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Abstract: Accurate electric load forecasting has become the most important issue in 
energy management; however, electric load demonstrates a seasonal/cyclic tendency from 
economic activities or the cyclic nature of climate. The applications of the support vector 
regression (SVR) model to deal with seasonal/cyclic electric load forecasting have not been 
widely explored. The purpose of this paper is to present a SVR model which combines the 
seasonal adjustment mechanism and a chaotic immune algorithm (namely SSVRCIA) to 
forecast monthly electric loads. Based on the operation procedure of the immune algorithm 
(IA), if the population diversity of an initial population cannot be maintained under 
selective pressure, then IA could only seek for the solutions in the narrow space and the 
solution is far from the global optimum (premature convergence). The proposed chaotic 
immune algorithm (CIA) based on the chaos optimization algorithm and IA, which 
diversifies the initial definition domain in stochastic optimization procedures, is used to 
overcome the premature local optimum issue in determining three parameters of a SVR 
model. A numerical example from an existing reference is used to elucidate the forecasting 
performance of the proposed SSVRCIA model. The forecasting results indicate that  
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the proposed model yields more accurate forecasting results than the ARIMA and  
TF-ε-SVR-SA models, and therefore the SSVRCIA model is a promising alternative for 
electric load forecasting. 

Keywords: support vector regression (SVR); seasonal adjustment; chaotic immune 
algorithm (CIA); electric load forecasting 

 

1. Introduction  

As the development of the economy is vigorously proceeds, ensuring that electric energy is 
available for all electricity users whenever and wherever needed (i.e., meeting users’ demands) will be 
an important challenge for the electric energy industry. Therefore, accurate electric load forecasting is 
vital not only for the energy transactions in a competitive electricity market [1], but also for those 
resource-constrained developing countries (like Taiwan) where the capability to import and export 
electricity is limited [2]. However, prediction of the electric load is a complex problem, because it is 
influenced by various factors, including climatic factors, social activities, and seasonal factors. Climate 
factors depend on the temperature and humidity; social factors imply human social activities including 
work, school and entertainment activities affecting the electric load; seasonal factors then include 
seasonal climate changes and load growth year after year. 

There are widespread references with regard to the efforts improving the accuracy of forecasting 
methods. One of these methods is a weather-insensitive approach which used historical load data to 
infer the future electric load. It is famous known as Box-Jenkins’ ARIMA [3–5], which is a  
weather-insensitive approach that uses historical load data to infer the future electric load. In addition, 
Christianse [6] and Park et al. [7] have proposed exponential smoothing models by employing Fourier 
series transformation to forecast electric loads. The disadvantage of these methods is that they are time 
consuming, particularly for the situation while the number of variables is increased. State space and 
Kalman filtering technologies, developed to reduce the difference between actual loads and prediction 
loads (random error), are employed in load forecasting models. This approach introduces the periodic 
component of load as a random process. It requires historical data for more than 3- to 10-years to 
construct the periodic load variation and to estimate the dependent variables (load or temperature) of 
power system [8–10]. The disadvantage of these methods is that it is difficult to avoid the observation 
noise in the forecasting process, especially when multiple variables are considered. Regression models 
construct causal-effect relationships between electric load and independent variables. The most 
popular models are linear regression, proposed by Asbury [11], considering the “weather” variable into 
forecasting model. Papalexopoulos and Hesterberg [12] added the factors of “holiday” and 
“temperature” into their proposed model. The proposed model used a weighted least squares method to 
obtain robust parameter estimation encountering heteroskedasticity. Soliman et al. [13] proposed a 
multivariate linear regression model in load forecasting, including temperature, wind cooling/humidity 
factors. Their empirical results indicate that the proposed model outperforms the harmonic model as 
well as the hybrid model. These models are based on linear assumptions, but the use of these 
independent variables is unjustified because of the terms are known to be nonlinear.  
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In the recent decade, lots of researchers have tried to apply artificial intelligence techniques to 
improve the accuracy of the load forecasting. Knowledge-based expert systems (KBES’) and artificial 
neural networks (ANNs) are the popular representatives. The KBES approaches performed electric 
load forecasting by simulating the experiences of system operators who were well-experienced in the 
electricity generation processes, such as Rahman and Bhatnagar [14]. The characteristic feature of this 
approach is that it is rule-based, which implies that the system transforms new rules from received 
information. In other words, it is presumed that an expert trained using existing data will provide 
increased forecasting accuracy [14–16]. This approach is a derivation of the rules from on-the-job 
training and sometimes transforming the information logic into equations could be impractical. Lots of 
researchers have also tried to apply ANNs to improve the load forecasting accuracy. Park et al. [17] 
proposed a 3-layer back-propagation neural network for daily load forecasting problems. The inputs 
include three indices of temperature: average, peak and lowest loads. The outputs are peak loads. The 
proposed model outperforms the regression model and the time series model in terms of forecasting 
accuracy index and mean absolute percent error (MAPE). Novak [18] applied radial basis function 
(RBF) neural networks to forecasting electricity loads. The results indicate that RBF is at least 
11 times faster and more reliable than back-propagation neural networks. Darbellay and Slama [19] 
applied ANNs to predict the electricity load in the Czech Republic. The experimental results indicate 
that the proposed ANN model outperformed the ARIMA model in terms of forecasting accuracy index, 
normalized mean square error (NMSE). Abdel-Aal [20] proposed an Abductive network to conduct 
one-hour-ahead load forecasting for five years. Hourly temperature and hourly load data are 
considered. The results of the proposed model are very promising in terms of forecasting accuracy 
index, MAPE. Hsu and Chen [21] employed the ANN model to forecast the regional electricity load in 
Taiwan. The empirical results indicate that proposed model is superior to the traditional regression 
model. However, it is possible to get trapped in local minima and be subjective in selecting the model 
architecture [22]. 

