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Abstract: Short-term load forecast (STLF) is an important operational function in both 
regulated power systems and deregulated open electricity markets. However, STLF is not 
easy to handle due to the nonlinear and random-like behaviors of system loads, weather 
conditions, and social and economic environment variations. Despite the research work 
performed in the area, more accurate and robust STLF methods are still needed due to the 
importance and complexity of STLF. In this paper, a new neural network approach for 
STLF is proposed. The proposed neural network has a novel learning algorithm based on a 
new modified harmony search technique. This learning algorithm can widely search the 
solution space in various directions, and it can also avoid the overfitting problem, trapping 
in local minima and dead bands. Based on this learning algorithm, the suggested neural 
network can efficiently extract the input/output mapping function of the forecast process 
leading to high STLF accuracy. The proposed approach is tested on two practical 
power systems and the results obtained are compared with the results of several 
other recently published STLF methods. These comparisons confirm the validity of the 
developed approach. 
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1. Introduction 

Load forecasting consists of the prediction of electrical load demand of a power system for future 
time intervals. For short-term load forecasting (STLF), the forecast step is usually from a fraction of an 
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hour (e.g., half hour) to an hour. The forecast horizon is also from one hour to one week ahead, 
although the most common forecast horizon for STLF is the next day.  

STLF is an essential part of an electrical power system’s operation and has been used from many 
years ago due to its importance. It provides input data for many operational functions of power 
systems such as unit commitment, economic dispatch, optimal power flow and security assessment. A 
more accurate STLF can lead to more economic operating decisions and enhance the security level of 
the power system. For instance, several power systems have been studied in [1] and it was concluded 
that for the considered systems a 1% reduction in mean absolute percentage error (MAPE) of the STLF 
decreases variable generation costs by approximately 0.1–0.3% when MAPE is in the range of 3–5%. 
STLF has become even more important with the restructuring of the electric power industry in many 
countries around the world in recent years. In a restructured power system, generating companies must 
be able to forecast the system demand and the corresponding price in order to make appropriate market 
decisions. Moreover, STLF is important for the independent system operator (ISO) to schedule 
generators, determine reserve levels, predict power system security, provide information to the 
dispatcher and operate the market [2]. Furthermore, load forecast is usually a key input for the 
prediction of electricity prices [3]. 

However, STLF is not an easy task, as electrical load time series display non-stationary behavior. 
Moreover, it is a dynamic nonlinear input/output mapping function of many exogenous variables (such 
as weather conditions), in addition to its historical values [3]. In deregulated electricity markets, the 
interaction between load demand and electricity price signals and changes in the energy-use patterns of 
customers due to the variability of electricity price can further complicate STLF [4]. The importance 
and complexity of this forecasting process has motivated many research works in the area. Time series 
models for STLF such as ARMA (Auto-Regressive Moving Average) [5] and modified ARMA [6], 
nonparametric regression [7], Kalman filter [8], and neural network (NN) [9,10] have been presented 
in the literature. Recently, some research works have combined different forecast techniques and 
proposed more efficient hybrid STLF methods. For instance, a combination of fuzzy linear regression 
and general exponential smoothing [11], a two-stage hybrid network composed of self-organized map 
(SOM) and support vector machine (SVM) [3], a combination of similar day and NN techniques [12] 
and hybridization of forecast aided state estimator with NN [13] have all been presented for STLF. 
Detailed reviews of different STLF methods can be found in [1,14,15]. 

Despite the research work performed in the area, more accurate and robust STLF methods, that can 
be easily adapted to different sites, are still in demand. In this paper, a new STLF method which can be 
considered as a hybridization of a NN with a novel stochastic search technique is presented. The 
proposed stochastic search technique is a modified harmony search algorithm used for the training of 
the NN based forecast engine. Despite the classical NN training mechanisms, the modified harmony 
search algorithm can efficiently search the solution space in various directions thus avoiding being 
trapped in local minima and dead bands. With the aid of this algorithm, the NN based forecast engine 
can effectively learn the input/output mapping function of a load time series presenting high STLF 
accuracy for any power system. 

