
Energies 2012, 5, 4497-4516; doi:10.3390/en5114497 
 

energies 
ISSN 1996-1073 

www.mdpi.com/journal/energies 
Article 

An Energy and Water Resource Demand Estimation Model for 
Multi-Family Housing Complexes in Korea 

Dongjun Suh 1 and Seongju Chang 2,*  

1 Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology 
(KAIST), Daejeon 305-701, Korea; E-Mail: djsuh@kaist.ac.kr 

2 KAIST Institute for Urban Space and Systems (KIUSS), KAIST, Daejeon 305-701, Korea 

* Author to whom correspondence should be addressed; E-Mail: schang@kaist.ac.kr;  
Tel.: +82-42-350-3627; Fax: +82-42-350-4540. 

Received: 18 September 2012; in revised form: 27 October 2012 / Accepted: 7 November 2012 / 
Published: 13 November 2012 
 

Abstract: This paper proposes and develops a residential energy and resource 
consumption estimation model in the context of multi-family residential housing in Korea 
using a multi-layer perceptron (MLP) neural network. Eight indicators are introduced 
which affect the energy and water resource usage characteristics of Korean residential 
complexes. The proposed model precisely estimated the electricity, gas energy and water 
consumption for each examined residential complex. In terms of validation, the results 
showed the highest level of agreement with actually collected datasets. The model shows 
promising prospects in providing necessary estimations, not only for optimally scaling and 
sizing energy- and water-related infrastructures, but also to promote reliable energy and 
resource savings through greenhouse gas (GHG) reduction planning in multi-family 
housing complexes. The model could also be of use in framing guidelines for the better 
planning of national or regional energy and resource policies and for forming a foundation 
of decision-making with definite references regarding the facility management of each 
apartment complex to enhance the energy and resource use efficiency at these locations. 
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1. Introduction 

Given the vast extent of increased global energy consumption that has led to the emission of air 
pollutants and greenhouse gases, serious interest in reducing energy consumption has intensified. 
Buildings are responsible for 25%–40% of the total energy use in OECD countries, as well as  
40%–45% of energy consumption in Europe [1]. The Green Building Council has reported that in the 
US, building energy consumption accounts for 36% of the total energy usage and 65% of electricity 
consumption, while being responsible for 30% of greenhouse gas emissions [2]. Therefore, the 
building sector potentially represents the largest single domain for improving energy efficiency. 

The Korean government has begun a national effort to promote energy and resource savings in 
relation to GHG reductions in the residential sector in light of the fact that building energy 
consumption accounts for nearly 30% of Korea’s total annual energy consumption. Residential 
buildings, especially multi-family housing complexes (usually referred to as “apartment buildings”), 
account for nearly 60% of the total building energy consumption in Korea [3–5], while water 
consumption in the residential sector represents over 65% of the total water use, which is a percentage 
that increases annually [6]. 

In academic or practical domains, there have been a large number of trials that have explored the 
unique features of Korean apartment complexes regarding energy efficiency. The development of the 
Apartment Management Information System [7], led by the Ministry of Land and Maritime Affairs of 
Korea, is a representative action among multiple efforts to secure greater efficient energy and facility 
management of multi-family housing complexes. This system deals with electricity and gas usage plus 
water consumption as the major forms of energy and resources supplied to most Korean multi-family 
housing complexes. Various incentives and energy efficiency ratings for apartment complexes have 
been attempted in test operations of the AMIS system. However, many limitations are found in terms 
of the efficient operation and management of AMIS. In particular, given that the system has only 
recently revealed its operative information to the public, the accuracy of the information has not been 
fully verified.  

For a proper consideration of the efficient management of the resources and facilities related to 
Korean style apartment complexes, it is necessary to have an accurate estimation model for electricity, 
gas and water utility usage profiles applicable to most of the multi-family housing complexes in Korea 
based on the region, month and primary factors of a specific apartment complex. The prediction of 
household resource (i.e., energy and water) consumption could be performed at residential district 
level, regional level, city level and national level.  