Support vector machines (SVM) were originally developed to solve pattern recognition and 
classification problems. With the introduction of Vapnik’s ε-insensitive loss function, SVMs have 
been extended to solve nonlinear regression estimation problems, i.e., the so-called support vector 
regression (SVR), and have been successfully applied to solve forecasting problems in many  
fields such as financial time series (stocks indexes and exchange rates) forecasting [23–27], tourist  
arrival forecasting [28,29], the engineering and software field (production values and reliability  
forecasting) [30,31], atmospheric science forecasting [32–35], and so on. Meanwhile, the SVR model 
has also been successfully applied to forecasting electric loads [36–41]. The practical results indicated 
that poor forecasting accuracy suffered from the lack of knowledge of the selection of the three 
parameters (σ, C, and ε) in a SVR model. However, the structured ways for determining three free 
parameters in a SVR model are poor. Recently, some major nature-inspired evolutionary algorithms 
were applied to solve optimization problems, the immune algorithm (IA) being one of them. IA, 
proposed by Mori et al. [42] and used in this study, is based on the learning mechanism of natural 
immune systems. Similar to GA, SA, and PSO, IA is also a population based evolutionary algorithm, 
therefore, it provides a set of solutions for exploration and exploitation of search space to obtain 
optimal/near optimal solutions [43]. In addition, the diversity of the employed population set will 
determine the search results, the desired solution or premature convergence (trapping in a local 
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minimum). To overcome these drawbacks, it is necessary to find some effective approaches and 
improvements of the IA to maintain the population diversity and avoid leading to a local optimum. 
One possible approach is to divide the chromosome population into several subgroups and limit the 
crossover between the members in different subgroups to maintain the population diversity. However, 
such a method would require a huge population size, which is not typical in business forecasting 
application problem solving. Another feasible approach is focused on the chaos approach, due to its 
easy implementation and special ability to avoid being trapped in local optima [44]. Chaos often 
occurrs in a deterministic nonlinear dynamic system [45,46]. It is highly unstable motion in finite 
phase space. Such a motion is very similar to a random process (“randomicity”). Therefore, any 
variable in the chaotic space can travel ergodically over the whole space of interest (“ergodicity”). The 
variation of those chaotic variables obeys delicate inherent rules in spite of the fact that its variation 
may look like being in disorder (“regularity”). In addition, it is extremely sensitive to the initial 
conditions, which is an important property sometimes referred to as the so-called butterfly effect [47]. 
Attempting to simulate numerically a global weather system, Lorenz discovered that minute changes in 
initial conditions steered subsequent simulations towards radically different final states. Based on the 
two advantages of the chaos, the chaotic optimization algorithm (COA) was proposed to solve 
complex function optimizations [45]. The basic idea of the COA is to transform the problem variables 
from the solution space to the chaos space and then perform searches to find out the solution based on 
the three characteristics (randomicity, ergodicity, and regularity) of the chaotic variables. In this 
investigation, the chaotic immune algorithm (CIA) is tried to determine the values of three parameters 
in a SVR model. On the other hand, as indicated in the literature [48–50], electric energy demands also 
demonstrate a cyclic (seasonal) trend caused by the differences in demand from month to month and 
season to season, and the applications of SVR models to deal with cyclic (seasonal) trend time series, 
however, have not been widely explored. Therefore, this paper also attempts to apply the seasonal 
adjustment method [50,51] to deal with seasonal trend time series problems. The proposed SSVRCIA 
model is dedicated to improve forecasting performance in capturing non-linear and seasonal electric 
load changes tendencies. Two other forecasting approaches, the ARIMA and TF-ε-SVR-SA models 
proposed by Wang et al. [50], are used to compare the forecasting accuracy of electric load. The rest of 
this paper is organized as follows: the SSVRCIA model, including the formulation of SVR, the CIA 
algorithm, and the seasonal adjustment process, is introduced in Section 2. A numerical example is 
presented in Section 3. Conclusions are discussed in Section 4. 

2. Methodology of the SSVRCIA Model 

2.1. Support Vector Regression (SVR) Model 

The brief basic concepts of SVMs for the case of regression are introduced. A nonlinear mapping 
hnn ℜ→ℜ⋅ :)(ϕ  is defined to map the input data (training data set) { }N

iii y 1),( =x  into a so-called high 

dimensional feature space (which may have infinite dimensions), hnℜ . Then, in the high dimensional 
feature space, there theoretically exists a linear function, ƒ, to formulate the nonlinear relationship 
between input data and output data. Such a linear function, namely SVR function, is as Equation 1: 

bf += )()( T xwx ϕ  (1) 
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where )(xf  denotes the forecasting values; the coefficients w ( hnℜ∈w ) and b ( ℜ∈b ) are 
adjustable. SVR method aims at minimizing the empirical risk as Equation 2: 

∑
=

+Θ=
N

i
i

T
iemp by

N
fR

1
))(,(1)( xw ϕε  (2) 

where ))(,( by i
T

i +Θ xw ϕε  is the ε-insensitive loss function and defined as Equation 3: 

⎪⎩

⎪
⎨
⎧ ≥−+−−+=+Θ

otherwise
ybifybby ii

T
ii

T

i
T

i ,0
)(,)())(,( εϕεϕϕε

xwxwxw  (3)

In addition, ))(,( by i
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i +Θ xw ϕε  is employed to find out an optimum hyperplane on the high 
dimensional feature space to maximize the distance separating the training data into two subsets. Thus, 
the SVR focuses on finding the optimum hyper plane and minimizing the training error between the 
training data and the ε-insensitive loss function. Then, the SVR minimizes the overall errors: 
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The first term of Equation 4, employing the concept of maximizing the distance of two separated 
training data, is used to regularize weight sizes, to penalize large weights, and to maintain regression 
function flatness. The second term penalizes training errors of )(xf  and y by using the ε-insensitive 
loss function. C is a parameter to trade off these two terms. Training errors above ε  are denoted as ξi, 
whereas training errors below-ε are denoted as ξi. 

