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Abstract: The paper introduces a numerical internal corrosion rate prediction method into 

the internal corrosion direct assessment (ICDA) process for wet gas gathering pipelines 

based on the back propagation (BP), the genetic algorithm (GA) and BP, and the particle 

swarm optimization and BP artificial neural networks (ANNs). The basic data were 

collected in accordance with the terms established by the National Association of 

Corrosion Engineers in the Wet Gas Internal Corrosion Direct Assessment (WG-ICDA) 

SP0110, and the corrosion influencing factors, which are the input variables of the ANN 

model, are identified and refined by the grey relational analysis method. A total of  

116 groups of basic data and inspection data from seven gathering pipelines in Sichuan 

(China) are used to develop the numerical prediction model. Ninety-five of the 116 groups 

of data are selected to train the neural network. The remaining 21 groups of data are chosen 

to test the three ANNs. The test results show that the GA and BP ANN yield the smallest 

number of absolute errors and should be selected as the preferred model for the prediction 

of corrosion rates. The accuracy of the model was validated by another 54 groups of 

excavation data obtained from pipeline No. 8, whose internal environment parameters are 

similar to those found in the training and testing pipelines. The results show that the 

numerical method yields significantly better absolute errors than either the de Waard 95 

model or the Top-of-Line corrosion model in WG-ICDA when applying the approach to 
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specific pipelines, and it can be used to investigate a specific pipeline for which the data 

have been collected and the ANN has been developed in WG-ICDA SP0110. 

Keywords: numerical prediction; Artificial Neural Network; wet gas; pipeline; Internal 

Corrosion Direct Assessment 

 

1. Introduction 

Wet natural gas is defined as natural gas saturated with water or other natural gas liquids. It is often 

transported from a production facility to a main transmission pipeline or gas processor through gas 

gathering pipelines inside the gas fields. However, wet gas pipelines are significantly more prone to 

suffer instances of liquid condensation and deposition than dry gas pipelines. As a result, a risk of 

internal pipeline corrosion may result from the presence of corrosive components in the condensate 

liquid [1–3]. 

The detection and evaluation of corrosion defects are of great importance for the safe operation of 

wet gas gathering pipelines. For wet gas, the most commonly used corrosion evaluation criterion is the 

Wet Gas Internal Corrosion Direct Assessment SP0110 (WG-ICDA SP0110) [4], which is published 

by the National Association of Corrosion Engineers (NACE). This criterion proposes a systematic 

approach for prioritizing the inspection segments so that the results from the inspection of some 

sections can be used to make inferences regarding the entire pipeline, and the corrosion rate of the 

pipeline is one of the prioritized determinations of the inspection segments. 

In the criterion, the corrosion rate can be calculated using any industrially accepted internal 

corrosion prediction model (ICPM), such as the Anderko model [5], the Crolet model [6], the  

de Waard model [7], or the Norsok model [8]. However, the results of the respective ICPMs may 

deviate from the realistic corrosion rates when the internal environmental parameters of the inspection 

segments are not within the scope of the prediction model. Then, the selected excavation points based 

on the ICPM’s results may not provide an effective means for identifying areas that are “above 

average” in terms of weight loss. 

There are several wet gas gathering pipelines in the particular region of interest in Sichuan Province, 

China. During the ICDA processing of seven pipelines, the commonly used de Waard 95  

model [3] and the Top-of-Line corrosion model [4] were selected to predict the internal corrosion rates, 

and 116 points from seven pipelines were excavated and inspected. However, the absolute errors 

between the model results and inspection data were not satisfactory. For the de Waard 95 model,  

86 out of 116 excavation points (74.13% of the total) yielded absolute errors greater than 0.05 mm/a. 

For the Top-of-Line corrosion model, 95 of 116 excavation points (81.90% of the total) gave absolute 

errors greater than 0.05 mm/a, and 17 of 116 excavation points (14.65% of the total) had absolute 

errors greater than 0.1 mm/a. Hence, it is both necessary and of significant importance that an 

applicable model for the wet gas gathering pipelines in this specific area of the Sichuan Province be 

developed to be able to obtain effective ICDAs for those pipelines. 