The rest of the paper is organized as follows. In the second Section, the proposed forecast engine 
and its learning algorithm are presented. Obtained numerical results from extensive testing of the 



Energies 2011, 4                            
 

490

proposed approach on different real world power systems are presented in Section 3 and compared 
with the results of several other STLF methods. Section 4 concludes the paper. 

2. The Proposed STLF Strategy  

The structure of the proposed STLF strategy, including a preprocessor and suggested hybrid 
forecast engine, is shown in Figure 1. The focus of this paper is on the new hybrid forecast 
engine module.  

Figure 1. Structure of the proposed STLF strategy including the preprocessor and hybrid 
forecast engine. 

 

However, before proceeding to this module, the applied preprocessor should be first introduced to 
describe the performance of the proposed STLF strategy. The preprocessor receives the input data of 
the proposed strategy, normalizes the data to bring all inputs to the same range, refines the inputs by 
the feature selection process and feeds the hybrid forecast engine by its selected inputs. The input data 
of the STLF strategy, shown by S(t) in Figure 1, is as follows: 

S(t) = {L(t−1),…,L(t−NL),EX1(t),EX1(t−1),…,EX1(t−N1),…,EXP(t),EXP(t−1),…,EXP(t−NP)} (1)

where L(t−1),…,L(t−NL) are the historical values of load, since electrical load is dependent on its past 
values. The output of the STLF strategy is the load forecast of the next time interval, denoted by L(t) in 
Figure 1. The time interval depends on the STLF forecast step; for instance, for an hourly load 
forecast, t is measured in terms of hours. Electrical load is also dependent on exogenous variables 
(such as temperature and humidity), in addition to its past values. These exogenous variables are 
shown by EX1 to EXP in (1). Since, the inputs of (1) have different ranges (such as load and 
temperature); we linearly normalize all inputs and output to be within the range [0,1] to avoid the 
masking effect. Linear normalization is a simple and well-known mathematical transformation. 
Suppose that an input x (such as load, temperature, humidity, etc.) is in the range of [xmin,xmax]. Linear 
normalization of x, to be within the range [0,1], is as follows: 

min

max min
n

x xx
x x

−
=

−
 (2)

where xn indicates normalized value of x in the range of [0,1]. Thus, each input is separately 
normalized based on its own minimum and maximum values. Also, the normalized variable xn can 
easily be returned to the original range [xmin,xmax] by means of the inverse transform: 

Selected Inputs 
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min max min( )nx x x x x= + ⋅ −  (3)

The output of the proposed hybrid forecast engine is in the normalized form, which is returned to 
the actual range by the inverse transform of (3). For each exogenous variable i, both its forecast value 
EXi(t) and past values EXi(t−1),…,EXi(t−Ni) (such as temperature forecast and past temperatures) are 
considered as the input data in (1). Choosing these exogenous variables is dependent on the 
engineering judgment and availability of data. For instance, while residential customers usually have 
high sensitivity to weather conditions (such as temperature), industrial loads are not so sensitive to 
weather parameters [13]. A discussion about this matter can be found in [2]. In (1), NL and N1 to NP 
indicate order of back shift for load L and P exogenous variables EX1 to EXP, respectively. From a data 
mining viewpoint, these orders should be considered high enough so that no useful information is 
missed. In [4], considering short-run trend, daily and weekly periodicity characteristics of hourly load 
time series, at least NL = N1 = … = NP = 200 has been proposed. However, this results in a too large set 
of inputs S(t) in (1), which cannot be directly applied to a forecast engine. Moreover, this large set may 
include ineffective inputs, which complicate the construction of input/output mapping function of the 
STLF (i.e., the mapping function of S(t)→L(t)) for the forecast engine and degrade its performance. 
Thus, the set of inputs S(t) should be refined by a feature selection technique such that a minimum 
subset of the most informative inputs is selected and the other unimportant features are filtered out. For 
this purpose, the two-stage feature selection technique proposed in our previous work [16] is used 
here. This feature selection technique is based on the information theoretic criterion of mutual 
information and can evaluate both relevancy of each input with the output and redundant information 
among inputs. The preprocessor by means of the feature selection technique selects a subset of the 
most relevant and non-redundant inputs among S(t). Details of this feature selection technique can 
be found in [16]. The selected inputs by the preprocessor are given to the proposed hybrid forecast 
engine (Figure 1).  