After the quadratic optimization problem with inequality constraints is solved, the parameter vector 
w in Equation 1 is obtained from: 

( )∑
=

−=
N

i
iii

1

* )(xw ϕββ  (5) 

where *
iβ , iβ  are obtained by solving a quadratic program and are the Lagrangian multipliers. 

Finally, the SVR regression function is obtained as Equation 6 in the dual space: 

( ) bKf
N

i
iii +−=∑

=1

* ),()( xxx ββ  (6) 

where ),( jiK xx  is called the kernel function, and the value of the Kernel equals the inner product of 
two vectors, ix  and jx , in the feature space )( ixϕ  and )( jxϕ , respectively; that is, 

)()(),( jijiK xxxx ϕϕ= . Any function that meets Mercer’s condition [52] can be used as the  

Kernel function. 
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There are several types of kernel functions. The most used kernel functions are the Gaussian RBF 
with a width of σ : ( )2 2( , ) exp 0.5i j i jK σ= − −x x x x  and the polynomial kernel with an order of d 

and constants a1 and a2: d
jiji aaK )(),( 21 += xxxx . Till now, it has been hard to determine the type of 

kernel functions for specific data patterns [53,54]. However, the Gaussian RBF kernel is not only 
easier to implement, but also capable of nonlinearly mapping the training data into an infinite 
dimensional space, thus, it is suitable to deal with nonlinear relationship problems. Therefore, the 
Gaussian RBF kernel function is specified in this study. 

2.2. Chaotic Immune Algorithm (CIA) in Selecting Parameters of the SVR Model 

The selection of the three parameters, σ, ε and C, of a SVR model influence the forecasting 
accuracy. However, structural methods for confirming efficient selection of parameters efficiently are 
lacking. Recently, Hong [38] applied an immune algorithm (IA) to determine the parameters of a SVR 
model, and found that the proposed model is superior to other competitive forecasting models (ANN 
and regression models). However, based on the IA operation procedure, if the population diversity of 
an initial population cannot be maintained under selective pressure, i.e., the initial individuals are not 
necessarily fully diversified in the search space, then an IA could only seek for the solutions in the 
narrow space and the solution is far from the global optimum (premature convergence). To overcome 
thise shortcoming, it is necessary to find some effective approach and improve the design or 
procedures of the IA to track in the solution space effectively and efficiently. One feasible approach is 
focused on the chaos approach, due to its easy implementation and special ability to avoid being 
trapped in local optima [44]. The application of chaotic sequences can be a good alternative to 
diversify the initial definition domain in stochastic optimization procedures, i.e., small changes in the 
parameter settings or the initial values in the model. Due to the ergodicity property of chaotic 
sequences, it will lead to very different future solution-finding behaviors, thus, chaotic sequences can 
be used to enrich the search behavior and to avoid being trapped in a local optimum [55]. There are 
lots of applications in optimization problema using chaotic sequences [56–60]. Coelho and 
Mariani [61] recently apply a chaotic artificial immune network (chaotic opt-aiNET) to solve the 
economic dispatch problem (EDP), based on Zaslavsky’s map by its spread-spectrum characteristic 
and large Lyapunov exponent to successfully escape from local optimum and to converge to a stable 
equilibrium. Therefore, it is believable that applying chaotic sequences to diversify the initial 
definition domain in IA’s initialization procedure (CIA) is a feasible approach to optimize the 
parameter selection in a SVR model. Recently, Wang et al. [62] also employed similar applications of 
CIA to determine the three parameters of a SVR model and obtained good performance in jumping out 
of the local optimum.  

To design the CIA, many principal factors like identifying the affinity, selection of antibodies, 
crossover and mutation of antibody population are similar to the IA factors, and more procedural 
details about the CIA used in this study are as follows, and the corresponding flowchart is shown in 
Figure 1. 
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Figure 1. Chaotic immune algorithm (CIA) flowchart. 

 

Step 1. Initialization of Antibody Population. The values of the three parameters in a SVR model in 
the ith iteration can be represented as εσ  , , ,)( CkX i

k = . Set 0=i , and we employ Equation 7 to  
map the three parameters among the intervals (Mink,Maxk) into chaotic variable )(i

kx  located in the 

interval (0,1). 
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Then, employing the chaotic sequence, defined as Equation 8 with 4=μ  to compute the next 
iteration chaotic variable, )1( +i

kx : 

)1( )()()1( iii xxx −=+ μ  

)1,0()( ∈ix , ,...2 ,1 ,0=i  
(8) 

where )(ix  is the value of the chaotic variable x at the ith iteration; μ is the so-called bifurcation 
parameter of the system, ]4,0[∈μ . The system behavior varies significantly with μ, the value of μ 
determines whether )(ix  stabilizes at a constant size, wags between a limited sequences of sizes, or 
whether )(ix  behaves chaotically in an unpredictable pattern. For certain values of the parameter μ, of 
which μ = 4 is one, )1,0()( ∈ix , but { }0.75 0.5, ,25.0)( ∉ix , and )(ix  is distributed in the range (0,1), 
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the above system exhibits chaotic behavior. We transform )1( +i
kx  to obtain three parameters for the 

next iteration, )1( +i
kX  with Equation 9: 

)()1()1(
kk

i
kk

i
k MinMaxxMinX −+= ++  (9) 

After this transformation, the three parameters, C, σ, and ε, constitute the initial antibody 
population, and then will be represented by a binary-code string. For example, assume that an antibody 
contains 12 binary codes to represent three SVR parameters. Each parameter is thus expressed by four 
binary codes. Assume the set-boundaries for parameters σ, C, and ε are 2, 10, and 0.5 respectively, 
then, the antibody with binary-code “1 0 0 1 0 1 0 1 0 0 1 1” implies that the real values of the three 
parameters σ, C, and ε are 1.125, 3.125, and 0.09375, respectively. The number of initial antibodies is 
the same as the size of the memory cell. The size of the memory cell is set to 10 in this study. 