Macroscopically, estimating the amount of energy and water passing through the complex 
hierarchical structure of the household utility demand and supply system is essential for planning, 
designing and operating the pertinent infrastructure and related facilities in pursuit of energy and 
carbon neutral management for the entire residential sector. If a local or central government tries to 
induce voluntary citizen participation in an energy- and resource savings movement, this type of 
average household utility consumption profile prediction model can be used to judge the effectiveness 
of resource conservation efforts by comparing the actual performance of the resource efficient large 
residential complex to the average performance represented in this model. 
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Meanwhile, regarding the spread of renewable energy the importance of which has been escalated 
especially in the residential sector, the introduction of renewable energy sources could reduce the 
demand for conventional fossil-fuel-produced electricity or gas. Therefore, optimizing the scale of the 
renewable energy supply and related infrastructure as well as the operational strategies of related 
facilities could be achieved based on precise predictions of total energy demand amounts, carefully 
allocated as a mixture of traditional fossil fuels or the electricity derived from them and energy produced 
through renewable energy sources. The proposed household energy and water consumption estimation 
model could also serve to support sustainable and carbon-neutral solutions for the residential sector by 
enabling the quantification of the expected life-cycle cost reduction to be reflected in a business plan 
and thus provide a concrete basis for contributing to the spread of renewable energy sources.  

In this context, this study investigates the macro-level factors influencing a residential complex in 
relation to its energy and water consumption profile and proposes a novel and generalized model that 
can estimate the usage amounts of electricity, gas and water in Korean multi-family housing complexes.  

2. Research Background 

2.1. Energy Consumption Modeling Researches 

Over the past several years, energy consumption modeling research as applied to residential 
housing has been pursued from a variety of perspectives. Swan [8] divided energy consumption 
modeling efforts into top-down and bottom-up approaches. The former correspond to a macroscopic 
analysis at a regional or national scope over a long-term timespan, such as annual estimations. In that 
vein, Hirst [9] introduced an annual household energy consumption model in the US which relied on 
econometric components as well as technological elements [10,11]. Haas [12] developed an econometric 
electricity energy consumption model for housing stock considering the phenomenon of historically 
evolved rising prices on top of traditional studies [13].  

In contrast, the bottom-up methods entail a microscopic approach, extrapolating the estimated 
energy consumption profiles of a representative set of individual houses to regional and national  
levels [8]. Our study primarily utilizes the bottom-up approach, assessing the contribution of the 
energy consumption of each multi-family housing complex to the overall national energy use. The 
microscopic model is largely divided into two sub-categories: the Statistical Method (SM) and the 
Engineering Method (EM) [14]. SM considers several indicators in assessing energy consumption 
models via regression [14], Conditional Demand Analysis (CDA) [15], and an Artificial Neural 
Network (ANN) [16–18]. Energy models for buildings mainly consider annual energy usage 
characteristics via simulations and regression techniques [19,20]. However, such classical statistical 
approaches, relying on regression and time-series models, are well understood and the related 
estimation processes are relatively simple. 

In the case of ANN, a large number of applications have shown that ANN can be a quite suitable 
tool within the stationary forecasting domain, predicting factors such as carbon emissions [21,22], 
construction costs [23], and stock market behavior [24]. ANN has been adopted to predict building 
cooling loads [25,26] and annual building energy consumption levels [19], given that energy 
consumption datasets are highly non-stationary as regards the relationship between input variables and 
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the outputs of a complex system [26]. Recently, there have been energy demand models using ANN 
that take a macroscopic approach based on macro-econometric indicators [27,28]. Such models can 
provide a helpful guideline regarding regional or national energy planning, but they pursue a rather 
simplistic perspective with regard to estimating final goals.  

Lastly, the engineering method (EM) assesses the distribution of appliance ownership, including 
appliance power ratings, and calculates household end-user energy consumption while providing 
descriptions of archetypes and data sampling for houses [29–31]. Household energy end-use models 
based on descriptions of archetypes have seen greatly elaborated development [30,31]. However, 
underlying the results of these models are many assumptions regarding the operating conditions which 
are inclusive of occupants’ behaviors. It is impossible to consider all of the factors related to energy 
end-use, such as the number of occupants, all of the different appliances and their power ratings,  
the dwelling types, and the occupants’ behaviors. Most research in this vein adopts assumed scenarios 
for occupancy patterns that are derived from survey analyses which cannot exclude subjective 
information [29,31]. Moreover, such research must confront privacy issues with regard to the 
collection or distribution of energy consumption datasets for individual households. 

To summarize the distinctive features of the models discussed thus far, precedent studies have 
sought to address socio-economic factors which could influence residential energy consumption and 
how they are interconnected. Seeking to reflect socio-economic phenomena by applying socio-economic 
features is a process subject to severe limitations mainly because it relies on deriving quantifiable 
information from subjective fundamentals.  

2.2. Researches on Korean-Style Apartment Complex  

In accordance with the growing importance of energy consumption and demand models related to 
GHG reduction, a number of studies of multi-family housing complexes, which account for a large 
portion of total energy and resource consumption in Korea, have been conducted. By evaluating 
monthly energy consumption profiles in the Pusan area in relation to the morphological factors of a 
building, such as the flat types and tower types [32,33], researchers found that flat-type buildings 
consume about 10% more gas than tower-type buildings. On the other hand, Lee [34] reported that the 
energy usage levels for heating different types of apartment complexes in Kyeonggi province are 
nearly identical and are therefore not influenced by the building shape. Only the electricity use of 
tower-type apartment buildings is 1.2–1.5 times that of flat-type apartment buildings. 

