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Abstract: Wind Power Producers (WPPs) seek to maximize profit and minimize the 

imbalance costs when bidding into the day-ahead market, but uncertainties in the hourly 

available wind and forecasting errors make the bidding risky. This paper assumes that 

hourly wind power output given by the forecast follows a normal distribution, and proposes 

three different bidding strategies, i.e., the expected profit-maximization strategy (EPS), the 

chance-constrained programming-based strategy (CPS) and the multi-objective bidding 

strategy (ECPS). Analytical solutions under the three strategies are obtained. Comparisons 

among the three strategies are conducted on a hypothetical wind farm which follows the 

Spanish market rules. Results show that bid under the EPS is highly dependent on market 

clearing price, imbalance prices, and also the mean value and standard deviation of wind 

forecast, and that bid under the CPS is largely driven by risk parameters and the mean 

value and standard deviation of the wind forecast. The ECPS combining both EPS and CPS 

tends to choose a compromise bid. Furthermore, the ECPS can effectively control  

the tradeoff between expected profit and target profit for WPPs operating in volatile 

electricity markets. 

Keywords: wind power; bidding; day-ahead electricity market; risk; chance-constrained 

programming; multi-objective optimization 
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List of symbols 

R profit in single period [€], a random variable 
Pb quantity bid into day-ahead market in single period [MW] 
Pt real power generated by the concerned wind farm [MW] 
Ic Imbalance costs in single period [€] 
Pmax rated power of the concerned wind farm [MW] 
λs  day-ahead market price in single period [€/MWh] 
λsell  price of positive imbalances incurred in single period [€/MWh] 
λbuy price of negative imbalances incurred in single period [€/MWh] 
μt mean value of wind power forecast in single period t [MW] 
δt standard deviation of wind power forecast in single period t [MW] 
J target profit in single period[€] 
β confidence level, β [0,1] 
f(Pt) probability density function of random variable Pt 
h(R) probability density function of random variable R 
H(R) cumulative distribution function of random variable R 
Pr{A} probability of event A 
F1(Pb) expected profit function in single period [€] 
F2(Pb) target profit function in single period [€] 
G(Pb) weighted sum of F1(Pb) and F2(Pb)  
α weight assigned to G(Pb) 
Fmax 

i  maximal value of single objective, i = 1,2 
Fmin 

i  minimal value of single objective, i = 1,2 
uFi membership function of Fi 
uD normalized membership function 
M number of nondominated solutions 
Nobj number of objectives, in this article, Nobj = 2 

 

1. Introduction 

Encouraged by hospitable legal and financial policies, the worldwide installation of wind power has 

increased significantly over the past several years. In some markets like the Spanish market and Nordic 

power market, wind power producers (WPPs) have the option to bid in the electricity market or to sell 

all the energy to the market operator. When bidding into the electricity market, WPPs commit power 

production to the market operator for scheduling. However, due to the intermittency and 

unpredictability of wind power generation, the final power delivered usually differs from the power 

committed in the day-ahead market. This energy deviation results in imbalance costs, which must be 

paid by those who produce the wind power [1,2]. Although the accurate prediction of wind power 

generation (forecasted by WPPs) can reduce the imbalance costs to some extent, prediction precision is 

limited to the forecast length [3]; furthermore, optimal bids often do not coincide with the best 

predictions [4]. Thus, WPPs tend to find optimal bids which take into account both the maximal profit 

and minimal imbalance costs. 
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As the installation capacity of wind power has increased in recent years, so have researchers’ 

interests in proposing bidding strategies in the short-term electricity market for WPPs [5–9]. In [5], a 

bidding strategy using Markov probabilities for a wind farm in the United Kingdom to determine the 

best energy contract level was presented; this study demonstrated how a change in market closure 

delay and in the number of trades per day affects the overall expected imbalance costs for the wind 

farm. A probability density function representing the accuracy of the prediction model was defined as 

a Beta function in [6], and a probabilistic methodology to estimate the energy costs associated with the 

prediction errors was similarly proposed. Reference [7] presented a general methodology for deriving 

optimal bidding strategies based on probabilistic forecasts of wind production; modeling of the 

potential WPP sensitivity to regulation costs was also discussed. Matevosyan and Soder [8] utilized the 

ARMA model to simulate scenarios for wind speed forecasting errors, and developed a bidding 

strategy as a stochastic mixed integer programming problem to maximize expected profit and 

minimize the imbalance costs for WPPs. A stochastic programming approach was proposed to 

generate the optimal offers under untainty in wind generation and electricity prices [9]. 

The aforementioned literatures take into account the imbalance costs caused by the stochastic nature 

of wind, without considering however the risk that WPPs face with regard to the bidding process itself. 

Risk and profit are two conflicting objectives, as high profit is usually accompanied by high risk. It is 

critical for WPPs to be able to estimate their expected risk during the bidding process. 