Step 2. Identify the Affinity and the Similarity. A higher affinity value implies that an antibody has a 
higher activation with an antigen. To continue keeping the diversity of the antibodies stored in the 
memory cells, the antibodies with lower similarity have higher probability of being included in the 
memory cell. Therefore, an antibody with a higher affinity value and a lower similarity value has a 
good likelihood of entering the memory cells. The affinity between the antibody and antigen is defined 
as Equation 10: 

)1(1 kk dAg +=  (10) 

where dk denotes the SVR forecasting errors obtained by the antibody k. The similarity between 
antibodies is expressed as in Equation 11: 

)1(1 ijij TAb +=  (11) 

where Tij denotes the difference between the two SVR forecasting errors obtained by the antibodies 
inside (existed) and outside (will be entering) the memory cell. 

Step 3. Selection of Antibodies in the Memory Cell. Antibodies with higher values of Agk are 
considered to be potential candidates for entering the memory cell. However, the potential antibody 
candidates with Abij values exceeding a certain threshold are not qualified to enter the memory cell. In 
this investigation, the threshold value is set to 0.9. 

Step 4. Crossover of Antibody Population. New antibodies are created via crossover and mutation 
operations. To perform crossover operation, strings representing antibodies are paired randomly. 
Moreover, the proposed scheme adopts the single-point-crossover principle. Segments of paired strings 
(antibodies) between two determined break-points are swapped. In this investigation, the probability of 
crossover (pc) is set as 0.5. Finally, the three crossover parameters are decoded into a decimal format. 

Step 5. Annealing Chaotic Mutation of Antibody Population. For the ith iteration (generation) 
crossover antibody population ( εσ  , , ,ˆ )( CkX i

k = ) of current solution space (Mink,Maxk) are mapped to 
chaotic variable interval [0,1] to form the crossover chaotic variable space εσ  , , ,ˆ )( Ckx i

k = , as 

Equation 12: 
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where qmax is the maximum evolutional generation of the population. Then, the ith chaotic variable 
)(i

kx  is summed up to )(ˆ i
kx  and the chaotic mutation variable are also mapped to interval [0,1] as in 

Equation 13: 
)()()( ˆ~ i

k
i

k
i

k xxx δ+=  (13) 

where δ is the annealing operation. Finally, the chaotic mutation variable obtained in interval [0,1] is 
mapped to the solution interval (Mink,Maxk) by definite probability of mutation (pm), thus completing a 
mutative operation: 

( )kk
i

kk
i

k MinMaxxMinX −+= )()( ~~  (14) 

Step 6. Stopping Criteria. If the number of generations equals a given scale, then the best antibody 
is a solution, otherwise return to Step 2. The CIA is used to seek a better combination of the three 
parameters in the SVR. The value of the mean absolute percentage error (MAPE) is used as the 
criterion (the smallest value of MAPE) of forecasting errors to determine the suitable parameters used 
in SVR model in this investigation, which is given by Equation 15: 

%100
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where N is the number of forecasting periods; ƒi is the actual value at period i; if̂  denotes is the 

forecasting value at period i. 

2.3. Seasonal Adjustment 

Due to the difference in demand from month to month and season to season, electric energy 
demands also demonstrate a cyclic (seasonal) tendency, so any model attempting to accomplish the 
goal of high accurate forecasting performance, must estimate this seasonal component. There are 
several approaches to estimate the seasonal index of data series [50,63,64], including product-model 
type and non-product-model type. Based on the data series type consideration, this investigation 
employed Deo and Hurvich’s [63] approach to compute the seasonal index, as shown in Equation 16: 
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where t = j, l + j, 2l + j,…,(m − 1)l + j only for the same time point (month) in each period. Then, the 
seasonal index (SI) for each time point (month) j is computed as Equation 17: 

( )jlmjljj peakpeakpeak
m

SI +−+ +++= )1(
1  (17) 

where j = 1,2,…,l. Eventually, the forecasting value of the SSVRCIA is obtained by Equation 18: 
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where k = 1,2,…,l implies the time point (month) in another period (for forecasting period). 
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Table 1. Monthly electric load in Northeastern China (from January 2004 to April 2009). 
Units: hundred million kW/h. 