There are studies of gas energy consumption issues that consider the major characteristics of 
apartment complexes (i.e., building age, number of buildings, number of stories, number of 
households, maintenance area, household size, and others) in a specific region, such as Seoul [35] or 
Cheju [36]. Hong [37] analyzed the monthly use of electricity and gas energy plus water along with the 
level of conservation after occupants’ lifestyle changes in apartment complexes in Daegu. In addition, 
Lee [38] explored the current status and characteristics of GHG emissions through GHG source unit 
analyses for local governmental buildings in different regions of Korea depending on their usage types 
(hotels, schools, hospitals and apartment complexes). 

To analyze the energy and water resource consumption patterns in Korea, it is necessary to 
understand the unique Korean geographical and climatic characteristics. Specifically, Korea has 
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distinct seasonal changes. Thus, despite minute latitude variations within the nation, cooling and 
heating energy consumption patterns among the different regions are obvious and noticeable unlike 
general expectations [5,39,40].  

Lim [41] examined the characteristics of energy consumption in major Korean cities in accordance 
with an analysis of annual energy consumption patterns in each region, finding that the amounts of 
energy use show similar tendencies according to the latitude and other special characteristics 
(temperature, HDD, CDD and economic level) of each region. He presented an electrical energy 
consumption model using heating degree days (HDD, base temperature: 18 °C) and cooling degree 
days (CDD, base temperature: 24 °C) [5,42] using monthly data computed according to the daily 
temperature. Hong [43] investigated the energy consumption of apartment complexes according to the 
heating systems used in three different climate zones (latitude), analyzing the energy sensitive factors 
of apartment complexes. 

Water consumption in the household sector is reported annually by the Korean Ministry of 
Environment [5], focusing on the issue of water demand management. Research related to water 
consumption considering residential characteristics has been performed as well. Kim [44] investigated 
the relationship between domestic water consumption and the number of dwellers of apartment 
complexes in Seoul. They proved that water consumption is influenced more by the dwelling type 
(e.g., the housing type, the number of households, and the gross area) than it is by the economic level 
of the occupants. Hyun [45] analyzed the effect on the increase in domestic water usage according to 
the differently heightened floors of an apartment as related to the water pressure and the number of 
family members in each unit. Lee [46] presented an estimation model for the amount of water use and 
the water cost considering the diversified characteristics of residential complexes.  

Recently, the city of Seoul launched the “ECO mileage system”, a citizen participation program, in 
an effort to cope with the effects of climate change [47]. The system allows every household type, 
including detached houses and apartment complexes to be informed of the amount of energy and 
resources they use, including electricity, gas and water, to motivate citizens to conserve these resources. 
This can be expected to reduce GHG emissions and it offers incentives for low-carbon activities.  

Most studies related to energy and water consumption with respect to Korean-style apartment 
complexes usually focus on consumption patterns or phenomena analyses rather than estimation modeling. 
Therefore, it is indispensable to estimate the required primary energy and other resource consumption 
amounts, especially for Korean multi-family housing complexes. In this context, our research attempts 
to establish a reliable estimation model to estimate the electricity, gas and water demand levels, as 
such a model is crucial for better planning for the ever-spreading apartment districts in Korea. 

3. Proposed Estimation Model 

This paper adopts an artificial neural network (ANN) estimating method to build an energy and 
resource usage model for multi-family housing complexes in Korea. Witnessing the technical 
shortcomings of previous models, however, we found that it is essential to identify pertinent factors 
affecting energy use in the design of a reasonable ANN model. First, we verify the diversifying 
elements constituting multi-family housing complexes as input datasets for the ANN system in relation 
to the actual energy and water consumption data (i.e., electricity, gas and water use), after which we 
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design an ANN model capable of analyzing any complex nonlinear pattern accurately through a 
training and learning system involving carefully identified factors.  

3.1. Artificial Neural Network (ANN) 

An ANN is constructed simply through learning from a set of sample data containing pairs of input 
vectors and associated outputs without any explicit analytical expressions of a model equation [17,48]. 
The result is a crucial nonlinear statistical model, typically used to assess complex relationships 
between inputs and outputs or to discover patterns embedded in the datasets.  