The proposed forecast engine is a multi-layer perceptron (MLP) neural network trained by a new 
stochastic search technique, i.e., a modified harmony search (MHS) algorithm. In the following, first 
the original harmony search (HS) algorithm is presented and then the proposed MHS is introduced. 
Finally, its application for training of the NN based forecast engine is described. 

HS is an efficient population based stochastic search method, which was first developed by  
Geem et al. [17]. The idea of HS is based on mimicking the improvisation process of music players 
that improvise the pitches of their instruments to obtain better harmony [18]. The harmony in music is 
analogous to the optimization solution, and the musician's improvisations are similar to local and 
global search schemes in optimization methods [19]. Thus, HS has a good potential to be used as an 
optimization technique. Since its inception, HS has successfully been applied to several practical 
optimization problems [18–20]. However, to the best of our knowledge, no research work has so far 
formulated application of HS (or any modified version of it) for NN training. Performance of HS, as an 
optimization method, can be summarized in the form of the following step by step algorithm: 

Step 1. Parameter setup. HS has a few user defined parameters or set points, like the other stochastic 
search techniques (such as genetic algorithm, particle swarm optimization, differential evolution, etc.). 
HS parameters include harmony memory size (HMS), harmony memory considering rate (HMCR), 
pitch adjustingt rate (PAR), number of improvisations (NI), and bandwidth (BW). Similar to the other 
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stochastic search techniques, the values of HS parameters should be first set by the user before 
executing the HS.  

Step 2. Initialization of harmony memory. Consider an optimization problem with ND decision 
variables x1,…,xND. To solve this optimization problem, harmony memory (HM) of HS is a matrix 
as follows: 

1 1 1 1 1
1 2 1

2 2 2 2 2
1 2 1

1 1 1 11
1 2 1

1 2 1

ND ND

ND ND

HMS HMS HMS HMSHMS
ND ND

HMS HMS HMS HMSHMS
ND ND

HV x x x x
HV x x x x

HM
x x x xHV
x x x xHV

−

−

− − − −−
−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (4)

Each individual of the HS population is called a harmony vector (HV), which includes the decision 
variables x1,…,xND. HMS indicates number of harmony vectors of HS population. In (4), the 
superscript of each HV represents its number from 1 to HMS. In other words, the rows of HM matrix 
are individuals or harmony vectors of HS. To initialize HM, the decision variables of each of its HVs 
are randomly initialized within their allowable limits. Then, the value of the objective function, 
denoted by OF(.), is computed for each HV. Moreover, an improvisation counter IC is set to zero. For 
training of the MLP neural network (the forecast engine), the decision variables x1,…,xND are the 
weights of the MLP. Also, the objective function or OF(.) is the error function of the training phase of 
the MLP neural network that should be minimized. This error function will be introduced later. 

Step 3. Improvisation of a new harmony. To produce a new harmony vector 1 2, ,...,new new new new
NDHV x x x⎡ ⎤= ⎣ ⎦ , 

each of its elements new
ix  (1 ≤ i ≤ ND) is generated based on the following cases: 

Case 1. Memory consideration without pitch adjustment: If Rand1 < HMCR & Rand2 > PAR, 
then randomly select new

ix  among the stored values of ith decision variable in the HM,  
i.e., { 1

ix , 2
ix ,…, HMS

ix }. 
In the above rule, Rand1 and Rand2 are two randomly generated numbers with uniform distribution 

in the range of [0,1]. To produce each decision variable new
ix  (1 ≤ i ≤ ND) of the new harmony 

vector newHV , these two random numbers are separately generated. The ith column of HM contains 
the previously stored values of ith decision variable, which in this case (Rand1 < HMCR & 
Rand2 > PAR), new

ix is selected among them. As described in step 1, HMCR and PAR are two user 
defined parameters of HS in the interval [0,1]. Thus, the probability of this case is 
HMCR × (1 − PAR). 

