velocity adjacent to the wall in the 
presence of partial slip. Furthermore, the same research team also studied liquid flow past open  
parallel microchannels embedded within a surface [20,21]. A no-slip condition was applied between 
microchannels, whereas a slip condition was applied to the open parallel microchannels.  

MHD steady flow and heat transfer of a second grade fluid saturated in porous space was 
investigated by Hayat et al. [22], who found that the horizontal component of velocity increased as the 
slip parameter increased. The effect of thermal slip condition over a permeable stretching sheet was 
taken into account in the work by Hayat et al. [23], whilst, more recently, Qasim et al. [24] added the 
effects of thermal radiation and ohmic dissipation. Fang et al. [25] have demonstrated that the second 
order slip flow model is necessary to predict the flow characteristics accurately. Abbas et al. [26] have 
examined the heat transfer problem around an oscillatory infinite sheet with slip boundary condition, 
concluding that an increase in the slip parameter leads to a reduction in amplitude of the flow velocity, 
while with the increase in the thermal slip parameter the heat transfer from the sheet to the fluid 
becomes slower. In a similar work, Fang et al. [27] have evaluated slip MHD boundary layer over 
stretching sheet. Recently, Yazdi et al. [28,29] have investigated MHD liquid flow over nonlinear 
permeable stretching surface in the presence of the partial slip and high-order chemical reactions.  

Unlike the common thermal boundary conditions, such as constant temperature or constant heat 
flux, Aziz [30] demonstrated that a similarity solution is possible if the convective heat transfer 
associated with the hot fluid on the lower surface of the plate is proportional to x−0.5. These results 
were later improved by Ishak [31] with the addition of the permeability effect along the surface.  
Yao et al. [32] have investigated the convective boundary condition along a stretching/shrinking sheet. 
Recently, Rahman [33] has evaluated the MHD flow over a flat plate with partial slip subjected to the 
convective surface heat flux at the boundary. The study findings indicate that the local similarity 
solution should be applied due to the dependency of slip coefficient on x-coordinate. However, even 
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though problem plays a prominent role in the fluid flow and heat transfer control of micro scale 
systems, no attempt so far has been made to analyze MHD flow and heat transfer past a permeable 
surface with partial slip and viscous dissipation. 

2. Mathematical Formulation 

In the present work, we considered slip MHD flow and heat transfer past a permeable horizontal 
surface at a convective surface boundary condition in the presence of viscous dissipation effects. The 
flow configuration is illustrated in Figure 1. 

Figure 1. Physical model of flow and heat transfer in the present work. 

 

Let us assume that the fluid is incompressible, Newtonian and continuum with free stream velocity 
u∞ and temperature T∞ Moreover, it is subjected to a transverse magnetic field applied in the vertical 
direction with varying strength B, as a function of x, is given by:  

1
2

0 0( ) ,    0B x B x B
−

= ≠  (1) 

where x is the coordinate along the plate measured from the leading edge. Because the magnetic 
Reynolds number is assumed small, the induced magnetic field is negligible and can be ignored. Under 
these conditions, the effect of the induced magnetic field is negligible in comparison to the applied 
magnetic field and can thus be ignored. The fluid that decelerates due to the viscous action of the 
surface is propagated by the magnetic forces that counteract the viscous effect [34]. A permeable 
surface is considered with mass transfer velocity as a function of x: 

1
2

0 0( ) ,    0w w wv x v x v
−

= ≠  (2) 

Thus, the viscous dissipation term should be investigated in the slip flow regimes along a permeable 
surface, whereby the positive y-coordinate is measured perpendicular to the x-coordinate in the 
outward direction towards the fluid. The corresponding velocity components in the x and y directions 
are denoted as u and v, respectively. The bottom of the surface is heated due to convective heat transfer 
from a hot fluid at a temperature Tf, yielding a heat transfer coefficient hf as a function of x, with its 
strength given as follows: 
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2

0 0( ) ,    0f f fh x h x h
−

= ≠  (3) 