This study adopts a multi-layer perceptron (MLP), one of the most commonly used types of ANN. 
MLP is comprised of multiple layers of computational units, having a direct connection to the neurons 
of the sub-layer. In many applications, the units of these networks apply a transfer function, most 
commonly a sigmoid, hyperbolic tangent or Gaussian function [49]. In this study, we use the 
hyperbolic tangent sigmoid function to compute a layer’s output from its network input, while 
applying the Levenberg–Marquardt algorithm (LMA) [27,29] to derive training weights and bias, 
which are internal parameters of a neural network to provide it with the preferred associations between 
various outputs and classes of inputs [48].  

The LMA is combined with the feature of the Gauss-Newton algorithm, which is widely used to 
solve non-linear least squares problems, along with a gradient descent algorithm. The LMA is more 
robust than the Gauss-Newton algorithm, which means it finds a solution even if it starts very far from 
the final minimum.  

At a further distance from the function minimum, the steepest descent method is utilized to provide 
steady and convergent progress toward the solution. If the solution approaches the minimum, the 
damping parameter is adaptively decreased, the LMA approaches the Gauss-Newton algorithm, and 
the solution typically converges rapidly to the minimum [48]. The connection weights are adjusted by 
the LMA according to Equation (1): 
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where w denotes the connection weights, wΔ  is the weight correlation, E(w) is the learning error,  
J(w) is the Jacobian matrix of the error vector, μ  is the damping parameter, I is the identity matrix, 
and S is the number of sample data points. 

As indicated by recent studies, ANN generally works well for highly non-linear energy use patterns 
and is capable of extracting useful information concerning real phenomenon via a learning process. 
The training sample datasets carefully chosen for this study were trained via the above-mentioned 
ANN energy and water consumption model equipped with optimal weight values, the outcome of 
which could thus be established for energy and water consumption magnitude predictions. 

3.2. Affecting Indicators of Energy and Water Use for Korean Apartment Complexes 

Thirty apartment complexes in total are examined as a case study to analyze the validity of the 
residential building energy and water demand model built on the methods described in the previous 
section. The required parameters of with monthly electricity, gas and water consumption datasets of the 
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selected residential complexes for 2011 are collected through AMIS [7], real-estate data [50], and from 
gas energy supply companies [51]. Among the 30 instances of apartment complex datasets, we initially 
choose sample datasets of 15 instances according to the conditions shown in Table 1. The datasets must: 

(1) encompass at least five cities located at different latitudes and longitudes (Figure 1); 
(2) include only residential complexes having more than 400 households; 
(3) exclude residential complexes having ambiguous or missing information; 
(4) include only residential complexes equipped with individual gas heating systems (in which gas 

is used for hot water, cooking and heating); 
(5) include residential complexes separated by explicit and quantitative factors affecting  

energy consumption; 
(6) meet the 95% confidence level with a margin of error of plus or minus 2.5%. 

Figure 1. Locations of six Korean cities with different latitude and longitude. 

 

To ascertain the factors affecting energy and water usage in typical multi-family housing 
complexes, we pre-selected three representative categories: the residential complex type, geometric 
factors and climate factors. This study focuses primarily on the factors affecting the energy and water 
consumption variations in residential complexes, which can be quantitatively analyzed. Therefore, 
individual factors associated with great randomness, social factors which may be affected by relevant 
policies or regulations, and other internal factors—such as populations, standards of living, the level of 
urban development, and the level of social development—are excluded from the model, as they are not 
a part of the principal ingredients of multi-family housing complexes. Moreover, they are not well 
suited to be incorporated into a quantitative model as indicators. 

Factors pertaining to residential complexes include the number of buildings, the number of 
households, the age of the buildings, the total gross area, the total maintenance area, the maintenance 
area per household (the average household gross area), the number of stories, the corridor-type (i.e., 
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staircase/shared corridor/mixed), the unit-type (i.e., tower/flat), the heating-type and others in 
accordance with the typical classification standards for Korean-style apartment complexes [32–35].  

Geometric factors include the latitude and longitude of each region and the unit cost for gas and 
water in each region. Regarding electricity energy in the residential sector, uniform pricing is adopted 
across all over the country. Climate condition factors include months of the year, the average monthly 
dry bulb temperature, the regional relative humidity, the heating degree-days and the cooling  
degree-days. These categories yield a total of 18 selected indicators, as shown in Figure 2. An analysis 
of the correlation between energy or water consumption and each indicator was executed using 
Equation (2) [52]. 

Figure 2. Factors for affecting energy and water use in multi-family housing complexes. 