Case 2. Memory consideration with pitch adjustment: If Rand1 < HMCR & Rand2 < PAR, then 
randomly select new

ix  among { 1
ix , 2

ix ,…, HMS
ix }. Moreover, pitch adjustment is also executed in this 

case as follows: 

3new new
i ix x Rand BW= + ×  (5)

where Rand3 is a random number uniformly distributed in the range of [−1,1]. Thus, a random number 
in the range of [−BW,BW] is added to the selected new

ix in this case. As mentioned in Step 1, BW is a 
user defined parameter of HS. The probability of this case is HMCR × PAR.  



Energies 2011, 4                            
 

493

Case 3. Randomization: If Rand1 > HMCR, then randomly generate new
ix  within its allowable 

range. In this case, new
ix  is selected from its entire feasible range not limited to those stored in the 

HM. The probability of this case is (1 − HMCR). After generating all decision variables new
ix (1 ≤ i ≤ ND) 

based on the above three cases, the new harmony vector 1 2, ,...,new new new new
NDHV x x x⎡ ⎤= ⎣ ⎦  is produced.  

Step 4. Update HM. The worst HV of HM owning the highest value of the objective function (the error 
function of the training phase of the MLP neural network) is found. If the produced newHV  has a 
lower OF(.) value than the worst HV, newHV  is included in the HM and instead the worst HV is 
excluded from the HM. Otherwise, the produced newHV  is disregarded and the HM does not change.  

Step 5. Stopping condition. Increment the improvisation counter, i.e., IC = IC + 1. If IC < NI (number 
of improvisations), go back to Step 3; otherwise, terminate the HS algorithm and return the best HV of 
HM, owning the lowest OF(.) value, as the final solution of the optimization problem. 

Here, the BW parameter is adaptively fine-tuned along the improvisations of HS. In each 
improvisation, BW is set to the standard deviation of HS population in the HM, as proposed in [18]. To 
convert this HS to the proposed modified HS (MHS), its improvisation and HM updating mechanisms 
(Steps 3 and 4 of the above algorithm) are improved. For this improvement, two points deserve more 
attention. Although HS can efficiently use the information content of its harmony vectors, the gradient 
of HVs is not considered in the improvisation, while the gradient information is usually effective in the 
search process illustrating further useful search directions in the solution space. Moreover, despite the 
high diversity of HS search process, it does not focus on the promising areas of the solution space. 
However, an effective stochastic search technique should also be able to concentrate on promising 
areas of the solution space and enhance the quality of the potential solution in the promising region. 
Considering these two points, a new mutation operator is added to the improvisation (Step 3) of HS. 
Suppose that the output of the mutation operator is shown by ,1 ,2 ,, ,...,new new new new

m m m m NDHV x x x⎡ ⎤= ⎣ ⎦ . Each of its 
elements ,

new
m ix  (1 ≤ i ≤ ND) is produced as follows: 

, .( )new best j k
m i i i ix x x xβ= + −  (6)

where best
ix  is the ith element (decision variable) of the best HV, owning the lowest OF(.) value, of the 

current HM; j
ix  and k

ix  indicate the ith element of two randomly selected harmony vectors j and k of 
the current HM, respectively; β is a scaling factor controlling the effect of the differential variation. 
The mutation operation of (6) has been inspired from the mutation operation of differential evolution 
(DE) algorithm [21]. However, the random individuals j and k of DE mutation operation are selected 
one time for all elements of the new individual. On the other hand, in the mutation operation of (6), the 
random harmony vectors j and k are separately selected for each element ,

new
m ix of the new individual 

new
mHV . In this way, the proposed mutation operation can benefit from higher diversity in its search 

process and is also more compatible with the improvisation of HS that separately generates each 
element new

ix of newHV . In step 3 of the proposed MHS, the mutation operation of (6) is executed in 
addition to the improvisation of HS. In other words, both newHV  and new

mHV  are produced by the 
improvisation and mutation operation, respectively, in the step 3 of the MHS. Then, step 4 of the MHS 
is sequentially performed for the two newly generated harmony vectors newHV  and new

mHV , 
respectively, to update the HM. In other words, newHV  is first compared with the worst HV of the HM 
as described in the step 4 of the HS algorithm. If it is replaced by newHV , the new worst HV of the 
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HM is found. Similarly, new
mHV  is compared with the newly found worst HV and replaces it provided 

that new
mHV has a lower OF(.)value than it. 