Based on the use of artificial neural networks (ANNs), this paper develops an effective numerical 

method to evaluate the corrosion rate of wet gas gathering pipelines. The applicability of the method is 
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related to the internal environments of the pipelines, whose basic data are used to train and validate the 

ANN model. The applicable model is developed based on 116 groups of data and is proven to be 

useful for wet gas gathering pipelines which are similar to the training pipelines used in the internal 

environments. Thus, this method can be used for specific pipelines for which the data have been 

collected and the corresponding ANN has been developed in accordance with WG-ICDA SP0110. 

2. The Numerical Method Used for Corrosion Prediction 

The internal corrosion rate of wet gas gathering pipelines is influenced by the fluid composition, 

temperature, pressure, flow velocity and many other factors [9]. It is difficult to develop a theoretical 

model that is capable of describing the relationship between all of these factors and the associated 

corrosion rates. However, a variety of methods can be used to predict future data based on the 

historical data of the system; these methods include the statistical prediction method, artificial neural 

networks (ANNs) and fuzzy logic methods [10]. The ANN is a non-linear data modeling tool, and it is 

usually utilized to model complex statistical relationships between inputs and outputs. Recently, 

researchers have applied neural network models to predictions of CO2 corrosion in steel pipelines, and 

the method has been proven useful for corrosion rate prediction [11]. In this paper, ANNs also are 

employed to predict the internal corrosion rate of a wet gas gathering pipeline. The flow chart of 

internal corrosion rate prediction is shown in Figure 1. The input and output variables are critical 

parameters in the ANN model, and they are all discussed in the following sections. 

Figure 1. The logic diagram used to establish the method. 

 

2.1. Data Collection from the Wet Gas Gathering Pipelines 

The ANN numerical prediction model must be trained by the input and output data. To accomplish 

this, a significant amount of historical and current correlated data from a wet gas gathering pipeline 

must be collected. The minimum amount of data for this purpose is proposed in WG-ICDA SP0110. 

The data are divided into two sets, including the specific basic data and the specific internal corrosion 

inspection data, which are listed in Table 1 [4]. 



Energies 2012, 5 3895 

 

 

Table 1. The specific data that must be collected. 

The specific basic data: 

The system design information, including the length of the pipeline, the size of the pipeline, the pipeline 
material, the operation time, the design transmission capacity, the design pressure, and the pipeline 
geographical distribution; 
The pipeline mapping data, including the pipeline elevation map; 
The operating history, e.g., the inlet pressure, the inlet temperature, the outlet pressure, the outlet 
temperature, the flow, the maximum and minimum flow rates, and the corresponding fluctuations, 
shutdowns, and starts in the pipeline operation in recent years; 
The fluid composition, e.g., the composition of the gas and the liquid, the pH, the presence of H2S, CO2 and 
O2, and water and the solid contents of the fluids; 
The pipeline operation, e.g., the transmission process (the pressurization, the thermal insulation), the 
transmission temperature, the pressure, the flow rate; 
The anti-corrosion measures, including the mitigation currently applied to control the internal corrosion or 
the mitigation that has been applied historically; 
Other known and documented causes of internal corrosion, such as microbiologically influenced  
corrosion (MIC); 

The specific internal corrosion inspection data: 

The previous records of internal corrosion, including the previous inspection reports, the previous failures, 
the maintenance records, etc; 
The recent three years’ worth of internal corrosion inspection data from the assessed pipelines detected by 
long-range ultrasonic testing (LRUT), automated ultrasonic testing (AUT) and manual ultrasonic testing 
(UT); additionally, the source of the inspection data should be the official data provided by the certified 
detection organization. 

2.2. Definitions of the Influencing Factors and the Data Supplement 

(1) Identification of the Influencing Factors 

Metal corrosion always occurs on the interface between the metal part and the corroding media. The 

properties of the fluid media, the material, the internal surface state and the operation influence the 

corrosion rate of the pipeline [12,13]. The specific internal corrosion influence factors for wet gas 

gathering pipelines are shown in Table 2. 