 

The correlation coefficient ρX,Y between two random variables X and Y with expected values of μX 
and μY and the standard deviations σX and σY is defined as: 

,
( , ) [( )( )]( , ) X Y

x y
x y x y

cov X Y E X Ycorr X Y μ μρ
σ σ σ σ

− −
= = =  (2) 

where E is the expected value operator, cov represents the covariance, and corr is the Pearson’s 
correlation. There exists less of a relationship (closer to uncorrelated) as the coefficient approaches 
zero, whereas the closer the coefficient is to either −1 or 1, the stronger the correlation between the 
variables becomes. 
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Table 1. Extracted variables and description of collected data sets. 

Case no. City Latitude Longitude 
No. of 

buildings 
No. of 

households 
Elapsed 

year 
Gross 

area (m2) 
Maintenance 

area (m2) 

Maintenance. 
area per ea. 

Household (m2) 

No. of 
stories 

Corridor 
type 

Unit type 
(building 

shape) 
1 Chunchun 37.88 127.75 12 1,792 3 299,093 223,032 124 25 Stair Tower 
2 Suwon 37.26 127.02 14 2,063 7 364,888 272,388 132 30 Stair Flat 
3 Buchun 37.5 126.76 13 1,070 7 131,258 103,440 96 25 Stair Flat 
4 Buchun 37.5 126.76 5 490 7 70,341 53,669 109 25 Stair Flat 
5 Buchun 37.5 126.76 11 1,012 7 113,134 113,126 111 25 Stair Flat 
6 Buchun 37.5 126.76 8 836 8 178,134 133,000 159 25 Stair Flat 
7 Buchun 37.5 126.76 9 669 8 86,344 67,149 100 25 Stair Flat 
8 Buchun 37.5 126.76 11 1,387 8 208,394 163,979 118 25 Stair Flat 
9 Daejeon 36.35 127.38 9 763 3 100,151 87,099 114 25 Stair Flat 

10 Daejeon 36.35 127.38 9 946 3 87,119 86,829 91 23 Stair Flat 
11 Gimhae 35.23 128.89 9 585 2 85,499 64,782 110 23 Stair Flat 
12 Gimhae 35.23 128.89 14 749 4 103,710 103,341 137 15 Stair Flat 
13 Changwon 35.42 127.67 6 780 1 163,278 110,682 141 36 Stair Tower 
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Table 2 shows the results of the correlation analysis among electricity, water and gas energy 
consumption levels and other indicators. Generally, correlation coefficients with magnitudes that 
exceed 0.5 between the compared values indicate variables which can be considered as moderately 
correlated. Therefore, we discriminate the operative indicators towards the target outputs, specifically 
electricity, water and gas energy consumption. Most consumption patterns show high correlations with 
the number of buildings, the number of households, the total gross area, and the total maintenance 
area. In the case of electricity, the consumption patterns are mainly affected by factors related to the 
residential complex type. Electricity use is less related to geometric and climate condition factors, 
whereas gas consumption has a stronger correlation with temperature. In particular, the latitude, which 
implicitly differentiates the distance of a specific region from the Seoul metropolitan area, has greater 
impact on water consumption as compared to electricity and gas usage levels, due to unique Korean 
regional peculiarities. 

3.3. Establishment of a Residential Housing Energy and Water Consumption Model 

Based on the indicators sensitive to energy and water use shown in Table 2, we finally chose the 
most sensitive indicators among the residential complex type, climate and geometric factor categories 
to form an input vector. The output vector includes all three data categories related to energy and water 
use of the residential complexes. The final input and output vectors of the newly formulated ANN 
estimation model are composed of the following components: 

[ , , , , , , , ]

[ , , ]

ANN Latitude Month Month Temp HDD N.buildings N.households G.Area M.Area

ANN

I G ,C [1] C [12] C C RC RC RC RC

O Electricity Consumption  Gas Consumption  Water Consumption

=

=

L
 (3)

where IANN represents the input vector and OANN indicates the output vector of the ANN  
estimation model.  

The dataset used here covers 12 months for 15 apartment complexes. IANN in the raw data 
constitutes of 19 × 180 datasets defining 19 attributes for 180 different cases including “1–12 coded 
month of the year”, “latitude”, “temperature”, “heating degree days”, “number of buildings”, “number 
of households”, “gross area”, and “maintenance area”. In contrast, OANN in the raw data is a 3 × 180 
matrix for electricity, water, and gas energy use as estimated from the inputs. This pre-processing step 
was implemented using MATLABTM script programming and Neural Network ToolboxTM [53] to 
index the time (month) and to combine the corresponding values. If a variable is missing for a 
particular month, the dataset of the entire row for that month is excluded due to the error that may be 
introduced when estimating missing values, though it nonetheless retains the possibility of contributing 
to the estimation. Therefore, a pre-processing step was necessary to edit the initial data and to create a 
consistent database having all of the desired parameters for every month. The sample set we finally 
used consists of a 22 × 156 matrix, representing 156 samples of 22 elements. 