Optimal trading strategies for wind generation that consider the risk to power producers have been 

extensively researched [10–20]. In [10], different risk management approaches for wind trading in the 

electricity market were discussed, and the utility function method was considered to be more effective 

than the mean variance model. Xue et al. [11] defined the power producer’s attitude towards risk as the 

membership function based on the fuzzy set theory, and subsequently proposed a multi-objective 

optimal bidding strategy; this fuzzy optimization method was extended to coordinated trading of wind 

generators and an energy storage device (ESD) in [12], which took into account the risk quantified by 

computing expected energy not served (EENS). Bidding strategies based on utility and the conditional 

value at risk (CVaR) were derived to study the optimal bidding strategies for WPPs in [13,14]. 

Reference [15] developed optimal bidding strategy including various trading floors based on the 

scenario method, and α-CVaR was used to calculate the expected profit of the (1 − α)100% scenarios 

with lowest profit similar to that reported in [16]. In [17], a CVaR constrained for the bid that 

maximized the expected revenue was proposed as a way of reducing the risk. Catalao et al. [18] 

provided a two-stage stochastic programming approach for WPPs considering uncertainties related to 

electricity market and wind power generation, and also incorporated the risk averion by limiting the 

volatility of the expected profit through the CVaR methodology. Reference [19] presented new 

analytical expressions for determining the optimal forward market strategy for wind generators under 

the risk-neutral and risk-averse cases, and the methods required spcification only of the expected real-time 

prices given the forward price and wind out-turn. Wang et al. [20] established a two-stage optimization 

model based on chance-constrained programming for unit commitment with uncertain wind power 

output, and described risk as the probability that a specific bidding strategy was accepted. In [21], a 

decision-making model for investing wind farm based on real options was presented and a risk profile 

characterization of the model was developed. These bidding strategy-specific studies provide a 

valuable framework for our own research in this field. 
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In this article, hourly wind power output is assumed to follow a normal distribution [22–24], and 

three different bidding strategies are developed for WPPs to derive optimal day-ahead bids in the 

Spanish market. In fact, these strategies can be applied to any market with some minor adjustment. 

This article is organized as follows: A description of the problem, including the market framework and 

a basic model, is provided in Section 2. Section 3 describes the modeling details of three different 

bidding strategies, along with proposed model-specific solutions. Bidding results are compared in a 

case study in Section 4. Lastly, Section 5 summarizes our conclusions. 

2. Problem Description 

2.1. Market Framework  

Consider a pool-based electricity market in which power suppliers submit day-ahead bids for each 

hour before closure of the day-ahead market (e.g., 10 AM). Unlike conventional generators, WPPs are 

generally regarded as price-takers, and are often not allowed to bid multiple price/quantity pairs. After 

a certain time of day (e.g., 3 PM), the market operator aggregates the hourly bids to determine the hourly 

market clearing prices (λs, MCPs) and the volumes being traded by identifying the point at which the 

supply bids and demand cross. Afterwards, the balancing market is carried out closer to real-time; this 

helps ensure that there is a real-time balance between generation and demand by offsetting the 

deviations between the real-time generation and the energy program cleared in the day-ahead market [15]. 

With such a market structure, the gap between the time at which the bids are submitted and the 

beginning of the energy delivery period is 14–38 hours [8]; the wind power forecast length should also 

be within this range. Because of the significant time gap, some markets include an intra-day market, 

where all producers correct their bids using more recent and accurate predictions. These actions are 

intended to reduce the differences between the expected production and the schedule cleared in the 

day-ahead market. 

The objective of WPPs is to maximize their expected profits from trading energy in the day-ahead 

market while also minimizing the imbalance costs incurred in the balancing market. Different markets 

apply different imbalance penalty rules. In the Spanish market, the price for the positive energy 

deviation (higher real-time generation than scheduled) λsell and the price for the negative energy 

deviation (lower real-time generation than the energy program cleared) λbuy are settled for each hour. 

The imbalance price mechanism depends on the sign of imbalance of the whole system imbalance [15]. 

Specifically, when the system imbalance is positive (generation is greater than demand), those 

suppliers who generate more power than scheduled are penalized by λsell, while those who generate less 

power than scheduled are not penalized. These latter sellers help to alleviate the positive system 

imbalance and are paid by λs. The opposite holds true when the system imbalance is negative, (i.e., 

generation is less than demand). 

From the above imbalance mechanism, a reasonable relation among λs, λsell and λbuy can be 

expressed in the following inequation [11]: 

0 sell s buy      (1)

In this paper, we don’t focus on the prediction of prices, market clearing prices and the imbalance 

prices are considered to be given data, which can be derived from prediction models. 
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2.2. Profit of Wind Power Producers 

Consider a WPP that bids the quantity of pb into the day-ahead market for period t, but actually 

generates pt. Since there are no inter-temporal constraints [8], we can formulate an hourly bidding 

problem. Solving the problem for each hour will give a day-ahead bidding strategy. The profit of the 

WPP for period t is described as follows: 

b s cR p I   (2)

where R is the profit which means the income from all markets, not the profit after taking into account 

production costs of generation. Ic is the imbalance costs resulting from the balancing process. Here, Ic 

is given by: 

( ) ,    

( ),      

buy t b t b
c

sell t b t b

p p p p
I

p p p p





  
 

 (3)

Note that pt is a random variable and cannot be obtained in day-ahead. We assume that it follows 

normal distribution [22–24]. Then we have: 
2~ ( , )t t tp N    (4)

The mean value μt and the standard deviation δt of hourly wind power forecast are assumed to be 

given data. 