It is assumed that Tf > Twall > T∞ as well as that the velocity gradients in the x-direction are small 
compared to those in the y-direction. Within the framework of the above-noted assumptions, the 
boundary layer equations governing the MHD convective flow and heat transfer in the presence of 
viscous dissipation are written in the usual notation as:  
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where associated boundary conditions are given as: 

0  ,    ( ),    ( )
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∂
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 (7) 

The last term in the above momentum Equation (5) describes the pressure gradient, ∞=∂∂ uBxP 2/ σ
which is obtained from the momentum equation at the edge of the boundary layer [35]. Moreover, 
vw(x) is the mass transfer due to suction vw(x) < 0 or injection vw(x) > 0. The velocity slip, us is 
proportional to the local wall shear stress and is given by [17,18]: 

ws y
ulu
∂
∂

=  (8) 

where l is the slip length constant proportional to the velocity slip. For liquid fluids, l is described as 
the interaction length. Moreover, if the velocity profile is linearly extrapolated into the wall, the slip 
length would correspond to the depth at which the velocity would decline to zero [36]. However, if the 
fluid flow adjacent to the wall is in thermodynamic equilibrium, the no-slip boundary condition is 
applicable. Martin and Boyd [17] have indicated that the appropriate assumption for the flow of liquids 
at the micro scale systems is to neglect temperature jump, because of the lack of data on the thermal 
accommodation coefficient. The following similarity variables are used in the present work: 

( ) ( )1,    ,    ,    ( )
2 f

u u T Tuf y v f f
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It is also useful to introduce a slip coefficient using similarity variables: 
)0()0( fKf ′′=′  (10) 

where K is the slip coefficient defined for liquids by: 
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∞=
νx
ulK  (11) 

The slip coefficient K is a dimensionless parameter of the amount of slip, ranging from zero (total 
adhesion) to infinity (full slip). Now the fundamental partial differential Equations (5) and (6) can be 
transformed to ordinary differential equations by substituting similarity variables (9) into Equations (5) 
and (6) as follows: 
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For these equations, the associated boundary conditions are given as: 
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where a, fw, Pr, Ec, and M represent the Biot number (the equivalent dimensionless convective heat 
transfer parameter), the suction/injection parameter, the Prandtl number, the Eckert number and the 
magnetic parameter, respectively: 
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It should be noted that fw is negative for mass injection (vw0 > 0) cases and positive in the presence 
of suction (vw0 < 0) at the surface. From the definitions (15), it is clear that fw, a and M are independent 
of x. Moreover, the Biot number a is a ratio of the internal thermal resistance of the plate to the 
boundary layer thermal resistance of the hot fluid at the bottom of the surface. Thus, as the only 
parameter that exhibits a dependence on the x-coordinate is slip coefficient K, the problem must be 
solved locally. Consequently, given the fixed values of the x-coordinate the local similarity solution 
would be achieved correctly for momentum and energy equations. The nonlinear differential  
Equations (12) and (13) are solved numerically as a one-way coupled problem by applying the explicit 
Runge-Kutta (4, 5) formula, the Dormand-Prince pair and the shooting method, subject to the 
associated boundary conditions (14). Finally, the skin friction coefficient and the local surface heat 
flux can be obtained as follows: 
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3. Results and Discussion  

A comparison of the velocity gradient, temperature distribution, and temperature gradient adjacent 
to the wall between the present results, using the Dormand-Prince pair and the shooting method, and 
those obtained previously are shown in Table 1. It is evident that our results are well-matched with the 
previous convective surface boundary condition problem of Aziz [30] and Ishak [31]. An excellent 
agreement is also reached with the results of a slip-flow problem of Rahman [33], obtained by 
Nachtsheim-Swigert iteration procedure for Pr = 1, M = 1. 

Table 1. Comparison of the velocity gradient at the wall f''(0), temperature distribution 
θ(0), and temperature gradient |θ'(0)| at the wall between the present results and those 
obtained previously. 