Table 2. The internal corrosion influencing factors that should be identified. 

The metal material and the surface state of the metal: 

The metal material The surface film of the metal 

The nature of the fluid: 

Water content (Liquid holdup) Inhibitor pH value Hydrogen sulfide  
Carbon dioxide  Dissolved oxygen The amount of salts Solid particles 
Surface tension Microorganisms, including sulfate-reducing bacteria 
Density, e.g., density of gas, density of liquid  
Viscosity, e.g., liquid viscosity, gas viscosity  
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Table 2. Cont. 

The pipeline operating parameters: 

The temperature e.g., the inner wall temperature, the fluid temperature, the gas temperature, the 
liquid temperature 

The rate e.g., the gas flow rate, the liquid flow rate, the superficial gas flow rate, the 
superficial liquid flow rate, the deposition rate, the erosion velocity ratio 

The heat transfer e.g., the heat transfer from the inner pipe wall to the fluid, the heat transfer 
coefficient of the inner wall, the thermal conductivity of the gas and the liquid 

The surface shear stress e.g., the gas-max wall shear stress, the liquid-max wall shear stress 
The flow pattern The turbulence intensity The pressure 

(2) Supplemental Data 

Limited by the range of measure items, only a portion of the influencing factor data can be obtained 

by field testing, and the remaining data must be supplemented by calculation. Many certified software 

packages, such as SPT Group OLGA 7.1, are capable of carrying out these calculations. Of course, the 

calculation results must be verified by the field tested data before use. 

2.3. Weighting and Refinement of the Influencing Factors with Grey Relational Analysis 

One of the most important decisions in the development of an artificial neural network model is the 

selection of input variables for the model. The grey relational analysis (GRA) method is used here to 

weight and refine the most important factors from Table 2 [14,15]. The weights reflect the relative 

importance among the factors. The factors with larger weights are selected as the input variables in the 

numerical prediction model [16]. The procedure of the GRA weight calculation method is summarized 

as follows: the internal corrosion inspection data reflect the behavior of the system characteristics. First, 

set all of the corrosion inspection rates as the reference sequence: 

0 0 0 0{ (1), (2),..., ( )}X x x x n  (1)

where n is the total number of inspected data. 

The system characteristics are influenced by the internal corrosion factors. Second, set the 

influencing data as a comparison sequence: 

{ (1), (2),..., ( )}i i i iX x x x n  (2)

where i = 1,2,…,m, and m is the total number of factors. Equation (2) represents an m × n matrix. Each 

column represents a group of influencing factors. 

Some of the factors have different units of measurement. The extreme difference normalization 

method is used to convert the factors into a non-dimensional state [14]. Then, all of the factors’ values 

are limited from 0 to 1. 

The correlation coefficient is used to state the correlation degree between the parameter in one 

group comparison sequence and the corresponding reference parameter. Here, the correlation 

coefficient is defined as: 
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where l = 1,2,…,n, and n is the total number of inspected data; j = 1,2,…, m, and m is the total number 
of influencing factors. k = 1,2,…,n; and 

0 ( ) ( )ix k x k  is the absolute difference between the ith factor in 

the kth group of the influencing data and the kth corrosion rate. 0min  min  ( ) ( )j
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0( ) ( )jx l x l ; and P is the discrimination coefficient, 0 < p <1, commonly used as p = 0.5. 

The correlation coefficient only expresses the degree of correlation at each inspection point between 

the reference sequence and the comparison sequence. To understand the overall correlation degree of 
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Finally, the weights of the influencing factors can be obtained. The factors with relatively larger 

weights are selected as the input variables. 

2.4. Establishment of the Internal Corrosion Numerical Prediction Model 

The ANN is composed of a number of neuron layers. The input layer is fed with the selected input 

variables and passes them into the hidden layers in which the processing task takes place. Finally, the 

output layer receives the information from the last hidden layer and sends the results to an external 

source. In the model, the number of layers, the number of neurons in each layer, the weights between 

the related neurons and the threshold are the critical parameters. The weights and the threshold are 

obtained by training. The training of neural networks is a complex task of great importance [17]. 