The proposed MHS saves the positive characteristics of the original HS (such as its high exploration 
capability to search different areas of the solution space), since the new operator of the MHS is 
performed in addition to the improvisation of HS. At the same time, the MHS can remedy the two 
problems of HS. The proposed mutation operation of (6), by computation of difference between two 
randomly chosen harmony vectors from the HM, determines a function gradient in a given area (not in 
a single point), and so can effectively employ the gradient information in its search process. Moreover, 
this mutation operation searches around the best harmony vector of the HM ( best

ix , 1 ≤ i ≤ ND) in each 
iteration. If a promising area is found along the iterations, it is represented by the best HV of the HM 
and thus the MHS can search this area and find good solutions within it.  

After introducing the proposed MHS, its application for training of the NN based forecast engine is 
presented. For this purpose, as previously described, the decision variables x1,…,xND of (4) are 
considered as the weights of the MLP neural network. For instance, if the MLP has 20 neurons in the 
input layer (corresponding to 20 selected inputs by the preprocessor), 10 neurons in the hidden layer 
and one neuron in the output layer, it will have 20 × 10 + 10 × 1 = 210 weights. These 210 weights are 
considered as x1,…,xND of the MHS (ND = 210). We should also determine the OF(.)of the MHS or the 
error function of the MLP neural network. To train a MLP neural network, the error function can be 
selected as the training error or validation error. Here, validation error is selected as the error function 
of the MLP, since it can better evaluate the generalization performance of the NN (generalization is a 
measure of how well the NN performs on the actual problem once training is complete) [22,23]. 

Finally, the performance of the whole proposed STLF strategy, shown in Figure 1, can be 
summarized as the following stepwise procedure: 

Step 1. Preprocessor normalizes input data and selects the most informative inputs for the STLF.  

Step 2. Using the selected inputs of the preprocessor, the hybrid forecast engine is trained by the 
proposed MHS. The decision variables x1,…,xND of the final solution of the MHS (the best HV of the 
last iteration) are considered as the weights of the NN based forecast engine. 

Step 3. After training the MLP neural network and determining its weights, it is ready to forecast the 
future hourly loads. The MLP has one neuron in its output layer for predicting load of the next time 
interval, i.e., L(t) (Figure 1). Multi-period STLF (e.g., prediction of load for the next 24 hours) is 
reached via recursion, i.e., by feeding input variables with the forecaster’s outputs. For instance, 
predicted load for the first hour is used as L(t−1) for the load forecast of the second hour provided that 
L(t−1) is among the selected inputs for the forecast engine. 

3. Numerical Results 

As in any research area, in STLF it is important to allow the reproduction of one’s results. The only 
way of doing that is using public domain data sets. Two real-life STLF test cases are considered in this 
paper to evaluate the performance of the proposed forecast strategy. The first STLF test case is related 
to the Pennsylvania-New Jersey-Maryland (PJM) power system, which is a well-established electricity 
market in the U.S. The employed data for load and weather parameters (including temperature and 
humidity) of this test case are publicly available data obtained from websites [24,25]. The set of inputs 
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S(t), shown in (1), is constructed from the historical values of load and historical and forecast values of 
the two exogenous variables. Then, the proposed STLF strategy, including the preprocessor and hybrid 
forecast engine, is executed by the constructed data based on the step by step procedure of the previous 
section. Its obtained results for day-ahead STLF of the PJM test case are shown in Table 1 and 
compared with the results of five other well-known forecast methods including multi-variate ARMA 
(Auto-Regressive Moving Average) time series, RBF (Radial Basis Function) neural network, MLP 
neural network trained by BR (Bayesian Regularization) learning algorithm, MLP neural network 
trained by BFGS (Broyden, Fletcher, Goldfarb, Shanno) learning algorithm, and MLP neural network 
trained by LM (Levenberg-Marquardt) learning algorithm. The five benchmark methods of Table 1 
have been frequently used in the literature for load forecast of power systems such as [2,5,14,15,22]. 
The reported results in Table 1 are in terms of well-known error criterion of MAPE (mean absolute 
percentage error) defined as follows: 