M Pr K a 
Rahman 

[33]             [33]            [33] 

Aziz 

[30] 

Ishak 

[31] 
Present 
results 

    f''(0) θ(0) |θ'(0)| |θ'(0)| |θ'(0)| f''(0) θ(0) |θ'(0)| 
1 1 0 0.01 1.0440 0.0236 0.0098   1.0440 0.0237 0.0098 

   0.5 1.0440 0.5478 0.2261   1.0440 0.5480 0.2261 
   1 1.0440 0.7078 0.2921   1.0440 0.7078 0.2920 
  0.5 0.01 0.6987 0.0208 0.0098   0.6987 0.0209 0.0098 
   0.5 0.6987 0.5163 0.2418   0.6987 05164 0.2417 
   1 0.6987 0.6811 0.3189   0.6987 0.6812 0.3188 
 
0 

 
0.72 

 
0 

 
0.05 

  
 

0.0428 
 

0.0428 
 

0.0428 
  

 
0.0428 

   0.1   0.0747 0.0747 0.0747   0.0747 
   0.2   0.1193 0.1193 0.1193   0.1193 
   0.4   0.1701 0.1700 0.1699   0.1700 
   0.6   0.1981 0.1981 0.1980   0.1980 
   0.8   0.2160 0.2159 0.2159   0.2159 
   1   0.2282 0.2282 0.2282   0.2282 
   5   0.2793 0.2791 0.2791   0.2791 
   10   0.2873 0.2871 0.2871   0.2871 
   20   0.2915 0.2913 0.2913   0.2913 

3.1. Effects on Velocity Field and Friction 

Figure 2(a),(b) shows the velocity profiles f'(η) and velocity gradient f''(η), respectively, for various 
values of the suction/injection parameter when K = 0.5 and M = 0.5. Since in this case the similarity 
solution is local, i.e. the results are obtained at a specific location on the wall (x-coordinate),  
η corresponds to distances perpendicular to that point (y). In the presence of suction, the velocity 
profiles tend to increase monotonically, and the boundary layer becomes thinner. On the other hand, 
increased injection tends to enhance the boundary layer thicknesses. Thus, it is evident that, in the slip 
flow regime, velocity adjacent to the wall can be manipulated through suction/injection parameter. 
Moreover, the interception point between velocity gradient profiles suggests faster decrements for high 
suction at the wall. 
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Figure 2. Distribution of velocity (a) and velocity gradient (b) as a function of η for 
various values of fw when K = 0.5, M = 0.5. 

 
(a) 

 
(b) 

Figure 3(a),(b) illustrate the variation of the velocity f'(η) and velocity gradient f''(η) profiles, 
respectively, for various values of slip coefficient K when fw = 0.2 and M = 0.5. It is noted that an 
increase in K corresponds to a rise in the fluid velocity adjacent to the wall. Consequently, the wall 
velocity gradient decreases. Moreover, the boundary layer thickness becomes thinner in the slip  
flow regime. 
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Figure 3. Distribution velocity (a) and velocity gradient (b) as a function of η for various 
values of K when M = 0.5, fw = 0.2. 

 
(a) 

 
(b) 

The combined effect of the slip coefficient K, the suction/injection parameter fw and magnetic 
parameter M on the velocity and velocity gradient adjacent to the wall has been illustrated in  
Figure 4(a),(b), respectively. It is evident that an increase in all magnetic parameter, suction and slip 
coefficient tends to increase fluid velocity adjacent to the wall. Moreover, in the presence of the slip, 
the magnetic parameter can increase fluid velocity both inside the boundary layer and adjacent to the 
wall effectively. As the sum of last two terms of the momentum equation is positive, fluid motion in 
the boundary layer region increases as a result of Lorenz force. Consequently, the electrically 
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conducting fluid receives a push from the magnetic force—the mechanism by which the magnetic field 
has the potential to manipulate an electrically conducting fluid in the micro scale system. Finally, it 
can be observed that skin friction coefficient increases with the increase of magnetic parameter and 
suction, while slip coefficient shows an opposite effect. 