Time Electric Load Time Electric Load Time Electric Load 
January 2004 129.08 November 2005 150.84 September 2007 175.41 

February 2004 127.24 December 2005 165.27 October 2007 179.64 
March 2004 136.95 January 2006 155.31 November 2007 188.89 
April 2004 125.34 February 2006 138.5 December 2007 197.62 
May 2004 126.86 March 2006 133.27 January 2008 200.35 
June 2004 129.34 April 2006 151.41 February 2008 169.24 
July 2004 131.91 May 2006 155.63 March 2008 196.97 

August 2004 136.22 June 2006 155.7 April 2008 186.15 
September 2004 131.56 July 2006 162.98 May 2008 188.485 

October 2004 134.62 August 2006 163.41 June 2008 190.82 
November 2004 144.62 September 2006 157.57 July 2008 196.53 
December 2004 154.62 October 2006 160.15 August 2008 197.67 

January 2005 151.48 November 2006 168.13 September 2008 183.77 
February 2005 126.74 December 2006 180.71 October 2008 181.07 

March 2005 148.57 January 2007 179.94 November 2008 180.56 
April 2005 136.6 February 2007 147.29 December 2008 189.03 
May 2005 138.83 March 2007 172.45 January 2009 182.07 
June 2005 136.6 April 2007 169.98 February 2009 167.35 
July 2005 146.21 May 2007 173.21 March 2009 189.3 

August 2005 146.09 June 2007 177.43 April 2009 175.84 
September 2005 140.04 July 2007 184.29   

October 2005 142.02 August 2007 183.53   

3. A Numerical Results 

3.1. Data Set 

To based our comparisons on the same conditions, this study uses historical monthly electric load 
data from Northeast China to compare the forecasting performance of the proposed SSVRCIA model 
with those of ARIMA and TF-ε-SVR-SA models proposed by Wang et al. [50]. In addition, due to 
verification of performance of seasonal adjustment mechanism, the SVRCIA model (without seasonal 
adjustment mechanism) is also implemented for comparison. Table 1 lists the data used in this 
example. Totally, there are 64 data points (from January 2004 to April 2009) of Northeastern China’s 
monthly electric load. However, based on Wang et al. [50]’s support vectors computation, only 
53 months’ of data (from December 2004 to April 2009) are suggested. Thus, the employed data are 
divided into three data sets, the training data set (32 months, December 2004 to July 2007), validation 
data set (14 months, August 2007 to September 2008), and, to ensure the same comparison conditions, 
the testing data set (7 months, from October 2008 to April 2009), is shown in Table 2. 
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Table 2. Training, validation, and testing data sets of the proposed model. 

Data Sets SVRCIA and SSVRCIA Models  
TF-ε-SVR-SA Model  
(Wang et al., 2009) 

Training data December 2004–July 2007 December 2004–September 
2008 Validation data August 2007–September 2008 

Testing data October 2008–April 2009 October 2008–April 2009 

Figure 2. The rolling-base forecasting procedure (training stage). 

  

 

 
3.2. SSVRCIA Electric Load Forecasting Model 

Before conducting the seasonal adjustment for the SSVRCIA model, it is necessary to implement 
the CIA algorithm to determine suitable values of the three parameters in a SVR model. The 
parameters of the CIA in the proposed model are experimentally set as shown in Table 3. For the 
SVRCIA modeling procedure, in the training stage, a rolling-based forecasting procedure (Figure 2), 
which divides the training data into two subsets, namely the fed-in subset (for example, 25 load data points) 
and the fed-out subset (7 load data points), respectively. First, the primary 25 load data of the fed-in 
subset are fed into the proposed model, the structural risk minimization principle is employed to 
minimize the training error, then, we obtain the one-step ahead forecasting load, namely the 26th 
forecasting load. Second, the next 25 load data points, including 24 of the fed-in subset data (from 2nd 
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to 25th) pulsing the 26th data in the fed-out subset, are similarly fed again into the proposed model, the 
structural risk minimization principle is also employed to minimize the training error, then, we obtain 
the one-step ahead forecasting load, namely the 27th forecasting load. The rolling-based forecasting 
procedure is repeated till the 32nd forecasting load is obtained. Meanwhile, the training error in this 
training stage is also obtained. In the validation and testing stage, a one-hour-ahead forecasting policy 
is adopted. Then, several types of data-rolling are considered to forecast the electric load in the next 
point (month). Different values of the electric load in a time series are fed into the SVRCIA model to 
forecast the electric load in the next validation period. While training errors improvement occurs, the 
three kernel parameters, σ, C, and ε of the SVRCIA model adjusted by the CIA algorithm are 
employed to calculate the validation error. Then, the adjusted parameters with minimum validation 
error are selected as the most appropriate parameters. Table 4 indicates that SVRCIA models perform 
the best when 25 input data are used for electric load forecasting. 

Table 3. CIA’s parameters setting. 

Population Size 
( sizep ) 

Maximal 
Generation 

( maxq ) 

Probability of 
Crossover 

( cp ) 

The Annealing 
Operation Parameter 

(δ ) 

Probability of 
Mutation 

( mp ) 
200 500 0.5 0.9 0.1 

Table 4. Forecasting results and associated parameters of the SVRCIA model. 

Nos. of Input 
Data 

Parameters MAPE of 
Testing (%) σ C ε 

5 14.744 347.33 1.8570 4.1953 
10 9.9515 90.244 0.1459 3.638 
15 109.06 7298.3 11.953 3.897 
20 48.030 8399.7 14.372 3.514 
25 30.262 4767.3 22.114 3.0411 

Now the seasonal term is considered. For the monthly electric load in Northeastern China, each 
month has a different electric demand pattern, the seasonal length is verified as 12 [50], thus, there are 
12 points (months) in each electric load cyclic year. The seasonal indexes for each point (month) are 
calculated based on the 46 forecasting values of the SVRCIA model both in training (32 forecasting 
values) and validation (14 forecasting values) stages, as shown in Table 5. Those indices with values 
smaller than 1 imply that the average forecasts (based on 32 training forecasts and 14 validation 
forecasts) of the SVRCIA model are overestimated, i.e., the smaller a seasonal index is, the higher the 
overestimation of electric load is. Thus, overproduced supplies would lead to energy losses. On the 
contrary, the higher the seasonal index is, the lower the underestimation of electric load is, i.e., the 
months with a higher seasonal index (larger than 1) may be potential months with limited amounts of 
useable electric load in the future. 
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Table 5. The seasonal indexes for each time point (month). 