One of the most popular training algorithms is the back propagation (BP) technique. Recently, 

many researchers have introduced intelligent optimization methods, such as the genetic algorithm  

(GA) [18] and particle swarm optimization (PSO) [19], into BP neural network training. Their 

achievements also showed that the hybrid training technique has advantages over the BP neural 

network. All of the algorithms, including the BP, GA and BP, PSO and BP ANNs are applied to 

establish the model, and the applicability of each model is evaluated. The most accurate technique is 

selected as the numerical prediction method applied in the internal corrosion direct assessment of the 

wet gas gathering pipelines in the specific area. 

It should be noted that the BP technique uses the BP neural network as the numerical prediction 

method; in GA and BP, the BP neural network is used as the basic numerical prediction method and 

the genetic algorithm is used as the optimization method; in PSO and BP, the BP neural network is 

used as the basic numerical prediction method and the particle swarm optimization technique is used as 

the optimization method. 
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2.5. Validation of the Model 

The field test corrosion rate gathered from the excavation points of the gathering pipelines is 

applied to validate and evaluate the effectiveness of the numerical prediction model. The excavation 

points should be detected in detail by a certified operator or organization, and the internal corrosion 

damage should be recorded carefully, including the shape, area, size and clock orientation. 

Additionally, it may be necessary to use color cameras to record data [20]. 

The measured corrosion rate values are established based on the original thickness of the pipe as 

well as the inspection data. The differences between these values are divided by the operational years 

to yield the numerical expression of the corrosion rate of the pipeline. A comparison of the measured 

corrosion rate values and the prediction results demonstrates the applicability of the numerical method. 

3. Application of the Numerical Method 

As introduced above, there are several wet gas gathering pipelines in the particular region of interest 

in Sichuan Province, China. A total of 116 groups of data, including the influencing factors as well as 

the inspection corrosion rates from seven pipelines, are used to develop the application model, and 

another 54 groups of data from the No. 8 pipeline are used to validate the model. 

3.1. Step 1: Collection of the Basic Data 

(1) The basic Data 

The basic data of seven wet gas gathering pipelines are listed in Tables 3–5. 

Table 3. The basic data on the seven gathering pipelines. 

Basic parameter No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 

Pipe material 20 # 20# 20# 20# 20# 20# 20# 

Pipe size, mm Φ159 × 8 Φ108 × 6 Φ108 × 6 Φ108 × 6 Φ108 × 6 Φ108 × 6 Φ219 × 8

Mileage, km 12.26 2.69 2.82 2.47 2.16 3.52 8.41 

Operation time, a 1994 2004 2005 2004 2005 2003 1991 

Design transmission 

capacity, m3/d 
30 × 104 10 × 104 20 × 104 7 × 104 10.4 × 104 15 × 104 40 × 104 

Design pressure, MPa 6.4 6.4 6.4 6.4 6.4 6.4 6.4 

Cathodic protection Yes No Yes No No Yes Yes 

Internal coating No No No No No No No 

Gas transmission 

capacity, m3/d 
28.2 × 104 1.2 × 104 7.07 × 104 13.1 × 104 2.9 × 104 5.0 × 104 21 × 104 

Ambient temperature, °C 15 15 15 15 15 15 15 

Inlet pressure, MPa 5.1 2.1 2.8 5.4 2.1 2.1 5.0 

Inlet temperature, °C 28 28 28 28 28 28 28 

Outlet pressure, MPa 3.2 1.8 2.5 4.9 1.8 1.8 3.7 

Outlet temperature, °C 25 25 25 25 25 25 26 

Note: In Table 3, the pipe material 20# represents 20 Gauge steel in the USA; Φ159 × 8 represents the 

external diameter of the pipeline (159 mm) and the wall thickness (8 mm). 
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Table 4. The gas composition of pipelines No. 1, No. 2, No. 6 and No. 7. 