1

( ) ( )1(%) 100
( )

NH act for

actt

L t L t
MAPE

NH L t=

−
= ×∑  (7)

where Lact(t) and Lfor(t) represent actual and forecasted values of load in hour t, respectively; NH 
indicates number of hours in the forecast horizon. Here, NH = 24 for day ahead STLF. Four test weeks 
corresponding to the four seasons of 2009 (including the third weeks of February, May, August, and 
November) are considered for this numerical experiment indicated in the first column of Table 1. This 
is to represent the whole year in the numerical experiments. The MAPE value for each test week, 
shown in Table 1, is the average of seven MAPE values of its corresponding forecast days. Also, the 
average result of the four test weeks is shown in the last row of Table 1. For the sake of a fair 
comparison, all forecast methods of Table 1 have the same training period including 50 days prior to 
each forecast day. Also, all of these methods have the same set of inputs S(t) and the same 
preprocessor (Figure 1). Thus, each forecast method is fed by the same selected inputs, since the 
purpose of this numerical experiment is comparison of the efficiency of different forecast engines.  

Table 1. Comparison of the proposed hybrid forecast engine with five other prediction 
methods for day-ahead STLF of the PJM test case in the four test weeks of year 2009 (the 
reported results are in terms of MAPE criterion). 

Test 
Week 

Multi-Variate 
ARMA (%) 

RBF 
(%) 

MLP + BR
(%) 

MLP + BFGS
(%) 

MLP + LM 
(%) 

Proposed
(%) 

Feb 4.10 2.38 2.55 2.76 2.17 1.44 
May 4.45 3.06 2.63 2.85 2.44 1.91 
Aug 3.09 2.01 2.61 2.59 1.86 1.10 
Nov 3.01 2.24 2.28 2.63 1.75 1.13 

Average 3.66 2.42 2.52 2.71 2.05 1.39 
 

We observe from Table 1 that the proposed hybrid forecast engine outperforms all the other forecast 
methods shown in Table 1. The proposed hybrid forecast engine has both the lowest average MAPE, 
shown in the last row of Table 1, and the lowest MAPE of each test week. The superiority of the 
proposed forecast engine compared with the multi-variate ARIMA time series technique, RBF neural 
network, and MLP neural network trained by BR, BFGS and LM learning algorithms is related to its 
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efficient training mechanism, i.e., MHS. MHS can effectively search the solution space and optimally 
determine the values of the weights for the NN based forecast engine leading to its high STLF 
accuracy. To better illustrate this matter, in Table 2, the proposed MHS is compared with five other 
stochastic search techniques, including simulated annealing (SA), genetic algorithm (GA), particle 
swarm optimization (PSO), differential evolution (DE) and HS for training of the NN based forecast 
engine. For instance, in the first benchmark method of Table 2, the proposed MHS is replaced by SA 
(i.e., SA trains the NN based forecast engine instead of MHS) and obtained STLF results from the 
forecast engine are reported. The results of the other benchmark methods of Table 2 have been 
obtained similarly. All methods of Table 2 have the same training period, selected inputs and four test 
weeks like the methods of Table 1. The reported results for each stochastic search method in Table 2 
are average results of ten trial runs with random initializations. The user defined parameters of each 
method are fine-tuned by the search procedure proposed in [26], which is an efficient cross-validation 
technique. As seen from Table 2, the proposed MHS outperforms all other stochastic search methods. 
Using the proposed MHS as the training mechanism of the NN based forecast engine leads to the 
lowest MAPE of each test week. Moreover, MHS has considerably lower average MAPE than the 
other stochastic search methods (indicated in the last row of Table 2). By combining positive 
characteristics of HS and new mutation operator, the proposed MHS can benefit from both high 
exploration capability to avoid being trapped in local minima and high ability to efficiently search 
promising areas of the solution space. 

Table 2. Comparison of the proposed MHS with five other stochastic search techniques for 
day-ahead STLF of the PJM test case in the four test weeks of year 2009 (the reported 
results are in terms of MAPE criterion). 