Time Point (Month) Seasonal Index Time Point (Month) Seasonal Index 
January 1.0153 July 1.0663 

February 0.9089 August 1.0615 
March 1.0126 September 1.0076 
April 0.9853 October 0.9734 
May 1.0187 November 1.0247 
June 1.0225 December 1.0614 

Table 6. Forecasting results of the ARIMA, TF-ε-SVR-SA, SVRCIA, and SSVRCIA 
models (units: hundred million kW/h).  

Time Point (Month) Actual ARIMA(1,1,1) TF-ε-SVR-SA SVRCIA SSVRCIA 
October 2008 181.07 192.9316 184.5035 179.0276 174.2737 

November 2008 180.56 191.127 190.3608 179.4118 183.8444 
December 2008 189.03 189.9155 202.9795 179.7946 190.8367 
January 2009 182.07 191.9947 195.7532 180.1759 182.9343 

February 2009 167.35 189.9398 167.5795 180.5557 164.1062 
March 2009 189.30 183.9876 185.9358 180.9341 183.2106 
April 2009 175.84 189.3480 180.1648 178.1036 175.4833 

MAPE (%)  6.044 3.799 3.041 1.766 

Table 6 shows the actual values and the forecast values obtained using various forecasting models: 
ARIMA(1,1,1), TF-ε-SVR-SA, SVRCIA, and SSVRCIA. The MAPE values are calculated to compare 
fairly the proposed models with other alternative models. The proposed SSVRCIA model has smaller 
MAPE values than the ARIMA, TF-ε-SVR-SA, and SVRCIA models for capturing electric load cyclic 
trends on monthly average basis. Furthermore, to verify the significance of accuracy improvement of 
SSVRCIA model comparing with ARIMA(1,1,1), TF-ε-SVR-SA, and SVRCIA models, a statistical 
test, namely the Wilcoxon signed-rank test, is conducted at the 0.025 and 0.05 significance levels in 
one-tail-tests (Table 7).  

Table 7. Wilcoxon signed-rank test. 

Compared Models 
Wilcoxon Signed-Rank Test 

α = 0.025 
W = 2 

α = 0.05 
W = 3 

SSVRCIA vs. ARIMA(1,1,1) 1 * 1 * 
SSVRCIA vs. TF-ε-SVR-SA 0 * 0 * 

SSVRCIA vs. SVRCIA 2 * 2 * 
* denote that SSVRCIA model significantly outperforms other alternative models. 

From Table 7, it is seen that the SSVRCIA model outperforms the ARIMA(1,1,1) model 
significantly, due to its theoretical assumption of a convex set. In addition, the SSVRCIA model is also 
significantly superior to the TF-ε-SVR-SA model, not only because of the superior searching 
capability of CIA to determine proper parameters in a SVR model, but also because of the use of a 
seasonal adjustment mechanism to adjust the seasonal/cyclic effects of electric loads. Finally, the 
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SSVRCIA model also significantly outperforms the SVRCIA model, obviously, the seasonal 
adjustment mechanism employed here is proficient in dealing with such cyclic data types. 

4. Conclusions 

From the historical data, the electric load values in Northern China show not only a strong growth 
trend but also an obvious monthly seasonal/cyclic tendency. This is a common electric load 
phenomenon in developing countries. However, the role of electric demand growth rate forecasting 
seems to be to avoid overproduction or underproduction of electric loads. This study introduces the 
application of a forecasting technique, SSVRCIA, to investigate its feasibility for forecasting electric 
loads. The experimental results indicate that the SSVRCIA model has better forecasting performance 
than the ARIMA(1,1,1), TF-ε-SVR-SA, and SVRCIA models. The superior performance of the 
SSVRCIA model is not only because of its theoretical assumptions of a convex set while SVR 
modeling, but also because of the superior searching capability of CIA to determine the proper 
parameters in SVR (this is why it outperforms the TF-ε-SVR-SA model) and effective seasonal 
adjustment mechanism (this is why it outperforms the SVRCIA model). By contrast, ARIMA model 
employs the parametric technique which is based on specific assumptions, such as linear relationships 
between the current value of the underlying variables and previous values of the variable and error 
terms, and these assumptions are not completely in line with real world problems. 

This investigation is the first to apply the SVR with CIA and seasonal adjustment for forecasting 
monthly electric loads. Many forecasting methodologies have been proposed to deal with the 
seasonality of electric loads, but most models are time consuming in verifying the suitable time-phase 
divisions, particularly when the sample size is large. In this investigation, the SSVRCIA model 
provides a convenient and valid alternative for electric load forecasting. The SSVRCIA model directly 
uses historical monthly electric data and then determines suitable parameters by efficient optimization 
algorithms. In addition, the proposed SSVRCIA model is also a hybrid forecasting models; some other 
advanced optimization algorithms for parameters selection can be further applied for the SVR model. 

Acknowledgements 

This research was conducted with the support of National Science Council, Taiwan, ROC  
(NSC 99-2410-H-161-001, NSC 100-2410-H-161-001), and the National Science Foundation of China 
under Grant 70801048. 

References 

1. Fan, S.; Chen, L. Short-term load forecasting based on an adaptive hybrid method. IEEE Trans. 
Power Syst. 2006, 21, 392–401. 

2. Morimoto, R.; Hope, C. The impact of electricity supply on economic growth in Sri Lanka. 
Energy Econ. 2004, 26, 77–85. 

3. Box, G.E.P.; Jenkins, G.M. Time Series Analysis, Forecasting and Control; Holden-Day Press: 
San Francisco, CA, USA, 1970. 