Figure 4. (a) Variation of the f'(0) and (b) f''(0) as a function of K for various values of  
fw and M. 

 
(a) 

 
(b) 

3.2. Effects on Temperature Field and Heat Transfer 

The dimensionless temperature ( ) and temperature gradient | ′( )| profiles for different values of 
the Biot number a (0.1, 1, 5 or 100, corresponding to an increase in convective heating) when Pr = 7,  
K = 0.5, fw = 0.2, Ec = 0 and M = 0.5 are shown in Figure 5(a),(b), respectively. Given that convective 
heating increases with Biot number, a → ∞ simulates the isothermal surface, shown in Figure 5(a), 
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where θ(0) = 1 as a→∞. In fact, a high Biot number indicates that the internal thermal resistance of the 
plate is higher than the boundary layer thermal resistance. As a result, these figures illustrate that  
an increase in the Biot number leads to increase of both fluid temperature and temperature  
gradient, efficiently. 

Figure 5. Distribution of temperature (a) and temperature gradient (b) as function of η for 
various values of Biot number a when Pr = 7, K = 0.5, fw = 0.2, Ec = 0 and M = 0.5. 

 
(a) 

 
(b) 

Figure 6(a),(b) depicts dimensionless temperature and temperature gradient for various values of Ec 
when a = 5, K = 0.5, fw = 0.2, Pr = 7 and M = 0.5. Although an increase in the temperature profiles, as 
well as the thickness of the boundary layer, is observed with an increase in the Eckert number, it yields 
a decrease in the rate of heat transfer. Thus, by varying the Eckert number, the wall temperature 
distribution can be manipulated. Figure 6(b) depicts the heat transfer rate decrease with the Eckert 
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number, where the interception point between temperature gradient profiles, indicates faster decrement 
for lower Eckert numbers. 

Figure 6. Distribution of temperature (a) and temperature gradient (b) as a function of η 
for various values of Ec when a = 5, K = 0.5, fw = 0.2, Pr = 7 and M = 0.5. 

 
(a) 

 
(b) 

Temperature profiles and the corresponding gradients for various values of K at Pr = 7, Ec = 0.5,  
fw = 0.2, a = 5 and M = 0.5 are shown in Figure 7(a),(b) respectively. It is evident that, at high slip 
coefficients, the temperature reduces faster and the boundary layer becomes thinner. This suggests that 
the heat transfer rate of liquids increases significantly with the increase of slip flow coefficient, as the 
change from 0 to 2 yields an increase in the heat transfer rate over surface structure by up to  
around 75%.  
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Figure 7. Distribution of temperature (a) and temperature gradient (b) as a function of η 
for various values of K when Pr = 7, Ec = 0.5, fw = 0.2, a = 5 and M = 0.5. 

 
(a) 

 
(b) 

Figure 8(a),(b) shows the effect of magnetic parameter on temperature and temperature gradient 
profiles, respectively, when Pr = 7, Ec = 0.5, fw = 0.2, K = 0.5 and a = 5. It is evident that the increase 
of the magnetic parameter results in the decrease of temperature profiles. Moreover, the interception 
point between temperature gradient profiles suggests faster decrements for high magnetic parameters. 
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Figure 8. Distribution of temperature (a) and temperature gradient (b) as a function of η 
for various values of M when Pr = 7, Ec = 0.5, fw = 0.2, K = 0.5 and a = 5. 

 
(a) 

 
(b) 

Figure 9(a),(b) depicts the temperature and the corresponding gradient profiles for various values of 
Prandtl number when K = 0.5, a = 5, fw= 0.2, M = 0.5 and Ec = 0.5, indicating that an increase in the 
Prandtl number results in a faster decrease in the temperature profiles as well as the thickness of the 
boundary layer, causing the increase in the heat transfer rate. 
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Figure 9. Distribution of temperature (a) and temperature gradient (b) as a function of η 
for various values of Pr when K = 0.5, a = 5, fw = 0.2, M = 0.5 and Ec = 0.5. 