Afterward, we linearly normalized all inputs and output so that they were within the range of [0, 1] 
to avoid any masking effect, as all of the inputs and outputs have different ranges (such as the 
temperature, latitude, number of buildings, and electricity load) [54]. Linear normalization of x so that 
these values were within the range of [0, 1] was done as follows: 
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min

max min
n

x xx
x x

−
=

−
 (4)  

where xn indicates the normalized value of x in the range of [0, 1]. Thus, each input is separately 
normalized based on its own minimum and maximum values. Also, the normalized variable xn can 
easily be returned to the original range within [xmin, xmax] by the inverse transform, as shown below: 

min n max min( )x x x x x= + ⋅ −  (5)  

The sample datasets are divided into a training sample set and a performance test set based on the 
ratio of 70% and 30%, which means that 120 samples were used for the training set and 36 samples 
were used for the test set.  

According to the other precedent studies [55,56], a three-layer BP network can be used to solve 
random function fitting and approximation problems. We therefore adopt a three layer BP neural 
network with a single hidden layer. The number of hidden units is calculated through both theoretical 
and experimental methods. As recommended by Duda [17], the total number of weights in the network 
should not exceed the total number of training points. From the calculation, we derive 11 hidden nodes; 
the range of N is N ≤ 11, selecting the final number through trial-and-error-based experimentation, as 
shown in Table 3. The model parameters are set to an input layer of 19 neurons, an output layer of  
3 neurons, and one hidden layer of 11 neurons, as shown in Figure 3. 

Figure 3. Topology of the multilayer perceptron (MLP) artificial neural network (ANN). 
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Table 2. Correlation Coefficients. 

Target 

value 

Statistical 

Analysis 
Temp 

Rel. 

Hum 
HDD CDD 

Gas 

Cost 

Water 

Cost 

Lati-

tude 

Longi-

tude 

N. of 

Build-

ings 

N. of 

House-

hold 

Elapsed 

year 

Gross 

area 

Mainte-

nance 

area 

MH. 

area 

Unit. Type 

(B. shape) 

N. of 

stories 

Elect 

Use 

Gas 

Use 

Water 

Use 

Elect 

Use 

PC −0.093 0.160 0.110 
0.303 

** 

−0.215 
** 

0.187 
* 

0.517 
** 

−0.075 
0.574 

** 

0.949  
** 

−0.081 
0.966 

** 

0.973 
** 

0.346 
** 

0.294  
** 

0.309 
** 

1 
0.477 

** 

0.901  
** 

Sig.  

(2-tailed) 
0.250 0.046 0.171 0.000 0.007 0.019 0.000 0.354 0.000 0.000 0.316 0.000 0.000 0.000 0.000 0.000  0.000 0.000 

Gas 

Use 

PC 
−0.615 

** 

−0.345 
** 

0.633  
** 

−0.236 
** 

0.135 
0.267 

** 
−0.065

0.179 
* 

0.208 
* 

0.409  
** 

0.112 
0.487 

** 

0.513 
** 

0.169 0.144 
0.227 

* 

0.477 
** 

1 
0.295  

** 

Sig.  

(2-tailed) 
0.000 0.000 0.000 0.000 0.092 0.001 0.418 0.025 0.009 0.000 0.165 0.000 0.000 0.035 0.073 0.004 0.000  0.000 

Water 

Use 

PC −0.005 
0.258  

** 
0.001 −0.003 

−0.353 
** 

0.033 
0.485 

** 

−0.270 
** 

0.620 
** 

0.943  
** 

−0.302 
** 

0.873 
** 

0.925 
** 

0.209* 0.140 0.189 
0.901 

** 

0.295 
** 

1 

Sig.  

(2-tailed) 
0.953 0.001 0.991 0.969 0.000 0.685 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.009 0.081 0.018 0.000 0.000  

Notes: ** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed); PC = Pearson Correlation; Calculated by IBM SPSSTM Statistics 20. 

Table 3. Number of hidden nodes for the MLP neural network. 