Energies 2011, 4                          
 

 

974

4. Chen, J.F.; Wang, W.M.; Huang, C.M. Analysis of an adaptive time-series autoregressive 
moving-average (ARMA) model for short-term load forecasting. Electr. Power Syst. Res. 1995, 
34, 187–196. 

5. Vemuri, S.; Hill, D.; Balasubramanian, R. Load forecasting using stochastic models. In 
Proceedings of the 8th Power Industrial Computing Application Conference, Minneapolis, MN, 
USA, 1973; pp. 31–37. 

6. Christianse, W.R. Short term load forecasting using general exponential smoothing. IEEE Trans. 
Power Apparatus Syst. 1971, 90, 900–911. 

7. Park, J.H.; Park, Y.M.; Lee, K.Y. Composite modeling for adaptive short-term load forecasting. 
IEEE Trans. Power Syst. 1991, 6, 450–457. 

8. Brown, R.G. Introduction to Random Signal Analysis and Kalman Filtering; John Wiley & Sons 
Inc. Press: New York, NY, USA, 1983. 

9. Gelb, A. Applied Optimal Estimation; The MIT Press: Cambridge, MA, USA, 1974. 
10. Moghram, I.; Rahman, S. Analysis and evaluation of five short-term load forecasting techniques. 

IEEE Trans. Power Syst. 1989, 4, 1484–1491. 
11. Asbury, C. Weather load model for electric demand energy forecasting. IEEE Trans. Power 

Apparatus Syst. 1975, 94, 1111–1116. 
12. Papalexopoulos, A.D.; Hesterberg, T.C. A regression-based approach to short-term system load 

forecasting. IEEE Trans. Power Syst. 1990, 5, 1535–1547. 
13. Soliman, S.A.; Persaud, S.; El-Nagar, K.; El-Hawary, M.E. Application of least absolute value 

parameter estimation based on linear programming to short-term load forecasting. Int. J. Electr. 
Power Energy Syst. 1997, 19, 209–216. 

14. Rahman, S.; Bhatnagar, R. An expert system based algorithm for short-term load forecasting. 
IEEE Trans. Power Syst. 1998, 3, 392–399. 

15. Chiu, C.C.; Kao, L.J.; Cook, D.F. Combining a Neural Network with a rule-based expert system 
approach for short-term power load forecasting in Taiwan. Expert Syst. Appl. 1997, 13, 299–305. 

16. Rahman, S.; Hazim, O. A generalized knowledge-based short-term load- forecasting technique. 
IEEE Trans. Power Syst. 1993, 8, 508–514. 

17. Park, D.C.; El-Sharkawi, M.A.; Marks, R.J., II; Atlas, L.E.; Damborg, M.J. Electric load 
forecasting using an artificial neural network. IEEE Trans. Power Syst. 1991, 6, 442–449. 

18. Novak, B. Superfast autoconfiguring artificial neural networks and their application to power 
systems. Electr. Power Syst. Res. 1995, 35, 11–16. 

19. Darbellay, G.A.; Slama, M. Forecasting the short-term demand for electricity—do neural 
networks stand a better chance? Int. J. Forecast. 2000, 16, 71–83. 

20. Abdel-Aal, R.E. Short-term hourly load forecasting using abductive networks. IEEE Trans. 
Power Syst. 2004, 19, 164–173. 

21. Hsu, C.C.; Chen, C.Y. Regional load forecasting in Taiwan—application of artificial neural 
networks. Energy Convers. Manag. 2003, 44, 1941–1949. 

22. Suykens, J.A.K. Nonlinear modelling and support vector machines. In Proceedings of IEEE 
Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001; pp. 287–294. 

23. Tay, F.E.H.; Cao, L.J. Application of support vector machines in financial time series forecasting. 
Omega 2001, 29, 309–317. 



Energies 2011, 4                          
 

 

975

24. Huang, W.; Nakamori, Y.; Wang, S.Y. Forecasting stock market movement direction with support 
vector machine. Comput. Oper. Res. 2005, 32, 2513–2522. 

25. Hung, W.M.; Hong, W.C. Application of SVR with improved ant colony optimization algorithms 
in exchange rate forecasting. Control Cybern. 2009, 38, 863–891. 

26. Pai, P.F.; Lin, C.S. A hybrid ARIMA and support vector machines model in stock price 
forecasting. Omega 2005, 33, 497–505. 

27. Pai, P.F.; Lin, C.S.; Hong, W.C.; Chen, C.T. A hybrid support vector machine regression for 
exchange rate prediction. Int. J. Inf. Manag. Sci. 2006, 17, 19–32. 

28. Hong, W.C.; Dong, Y.; Chen, L.Y.; Wei, S.Y. SVR with hybrid chaotic genetic algorithms for 
tourism demand forecasting. Appl. Soft Comput. 2011, 11, 1881–1890. 

29. Pai, P.F.; Hong, W.C. An improved neural network model in forecasting arrivals. Ann. Tourism 
Res. 2005, 32, 1138–1141. 

30. Pai, P.F.; Hong, W.C. Software reliability forecasting by support vector machines with simulated 
annealing algorithms. J. Syst. Softw. 2006, 79, 747–755. 

31. Hong, W.C.; Pai, P.F. Predicting engine reliability by support vector machines. Int. J. Adv. Manuf. 
Technol. 2006, 28, 154–161. 

32. Hong, W.C. Rainfall forecasting by technological machine learning models. Appl. Math. Comput. 
2008, 200, 41–57. 

33. Hong, W.C.; Pai, P.F. Potential assessment of the support vector regression technique in rainfall 
forecasting. Water Resour. Manag. 2007, 21, 495–513. 

34. Wang, W.; Xu, Z.; Lu, J.W. Three improved neural network models for air quality forecasting. 
Eng. Comput. 2003, 20, 192–210. 