Composition No. 1 No. 2 No. 6 No. 7 

CH4 96.850 96.280 94.770 95.220 
C2H6 0.260 0.200 0.190 0.200 
C3H8 0.040 0.030 0.003 0.010 

C4H10+ 0.008 0.200 0.004 0.004 
CO2 0.800 0.590 1.840 0.910 
H2S 1.750 1.720 2.100 2.150 
N2 0.280 1.103 1.030 1.470 
He 0.017 0.015 0.049 0.020 

O2 + Ar 0.200 0.020 0.020 0.020 

Table 5. The compositions of pipelines No. 3, No. 4, and No. 5. 

Pipeline Relative density G/L H2S content, % CO2 content, % 

No. 3 0.573 67358:1 1.760 1.050 
No. 4 0.587 126582:1 1.730 0.810 
No. 5 0.570 29000:1 2.130 1.440 

Note: In Table 5, G/L represents the ratio of gas volume to liquid volume. 

(2) The internal Corrosion Inspection Data 

Ultrasonic guided wave and metal magnetic memory testing were applied to obtain the internal 

corrosion data from the pipelines. The verified internal corrosion inspection data for the seven 

pipelines in the region are shown in Table 6. The 116 internal corrosion rates of the pipelines are 

shown in Figure 2. 

Table 6. The internal corrosion inspection data from the pipelines. 

Pipeline Length, km The number of test points 

No. 1 12.26 31 
No. 2 2.69 9 
No. 3 2.82 11 
No. 4 2.47 12 
No. 5 2.16 10 
No. 6 3.52 11 
No. 7 8.41 32 
Total 34.33 116 
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Figure 2. The detected internal corrosion rates of the pipelines. (Note: The horizontal scale 

is the number of each test point, as listed in Table 7. Points 1 to 31 are from the No. 1 

pipeline, points 32 to 41 are from the No. 2 pipeline, etc.) 

 

3.2. Step 2: Identification of the Influencing Factors and the Supplementary Data 

(1) Identification of the Influencing Factors 

The factors affecting the internal corrosion can be grouped into three sets, including the metal 

material and the metal surface state, the fluid nature, and the pipeline operating parameters. To 

simplify the development procedures in the model, the factors with similar values should not be taken 

into account.  The similar factors are summarized in Table 7. 

Table 7. The similar factors among the pipelines. 

Pipe material 
Pipe size 

(mm) 
Operating 
pressure 

Operating 
temperature 

Acid content % 

H2S CO2 

20# 100~280 ≤6.4 MPa ≤40 °C 1.7~2.3 0.5~2.0 

Partial pressure ratio 
(PCO2/PH2S) 

Methane 
content % 

Max flow (m/s) 
Flow regime 

(mainly) 
Internal 
coating 

0.3~0.9 ≥94 4 Stratified, Slug No 

It can be seen that the material and internal coating of the pipelines are the same, according to 

Tables 4 and 8. Hence, it is not necessary to consider these two factors in the numerical prediction 

methods for the area (generally, these two factors are initially considered in the pipeline design phase). 

For these pipelines, the gas composition, the acid content, the total salinity and the chloride ion 

content change insignificantly within a certain range. The gases are all more than 94% methane, and 

the sulfide content ranges from 1.7% to 2.3%. In particular, the partial pressure ratios of CO2 and H2S 

are between approximately 0.3–0.9, which implies that the type of corrosion in these pipelines is 

predominantly hydrogen sulfide corrosion [21]. Further, for slight variations in this composition, the 

tendency of the gas composition to lead to corrosion in these pipelines is considered approximately the 

same. However, if the ratio is significantly different from 0.3 to 0.9, it is critical to obtain data from 

many pipelines with a sufficient distribution of data on CO2 and H2S so that these data can be used  

to correlate this important parameter. Next, the primary 21 factors should be considered, as listed  

in Table 8. 
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Table 8. The calculated internal corrosion influence factors of the pipelines. 