Number of Hidden 
Nodes 

Performance (MSE) 
Epoch 

Coefficient of 
determination (R) Target/Output Training/Target Validation/Target Test/Target 

7 0.0063 0.0061 0.0060 0.0078 20 0.9435 
9 0.0042 0.0030 0.0057 0.0080 14 0.9632 

11 0.0021 0.0011 0.0056 0.0038 12 0.9821 
12 0.0041 0.0012 0.0113 0.0106 14 0.9641 

Note: * raw data was used. 
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In the training process, we randomly divided the data into three case sets: 84 samples for Training, 
18 samples for Validation, and 18 samples for Test through the corresponding ratio of 70%, 15%, and 
15%. The Training set is used to adjust the weights on the neural network, the Validation set is used to 
minimize over fitting, and the Testing set is used only for testing the final solution in order to confirm 
the actual predictive power of the network [17]. The error variation curve for the number of training 
epochs for the network and the parameter set for the neural network are as shown in Figure 4 and 
Table 4. 

Figure 4. Outcome of the training process.  

 

Table 4. Parameters of the LM Training method. 

Parameter Value 
Maximum epochs 1000 
Performance goal 0 

Maximum validation checks 6 
Minimum performance gradient 1 × 10−5 

Initial μ (strength of the momentum term) 0.001 
μ decrease ratio 0.1 
μ increase ratio 10 

Maximum μ 1 × 1010 

4. Execution of Simulation and Evaluation for Error Analysis 

The primary goal of this study was to examine the main features of energy and water consumption 
patterns and to estimate the energy and water consumption demands of Korean residential complexes. 
As described, 21 × 36 samples (Case 2, Case 5, and Case 11) which show different characteristics of 
residential complexes are used to validate the proposed model. In addition, the pre-processing step is 
equally applied to the evaluation tests as a normalization step. To visualize the estimation results more 
intuitively, the curves for both the actual data and the estimation results of the new model are drawn in 
Figure 5.  
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Figure 5. Comparison between measured and estimated energy and water use in  
multi-family housing complexes. (a) Electricity use; (b) Water use; (c) Gas use and  
(d) Local temperature. 

(a) (b) 

(c) (d) 

As illustrated in Figure 5, the estimated values of the energy and water use models are very close 
and are in good agreement with the measured values. The bottom right section of Figure 5 shows  
the weather data for each region and describes the monthly average temperature variances among 
different regions.  

During the summer season in Korea (June–August), the overall energy consumption profile 
indicates clearly an increasing tendency due to the surge of the cooling load, while the energy profile 
of the winter season (December–February) is characterized by an increase in both the electricity and 
gas usage levels mainly due to the escalated heating load. Furthermore, the consumption patterns of 
both electricity and water use within a year demonstrate similar curve patterns, whereas the annual gas 
use pattern shows an inverted tendency with variations of the monthly average temperature. From a 
comparative viewpoint considering all test cases, we find that residential complexes containing greater 
values for the “number of buildings”, “number of households”, “gross area” and “maintenance area” 
are inclined to consume more energy and water per year, which is demonstrated through the result of  
Case 2. On the other hand, Case 11, with relatively lower values for factors affecting energy use, tends 
to have lower annual energy loads. 
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In order to evaluate the estimation accuracy of the models, we apply two distinct error-related 
statistical indicators: the mean absolute percentage error (MAPE) and the root mean square error 
(RMSE) [48,57]. The statistical error indicators were calculated according to Equation (6): 
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(6)  

where xi is the each energy or water consumption value for the i-th month; 'ix  represents its 

forecasting result; and N is the number of data.  
The statistical error indicators of the proposed model in Table 5 demonstrate the discrepancies 

between the estimated values of the proposed model showing the actually measured results to be quite 
small. In the case of the proposed model, the average value of MAPE is 5.65% for electricity, 13.4% 
for gas, and 5.99% for water consumption in every case. Most of the cases are close to or less than 
10% for MAPE, except for gas consumption in Case 11. The RMSE values for each case are also quite 
small regarding the scale of annual energy consumption for each residential complex as shown in 
Figure 5.  

Table 5. Error statistical indicators of the estimation models. 

Case No. Model error indicators Electricity Use Gas Use Water Use 

Case #2 

MAPE 
(%) 

Prop. Model MRA Prop. Model MRA Prop. Model MRA 
4.47 14.17 9.97 49.93 4.40 4.99 

RMSE 
Prop. Model MRA Prop. Model MRA Prop. Model MRA 

53959 
(kWh/y) 

172587 
(kWh/y) 

16111 
(m3/yr) 

122774 
(m3/yr) 

2057.1 
(m3/yr) 

2154.2 
(m3/yr) 

Case #5 

MAPE 
(%) 

Prop. Model MRA Prop. Model MRA Prop. Model MRA 
5.19 7.13 10.10 90.30 7.57 4.44 

RMSE 
ANN MRA ANN MRA ANN MRA 
28641 

(kWh/y) 
34994 

(kWh/y) 
4859.3 
(m3/yr) 

53044 
(m3/yr) 