35. Mohandes, M.A.; Halawani, T.O.; Rehman, S.; Hussain, A.A. Support vector machines for wind 
speed prediction. Renew Energy 2004, 29, 939–947. 

36. Hong, W.C. Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. Int. 
J. Electr. Power Energy Syst. 2009, 31, 409–417. 

37. Hong, W.C. Chaotic particle swarm optimization algorithm in a support vector regression electric 
load forecasting model. Energy Convers. Manag. 2009, 50, 105–117. 

38. Hong, W.C. Electric load forecasting by support vector model. Appl. Math. Modell. 2009, 33, 
2444–2454. 

39. Pai, P.F.; Hong, W.C. Support vector machines with simulated annealing algorithms in electricity 
load forecasting. Energy Convers. Manag. 2005, 46, 2669–2688. 

40. Pai, P.F.; Hong, W.C. Forecasting regional electric load based on recurrent support vector 
machines with genetic algorithms. Electr. Power Syst. Res. 2005, 74, 417–425. 

41. Hong, W.C. Application of chaotic ant swarm optimization in electric load forecasting. Energy 
Policy 2010, 38, 5830–5839.  

42. Mori, K.; Tsukiyama, M.; Fukuda, T. Immune algorithm with searching diversity and its 
application to resource allocation problem. Trans. Inst. Electr. Eng. Jpn. 1993, 113-C, 872–878. 

43. Prakash, A.; Khilwani, N.; Tiwari, M.K.; Cohen, Y. Modified immune algorithm for job selection 
and operation allocation problem in flexible manufacturing system. Adv. Eng. Softw. 2008, 39, 
219–232. 



Energies 2011, 4                          
 

 

976

44. Wang, L.; Zheng, D.Z.; Lin, Q.S. Survey on chaotic optimization methods. Comput. Technol. 
Autom. 2001, 20, 1–5. 

45. Li, B.; Jiang, W. Optimizing complex functions by chaos search. Cybern. Syst. 1998, 29, 409–419. 
46. Ohya, M. Complexities and their applications to characterization of chaos. Int. J. Theor. Phys. 

1998, 37, 495–505. 
47. Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. 
48. Dagum, E.B. Modelling, forecasting and seasonally adjusting economic time series with the X-11 

ARIMA method. J. R. Stat. Soc. Series D 1978, 27, 203–216. 
49. Kenny, P.B.; Durbin, J. Local trend estimation and seasonal adjustment of economic and social 

time series. J. R. Stat. Soc. Series A 1982, 145, 1–41. 
50. Wang, J.; Zhu, W.; Zhang, W.; Sun, D. A trend fixed on firstly and seasonal adjustment model 

combined with the ε-SVR for short-term forecasting of electricity demand. Energy Policy 2009, 
37, 4901–4909. 

51. Xiao, Z.; Ye, S.J.; Zhong, B.; Sun, C.X. BP neural network with rough set for short term load 
forecasting. Expert Syst. Appl. 2009, 36, 273–279. 

52. Vapnik, V. The Nature of Statistical Learning Theory; Springer-Verlag Press: New York, NY, 
USA, 1995. 

53. Amari, S.; Wu, S. Improving support vector machine classifiers by modifying kernel functions. 
Neural Netw.1999, 12, 783–789. 

54. Vojislav, K. Learning and Soft Computing—Support Vector Machines, Neural Networks and 
Fuzzy Logic Models; The MIT Press: Cambridge, MT, USA, 2001. 

55. Pan, H.; Wang, L.; Liu, B. Chaotic annealing with hypothesis test for function optimization in 
noisy environments. Chaos Solitons Fractals 2008, 35, 888–894. 

56. Zuo, X.Q.; Fan, Y.S. A chaos search immune algorithm with its application to neuro-fuzzy 
controller design. Chaos Solitons Fractals 2006, 30, 94–109. 

57. Liu, B.; Wang, L.; Jin, Y.H.; Tang, F.; Huang, D.X. Improved particle swam optimization 
combined with chaos. Chaos Solitons Fractals 2005, 25, 1261–1271. 

58. Yang, D.; Li, G.; Cheng, G. On the efficiency of chaos optimization algorithms for global 
optimization. Chaos Solitons Fractals 2007, 34, 1366–1375. 

59. Li, L.; Yang, Y.; Peng, H.; Wang, X. Parameters identification of chaotic systems via chaotic ant 
swarm. Chaos Solitons Fractals 2006, 28, 1204–1211. 

60. Tavazoei, M.S.; Haeri, M. Comparison of different one-dimensional maps as chaotic search 
pattern in chaos optimization algorithms. Appl. Math. Comput. 2007, 187, 1076–1085. 

61. Coelho, L.D.S.; Mariani, V.C. Chaotic artificial immune approach applied to economic dispatch 
of electric energy using thermal units. Chaos Solitons Fractals 2009, 40, 2376–2383. 

62. Wang, J.; Wang, Y.; Zhang, C.; Du, W.; Zhou, C.; Liang, Y. Parameter selection of support 
vector regression based on a novel chaotic immune algorithm. In Proceedings of the 4th 
International Conference on Innovative Computing, Information and Control, City, Country, 2009; 
pp. 652–655. 

63. Deo, R.; Hurvich, C. Forecasting realized volatility using a long-memory stochastic volatility 
model: estimation, prediction and seasonal adjustment. J. Econometrics 2006, 131, 29–58. 



Energies 2011, 4                          
 

 

977

64. Azadeh, A.; Ghaderi, S.F. Annual electricity consumption forecasting by neural network in high 
energy consuming industrial sectors. Energy Convers. Manag. 2008, 49, 2272–2278. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