Name Description Name Description 

ANGLE pipe angle HTK heat transfer coefficient of inner wall 
HOL liquid holdup QIN heat transfer from inner pipe wall to fluid 
ID flow regime TWS inner wall surface temperature 
PH pH value TCONG thermal conductivity of gas phase 
PT pressure TAUWG gas-maximum wall shear stress 
TM fluid temperature TAUWHL liquid-maximum wall shear stress 
PSID deposition rate USG superficial velocity gas 
SIG surface tension USL superficial velocity total liquid film 
ROG density of gas EVR erosional velocity ratio 
ROL density of liquid VISG gas viscosity 
VISL liquid viscosity   

(2) Supplementary Data 

The multiphase flow simulation software package SPT OLGA7.1 is utilized to supplement the 

values of the internal corrosion influencing factors. 

3.3. Step 3: Weighting and Refinement of the Internal Corrosion Influencing Factors with Grey 

Relational Analysis 

The weighting method, based on the grey relational analysis, is applied to refine the main 

influencing factors further. 116 internal corrosion inspection data from the seven pipelines are used as 

the reference sequence, and 116 groups of internal corrosion influence factors are used as the 

comparison sequence during the calculation. The calculated overall correlation degrees are listed in 

Table 9. The factors are sorted by the magnitude of the correlation degree. 

Table 9. The degree of correlation of the internal corrosion factors of the pipelines. 

Factor HOL HTK PSID USL TAUWHL ANGLE TAUWG

Correlation degree 0.7603 0.7494 0.7398 0.7175 0.7095 0.7086 0.7048 

Factor TCONG EVR VISG PH TWS TM PT 

Correlation degree 0.6953 0.6898 0.6833 0.6666 0.6627 0.6578 0.6558 

Factor ID ROG SIG VISL USG ROL QIN 

Correlation degree 0.6546 0.6534 0.6325 0.6126 0.6126 0.5994 0.5616 

Table 9 shows that the correlation degrees of the seven factors, including HOT, HTK, PSID, USL, 

TAUWHL, ANGEL, and TAUWG, are all higher than 0.7, which can be regarded as the threshold for 

selecting the high correlation factors [22]. These seven influencing factors for each detected position 

from the seven pipelines are selected as the input variables of the numerical prediction model. The 

corresponding internal corrosion rate data of the seven pipelines are the output variables. If the 

numerical prediction model is applied to other areas and pipelines, the high correlation factors may 

differ from those chosen in this paper. 
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3.4. Step 4: Establishment of the Numerical Prediction Model 

(1) The Neural Network Structure 

The structure of the ANN, which is used to establish the model, is shown in Figure 3. It consists of 

three layers: there is one input layer with seven neurons, one hidden layer with 14 hidden neurons, and 

one output layer with one neuron. The 116 groups of data were divided into the training set and the 

testing set. Ninety-five groups of data from the No. 1, No. 2, No. 3, No. 4, and No. 7 pipelines are 

selected as the training set, and 21 groups of data from the No. 5 and No. 6 pipelines are selected as the 

test set. 

Figure 3. The neural network structure. 

 

(2) Evaluation of the BP, GA&BP and PSO&BP ANNs 

The three ANNs were trained with 95 groups of training data and were tested with 21 groups of 

basic data. The calculation results are compared with the inspection corrosion rates, as shown in  

Figure 4, and the absolute distribution errors of the three ANNs are listed in Table 10. 

Figure 4. The predicted results of the BP, GA and BP, and PSO and BP ANNS. 
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Table 10. The absolute errors of the corrosion rate predicted by BP, GA and BP, PSO and BP. 

Error, mm/a ≥0.1 <0.1, ≥0.05 <0.05, ≥0.03 <0.03, ≥0.01 <0.01 

BP error distribution 0 6 5 8 2 
GA and BP error distribution 0 0 9 6 6 
PSO and BP error distribution 0 0 5 12 4 

It can be seen from Figure 4 and Table 10 that the absolute errors of the BP ANN are all less than 

0.1 mm/a and the absolute errors of the other two ANNs are both less than 0.05 mm/a. The majority of 

the error values of the PSO and BP ANN range between 0.01 and 0.03, and the GA and BP ANN has 

the most points with absolute errors less than 0.01 mm/a. Thus, the GA and BP model is selected as the 

best model for wet gas gathering pipeline corrosion rate prediction in Sichuan Province (China). 