 
(a) 

 
(b) 

Figure 10(a),(b) illustrates the effect of slip coefficient and Biot number on θ(0) and |θ'(0)|, 
respectively, for M = 0.3, Pr = 7, fw = 0.2 and Ec = 0.2. It is evident that both the fluid temperature 
adjacent to the wall and the heat transfer rate increase effectively with an increase in Biot number. In 
contrast, although the increase in the slip coefficient also increases the heat transfer rate, it reduces the 
wall temperature. It is interesting to note that the slip boundary condition can become a useful 
alternative technique of drag reduction, while increasing heat-transfer effectiveness. 
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Figure 10. (a) Variation of the θ(0) and (b) |θ'(0)| as a function of a for various values of K 
when M = 0.3, Pr = 7, fw = 0.2 and Ec = 0.2. 

 
(a) 

 
(b) 

Figure 11(a),(b) shows the effect of K and Ec on θ(0) and |θ'(0)| respectively when a = 0.1,  
fw = 0.2, Pr = 7 and M = 0.5. In high wall shear stress conditions, viscous dissipation effect is 
important. Thus, the effects of viscous dissipation should be much more important for low slip 
coefficients, illustrated in Figure 11(a),(b). Furthermore, the Eckert number can decrease the heat 
transfer rate, whereas it tends to increase wall temperature.  
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Figure 11. (a) Variation of the θ(0) and (b) |θ'(0)| as a function of K for various values of 
Ec when a = 0.1, fw = 0.2, Pr = 7 and M = 0.5. 

 
(a) 

 
(b) 

Figure 12(a),(b) depicts the effect of K, Pr and M on θ(0) and |θ'(0)|, respectively. It is evident that 
the increase in the magnetic parameter decreases the heat transfer rate, whereas it increases wall 
temperature. Figure 13(a),(b) show the combined effect of Ec, fw and a on θ(0) and |θ'(0)|, respectively, 
when K = 0.5, Pr = 7 and M = 0.3. In this context, it is important to mention that suction/injection 
refers to transpiration of the surface through which wall temperature can be reduced/increased, 
respectively, i.e., Eckert number increases fluid temperatures at the wall. Moreover, as suction 
increases the heat transfer rate, while injection has an opposite effect, suction/injection effect can be 
neglected at low Biot numbers where the boundary layer thermal resistance is high compared to the 
internal thermal resistance. 
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Figure 12. (a) Variation of the θ(0) and (b) |θ'(0)| as a function of K for various values of 
M and Pr when a = 0.1, Ec = 0, and fw = 0. 

(a) 

(b) 
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Figure 13. (a) Variation of the θ(0) and (b) |θ'(0)| as a function of fw for various values of a 
and Ec when K = 0.5, Pr = 7 and M = 0.3. 

(a) 

(b) 

4. Conclusions  

Due to the unique mechanisms of fluid flow and heat transfer control in micro scale devices, this 
paper evaluates the slip MHD flow and heat transfer of an electrically conducting liquid over a 
permeable surface in the presence of the viscous dissipation effects under convective boundary 
conditions. A local similarity solution is applied at a fixed point along the surface. Based on the results 
presented above, the following specific conclusions have been reached: 
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• The skin friction coefficient increases with the rise of both suction and M, while it decreases 
with K and injection. Moreover, the effects of both M and fw on the wall shear stress are much 
more significant at low K. 

• Changes in M and fw in the presence of slip boundary condition can efficiently manipulate the 
wall fluid velocity, which increases with the increase of M, K and suction.  

• The wall temperature decreases with the increase in K, M, Pr and suction, whereas it increases 
with the increase of Ec, a, and injection.  

• The heat transfer rate increases with the increase of Pr, a, K, M and suction, while it decreases 
with the increase of Ec and injection. 

• In the slip flow regime, under low Biot number conditions, the permeability effects on heat 
transfer rate tend to be negligible. 
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