Test Week SA (%) GA (%) PSO (%) DE (%) HS (%) MHS (%)
Feb 3.98 2.68 2.39 2.11 1.87 1.44 
May 4.86 3.46 2.68 2.35 2.21 1.91 
Aug 2.69 2.38 2.37 2.21 1.51 1.10 
Nov 3.17 3.04 2.69 2.33 1.53 1.13 

Average 3.68 2.89 2.53 2.25 1.78 1.39 

Table 3. Comparison of the STLF results of the proposed strategy with the STLF results of 
the PJM ISO for the four test weeks of year 2009 (the reported results are in terms of 
MAPE criterion). 

Test Week PJM ISO (%) Proposed Strategy (%) 
Feb 4.37 1.44 
May 6.49 1.91 
Aug 3.12 1.10 
Nov 3.50 1.13 

Average 4.37 1.39 
 

In Table 3, the STLF results of the proposed strategy are compared with the STLF results of the 
PJM independent system operator (ISO). Observe from this table that the STLF errors of the proposed 
strategy are considerably lower than the STLF errors of the PJM ISO indicating its forecast capability. 
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To also give a graphical view about the STLF accuracy of the proposed strategy, its obtained results 
for the four test weeks are shown in Figures 2–5. From these figures, it is seen that the forecast curve 
accurately follows the real curve and only minor deviations are seen in the prediction of the proposed 
strategy. These figures further illustrate the accuracy and robustness of the proposed STLF strategy. 

Figure 2. Curves of real values, forecast values and forecast errors for the first test week of 
Table 1 (the forecast results are related to the proposed strategy). 

 

Figure 3. Curves of real values, forecast values and forecast errors for the second test week 
of Table 1 (the forecast results are related to the proposed strategy). 
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Figure 4. Curves of real values, forecast values and forecast errors for the third test week 
of Table 1 (the forecast results are related to the proposed strategy). 

 

Figure 5. Curves of real values, forecast values and forecast errors for the fourth test week 
of Table 1 (the forecast results are related to the proposed strategy). 

 
 

To illustrate the performance of the proposed STLF strategy in a long run, its obtained results for 
one year are shown in Table 4 and compared with the results of the PJM ISO. The reported MAPE 
value for each test month in this table is average of its corresponding daily MAPE values. At first, 
better accuracy of the STLF results of the proposed strategy compared with the STLF results of the 
PJM ISO can also be seen from Table 4. For each test month of this table, the proposed strategy has 
considerably lower MAPE value than the STLF of the PJM ISO. Moreover, the results of the proposed 
STLF strategy for the 12 test months of year 2009 are close to its results for the four test weeks of year 
2009. For instance, average daily MAPE value for the whole year (1.46%) is close to average daily 
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MAPE of the four test weeks (1.39%). Thus, it is seen that the proposed strategy produces good STLF 
results for one year as well. This numerical experiment further illustrates STLF accuracy and 
robustness of the proposed strategy in long run. 

Table 4. Comparison of the STLF results of the proposed strategy with the STLF results of 
the PJM ISO for the 12 months of year 2009 (the reported results are in terms of 
MAPE criterion). 

Test Month PJM ISO (%) Proposed Strategy (%) 
Jan 5.25 1.67 
Feb 3.73 1.18 

March 4.67 1.43 
April 4.27 1.32 
May 4.95 1.62 
June 5.44 1.73 
July 4.92 1.53 
Aug 4.29 1.35 
Sept 4.72 1.54 
Oct 4.36 1.33 
Nov 4.28 1.32 
Dec 4.71 1.53 

Whole year 4.64 1.46 
 

The hourly electricity load in New York City and weather data observed at Central Park have been 
considered as the second test case of this paper. The employed data for this test case has been obtained 
from [27]. The proposed STLF strategy has the same training period and the same cross-validation 
technique of the previous numerical experiment. The obtained day-ahead STLF results for the test case 
are shown in Table 5. The error criterion of MAE is considered in addition to MAPE in this numerical 
experiment, which is defined as follows:  