(3) Establishment of the Numerical Prediction Model 

The weights and the threshold are shown in Table 11. 

Table 11. The final weights and thresholds as determined by GA and BP. 

 Wji  Bkj Wkj Bk 

j 1 2 3 4 5 6 7 1 1 1 

1 0.7871 0.1436 1.3603 1.3371 0.4841 0.8486 0.6212 0.526 –0.0553 0.5067 
2 0.3528 –0.0278 0.6563 0.9863 1.0682 –0.3052 1.0161 1.1866 0.0634  
3 0.5657 –0.2742 0.3858 –0.268 0.1617 –0.0597 0.366 2.3361 –0.0623  
4 –0.0854 0.3601 1.1294 0.709 –0.4639 1.0013 –0.7004 –0.439 0.0349  
5 –0.5838 0.9066 0.663 1.0599 –0.3253 –0.5323 0.3456 –0.3373 –0.0031  
6 –0.1142 0.2516 0.1891 1.1337 0.4167 0.1137 0.9173 –0.4147 –0.0067  
7 1.0394 0.2659 0.7327 –0.0903 0.0634 –0.0359 –0.172 3.6657 –0.3328  
8 –0.2195 –0.3993 1.355 0.0281 0.9816 0.6192 0.3937 0.6424 –0.0199  
9 –0.0504 1.3109 1.1697 2.1103 1.0558 1.4078 –0.4901 –0.5101 0.3902  
10 0.9373 0.6316 0.3763 1.572 –0.0523 0.639 0.3539 –0.587 –0.1475  
11 0.1309 0.3315 0.3036 0.1235 1.2292 1.5775 0.496 0.1291 0.0279  
12 0.2275 1.1052 0.8768 0.3657 0.566 0.4937 –0.0061 0.3502 0.0838  
13 0.2604 1.507 0.6898 1.6409 1.6911 1.3298 0.789 3.6935 –0.0664  
14 –0.4708 –0.1168 0.5337 –0.4306 1.0504 –0.7916 0.1446 1.3818 –0.1402  

Note: Wji is the weight of the input layer; Bkj is the threshold of the hidden layer; Wkj is the weight of the 

hidden layer; Bk is the threshold of the output layer; i is the neural number of the input layers; j is the neural 

number of the hidden layers; and k is the neural number of the output layers. 

3.5. Step 5: Validation of the Model 

From the basic data recorded for pipeline No.8, as shown in Tables 12 and 13, it can be seen that 

this pipeline’s internal environment parameters are similar to those of the training and testing pipelines, 

as shown in Table 7. 
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Table 12. The basic data on the validation pipeline. 

Pipe material pipe size, mm Length, km Operation time, a 

20# Φ273 × 8 7.84 1991 

Design pressure, MPa Cathodic protection Internal coating Ambient temperature, °C 

6.4 Yes No 15 

Inlet pressure, MPa Inlet temperature, °C Outlet pressure, MPa Outlet temperature, °C 

5.1 28 3.8 25 

Design transmission capacity, m3/d Gas transmission capacity, m3/d 

70 57 × 104 

Table 13. The composition of the validation pipeline. 

Composition CH4 C2H6 C3H8 C4+ CO2 H2S N2 He O2 

Content % 94.62 0.19 0.03 0.20 1.28 2.29 1.46 0.11 0.05 

Ultrasonic guided wave and metal magnetic memory testing methods were applied to develop the 

internal corrosion data of the No. 8 pipeline. A total of 54 excavation points along the pipeline have 

been selected to validate the GA and BP ANN prediction model. Additionally, the field situation of the 

excavation points is shown in Figure 5. 