1818.2 
(m3/yr) 

1205.2 
(m3/yr) 

Case #11 

MAPE 
(%) 

Prop. Model MRA Prop. Model MRA Prop. Model MRA 
7.3 16.05 20.15 98.80 6.00 22.59 

RMSE 
Prop. Model MRA Prop. Model MRA Prop. Model MRA 

18331 
(kWh/y) 

37899 
(kWh/y) 

7884.2 
(m3/yr) 

35487 
(m3/yr) 

630.06 
(m3/yr) 

2080.5 
(m3/yr) 

In addition, to verify the performance of the proposed model, we compare the fitness performance 
with the MRA (multiple-linear regression analysis) model, which is one of the most widely used 
methods for prediction and forecasting in empirical research [8,58,59]. The estimation performed by 
the MRA model is based on the same estimation conditions used in the proposed neural network 
model, encompassing independent and dependent variables as well as the training and test datasets 
shown in Tables 1 and 2. 
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The statistical error indicators of the proposed ANN model are better than the MRA model in most 
of the cases, especially for the gas use case. The difference between the estimated values of the 
proposed ANN model and the measured values are relatively small in the gas use case, whereas the 
MRA model is completely ineffective in this case, i.e., the MAPE values of the proposed model are 
9.97% (Case #2), 10.10% (Case #5), and 20.15% (Case #11); the RMSE values are 16111 m3/yr, 
4859.3 m3/yr, and 7884.2 m3/yr whereas the MAPE values for the MRA are 49.93%, 90.03%, and 
98.80% and the RMSE values are 122,774 m3/yr, 53,044 m3/yr, and 35,487 m3/yr, respectively. These 
results confirm the significantly high accuracy of the estimation method, which indicates that the 
proposed model is reasonably reliable. 

5. Conclusions 

In this study, we initially discussed the status and shortcomings of precedent residential energy 
consumption and water demand models and studies of Korean-style apartment complexes. We then 
proposed a new electricity, gas energy and water consumption estimation model for residential 
complexes in Korea based on a MLP neural network with a BP learning algorithm. Thus, eight 
influential indicators of energy and water use in residential complexes were introduced based on the 
analysis on the characteristics of typical Korean apartment complexes. Through the proposed model, 
we are able to estimate the electricity, gas energy and water use profiles of each type of residential 
complex precisely. 

The model not only provides quantitative reference points for energy and water savings guidelines 
for Korean apartment complexes, but also assists any stable energy and water resource demand 
planning efforts at the residential district level or regional or national level mass housing projects. It 
can also be a useful reference for facility managers of apartment complexes or local governments 
performing energy- and carbon-sensitive facility management investigations which have the goal of 
maximizing energy and water resource use efficiency. The prediction model explored in this study can 
completely replace the conventional empirical datasets obtained through past experience or imperfect 
historical statistics, which have been used to estimate energy and water usage profiles roughly based 
primarily on the sizes and number of apartment units and has limitation in predicting accurate monthly 
electricity, gas and water consumption in an apartment complex. Such conventional statistic data 
utilized by engineering companies, contractors and facility management firms for planning, designing, 
constructing and managing the infrastructure and utility-related facilities of large-scale apartment 
complexes is error-prone, sporadic and is not capable of dynamically reflecting potential changes such 
as the impact of global warming or abnormal climate changes on residential energy and water 
consumption profiles. 

However, only eight factors influencing the energy and water use of apartment complexes  
are applied in this study based on our emphasis on various elements affecting the energy- and 
resource-related performance levels of Korean-style apartment complexes, particularly in light of 
apartment maintenance practices. Other remaining potential indicators (such as the corridor type or 
number of years elapsed since construction) having the potential to affect energy and water 
consumption patterns were not properly taken into account here due to the limitations in the data 
acquisition process.  
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To continue this line of research, we are planning to encompass a large number of comparisons and 
contrast groups in the model to improve its performance. We believe that with constant updates 
through neural network training processes with newly available datasets, our prediction model can also 
gradually increase its accuracy and that it will dynamically adapt itself to changes so as to improve the 
planning and operational efficiency of the utility infrastructure of the mass housing sector and related 
facilities in Korea. Moreover, the model should be applied to a real-time apartment management 
information system to help forecast the energy and water usage levels of the ever-spreading  
multi-family housing complexes in Korea and to verify its utility in efforts to enhance residential 
energy and carbon reduction efficiency in the near future. Although we focus primarily on the case of 
Korean apartment complexes in this study, we believe the neural-network-based quantitative 
estimation methodology introduced in this study can be generalized to establish equally efficient 
estimation models for different residential types in other regions or countries. 
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