1

1 ( ) ( )
NH

act for
t

MAE L t L t
NH =

= −∑  (8)

where Lact(t), Lfor(t) and NH are as defined for (7). The MAE and MAPE results of New York 
ISO [27], support vector machine (SVM) [3], hybrid network (composed of Self-Organized Map 
(SOM) for data clustering and groups of 24 SVMs for the next day load forecast) [3], and wavelet 
transform combined with neuro-evolutionary algorithm [22] for this test case are also reported in 
Table 5 for comparison. The results of the benchmark methods of this table have been quoted from 
their respective references. The same test period (January 2004 and July 2004) and the same error 
criteria (MAE and MAPE) of these references are also adopted for the proposed STLF strategy. The 
reported MAE and MAPE values for each test month in Table 5 are average of its corresponding daily 
MAE and MAPE values, respectively. Observe that the proposed strategy has the lowest MAE and the 
lowest MAPE among all forecast methods of Table 5 in both the test months. This comparison 
illustrates the effectiveness of the proposed STLF strategy. Its obtained results for the two test months 
are also graphically shown in Figures 6 and 7, respectively. As seen from these figures, the forecast 
curve is close to real curve, such that in most of the time these two curves cannot be discriminated, and 
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the error curve has small values. This numerical experiment further validates the efficiency of the 
proposed hybrid forecast engine. 

Although the load patterns of public holidays usually have some differences with respect to normal 
days, we treated these days like normal days in this research work and good STLF results have been 
obtained for both the test cases. However, if in a power system, the STLF accuracy of public holidays 
is not satisfactory, they can be separately treated with specific schemes. More details about this matter 
can be found in [3,6].  

Total computation time required for the setup of the proposed STLF strategy including execution of 
the preprocessor, training process of the hybrid forecast engine by the MHS and fine-tuning of the user 
defined parameters by the search procedure is about 20 minutes for the test cases of this paper, 
measured on a simple hardware set of Pentium P4 3.2 GHz with 4 GB RAM. This setup time is 
completely reasonable within a day-ahead decision making framework. The computer code of the 
proposed STLF strategy has been written in the MATLAB software package version 7.8.0.347. 

Table 5. Day-ahead STLF results of New York city for the two test months of January 
2004 and July 2004. 

Type of Forecast 
January 2004 July 2004 

MAE 
(MW) 

MAPE 
(%) 

MAE 
(MW) 

MAPE 
(%) 

New York ISO [27] 163.05 2.86 245.47 3.55 
SVM [3] 143.21 2.38 207.74 3.03 

Hybrid Network [3] 106.97 1.82 162.2 2.29 
Wavelet Transform +  

Neuro-Evolutionary Algorithm [22] 87.01 1.68 123.62 2.02 

Proposed Strategy 72.73 1.25 115.71 1.57 
 

Figure 6. Curves of real values, forecast values and forecast errors for the test month of 
January 2004 of Table 5 (the forecast results are related to the proposed strategy). 
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Figure 7. Curves of real values, forecast values and forecast errors for the test month of 
July 2004 of Table 5 (the forecast results are related to the proposed strategy). 

 

4. Conclusions 

In this paper, a new STLF strategy composed of a preprocessor and a novel hybrid forecast engine 
is proposed. The preprocessor performs normalization and feature selection tasks. The hybrid forecast 
engine is a NN based predictor equipped with a new learning algorithm, i.e., MHS. The proposed 
MHS has both high local and global search abilities and can optimally determine the weights of the 
NN to minimize its validation errors. Unlike the traditional learning algorithms of neural networks 
(such as gradient based techniques), which search the solution space in a specific direction, MHS can 
widely search the solution space in various directions, thus avoiding being trapped in local minima. 
Based on the MHS, the proposed hybrid forecast engine can efficiently learn the input/output mapping 
function of the forecast process, and predict the future values of the forecast feature (here, hourly load) 
with high accuracy and robustness. Effectiveness of the proposed STLF strategy is extensively 
illustrated on two real world test cases. Hybridization of the proposed forecast engine with other 
stochastic search techniques and development of more efficient feature selection techniques will be 
considered in the future research works. 
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