Figure 5. The excavation points of the validation pipeline. 

(a) Ultrasonic guided wave (b) Metal magnetic memory testing 

The fifty-four groups of excavation inspection data gathered from pipeline No. 8 and the 

corresponding results obtained by the GA and BP ANN, the de Waard 95 model and the Top-of-Line 

corrosion model are shown in Figure 6. The distributions of the absolute errors are shown in Table 14. 

Table 14. The distribution of the prediction errors of the GA and BP for the validation pipeline. 

Error, mm/a ≥2 <2, ≥1 <1, ≥0.1 <0.1, ≥0.05 <0.05, ≥0.03 <0.03, ≥0.01 <0.01 

de Waard 95 model distribution 38 15 1 0 0 0 0 

Top-of-Line corrosion model 
distribution 

0 19 34 1 0 0 0 

PSO and BP error distribution 0 0 6 12 6 19 11 
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Figure 6. The predicted results and the inspection data of the validation pipeline. 

 

As listed in Table 14, the absolute errors of the de Waard 95 model are all greater than 0.1 mm/a, 

and 38 out of 54 excavation points (70.37% of the total) possess absolute errors greater than 2 mm/a. 

The Top-of-Line corrosion model is slightly better than the de Waard 95 model but is still not 

satisfactory. All of the absolute errors in the Top-of-Line model are greater than 0.05 mm/a, and 53 out 

of 54 excavation points (98.14% of the total) possess absolute errors greater than 0.1 mm/a. Even so, 

19 points (35.18% of total) yield absolute errors greater than 1 mm/a. 

In comparison, the GA and BP ANN model yields significantly more accurate error values. All of 

the absolute errors in this model are less than 1 mm/a, and only 18 points (33.33% of the total) possess 

absolute errors greater than 0.05 mm/a. The major absolute error ranges (55.55% of the total) are 

between 0.01 and 0.03 mm/a. This application to the No.8 pipeline demonstrates that the numerical 

model based on the GA and BP ANN model is significantly more accurate in comparison to the de 

Waard 95 model and the Top-of-Line corrosion model. Thus, the GA and BP ANN model is effective 

in the prediction of corrosion rates for the specific wet gas gathering pipelines in the ICDA process. 

This model also can be applied to other pipelines whose internal environment parameters satisfy the 

parameters of Table 7. If the gas composition and pipeline operational parameters deviate too 

significantly from the training pipelines, the specific input variables, weights and threshold values of 

the numerical model should be modified accordingly [23]. 

4. Conclusions 

This paper introduced a numerical internal corrosion rate prediction method for the internal 

corrosion direct assessment of wet gas gathering pipelines based on ANNs. The basic data that were 

used for the numerical method were determined by the NACE WG-ICDA SP0110. The influencing 

factors that affected the internal corrosion were identified and refined with the grey relational analysis 

method. The refined factors were chosen to be the input variables of the ANN model, and different 

algorithms, including BP, GA and BP, PSO and BP, were applied to train the model. 

In the application case, 95 groups of data, including the influencing factors as well as the inspection 

corrosion rates from five pipelines, were used to train the application model. An artificial neural 

network model with seven neurons in the input layer, 14 neurons in one hidden layer and one neuron in 

the output layer were developed.  Another 21 groups of data from two pipelines were used to test the 
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model. The test results show a satisfactory degree of matching between the prediction corrosion rate 

and the inspection data, and the GA&BP ANN showed the lowest absolute errors. Thus, this model 

was selected as the best model for the prediction of corrosion rates. 

Fifty-four groups of excavation data from the No. 8 pipeline, whose internal environment 

parameters are similar to those developed by the training and testing pipelines, were applied to the de 

Waard 95 model, the Top-of-Line corrosion model and the GA and BP ANN model. The application 

results show that the accuracy of the GA and BP ANN model is significantly better than that of the 

other two models for the specific wet gas gathering pipelines investigated. Thus, this model can be 

used in the study of a specific pipeline for which the data have been collected and the ANN has been 

developed in WG-ICDA SP0110. 
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