3. Mathematical Formulation 

This section proposes three different bidding strategies for wind power producers to use when 

participating in the day-ahead market, i.e., the expected profit-maximization strategy (EPS), the 

chance-constrained programming-based strategy (CPS) and the multi-objective bidding strategy 

(ECPS). The EPS aims to maximize the expected profit and is a risk-neutral strategy. The CPS 

calculates the maximum target profit considering the risk which is defined as the probability that target 

profit cannot be realized. The ECPS combines the EPS and the CPS, and is formulated as a  

multi-objective model. 

3.1. Expected Profit-Maximization Bidding Strategy  

Let us denote the probability density function (PDF) by f(pt); in turn, this gives us an expected 

profit of a WPP as follows: 

[ ] [ ]

        ( ) ( ) ( ) ( )b

b

b s c

p

b s t b buy t t t b sell t tp

E R p E I

p p p f p dp p p f p dp



  




 

     
 (5)

where E[R] is the mathematical expectation of the random variable R. The right side of the equal sign 

in (5) is a function of pb, and we denote it by: 

1( ) ( ) ( ) ( ) ( )b

b

p

b b s t b buy t t t b sell t tp
F p p p p f p dp p p f p dp  




       (6)

Thus, the EPS could be derived by maximizing F1(pb), as shown in (7): 
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1

max

max  ( )

. . 0
b

b
p

b

F p

s t p p 
 (7)

The first derivative and the second derivative of objective function F1(pb) are shown in (8) and (9): 

1( ) / ( ) ( )b

b

p

b b s buy t t sell t tp
dF p dp f p dp f p dp  




     (8)

2 2
1 ( ) / ( ) ( )b b buy b sell bd F p dp f p f p     (9)

It can be seen that d2F(Pb)/dp2 
b  ≤ 0 in (9), so F1(Pb) is concave in Pb. The model in (7) can be easily 

solved; its optimal solutions are listed in (10) below: 

max

1 max

max
max
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b sell s buy
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 (10)

where Φ(x) is the standard normal distribution function, and Φ−1(x) is the inverse function of Φ(x). 

From (9), we know that under EPS, the optimal bids are related to the MCP, imbalance prices, mean 

value, and standard deviation of wind power. The optimal objective F1(P
* 
b ) can also be easily 

calculated. The EPS does not consider risk faced by WPPs, so it is also called a risk-neutral strategy. 

3.2. Chance-Constrained Programming-Based Bidding Strategy  

In this section, we propose a chance-constrained programming-based bidding considering risk faced 

by WPPs in bidding process. 

3.2.1. Cumulative Distribution of Random Variable R 

From (2), (3), and (4), we get: 

( ) ,    

( ) ,    
s sell b sell t b t

s buy b buy t t b

p p p p
R

p p p p

  
  
      

 (11)

It is known that R is a random function of Pt with a given Pb, and that it follows the normal 

distribution with the following distributed parameters: 

2 2

2 2

(( ) , ),    
~

(( ) , ),    

s buy b buy t buy t s b

s sell b sell t sell t s b

N p R p
R

N p R p

      

      

   


  
 (12)

As is commonly known, the cumulative distribution of a random variable should be equal to 1. 

However, the cumulative distribution of a variable y with similar distributed parameters as shown in 

(11) may not be equal to 1. For example, assuming that x follows normal distribution i.e., x ~ N (0,1), 

considering 
,          5

2 5,  5

x x
y

x x


   

, then we obtain that y follows the normal distribution (y ~ N(0,1)) when  
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x ≤ 5, and that y follows the normal distribution (y ~ N(0,4)) when x > 5. However, this is not true, 

because   1yf y



 . So, the cumulative distribution of R must be discussed. 

For simplicity, let us introduce the following notations h(R) and 1

2

( ),
( )

(  ),

 s b

s b

H R
H R

R

H R

p

R p










 as 

representations of the PDF and cumulative distribution function (CDF) of R. A schematic diagram of 

the PDF of R is shown in Figure 1. 

Figure 1. A schematic diagram of the PDF of R. 



R
Hs bp

( )h R

 

Let Pr{R ≤ λsPb} = ρ1 and Pr{R > λsPb} = ρ2. From Pr{R ≤ λsPb} = ρ1, we are able to ascertain  

that λsPb is the lower quantile of R i.e., H1(λsPb) = ρ1, after normalizing H1(λsPb), results in  

Φ(
(( ) )s b s buy b buy t

buy t

p p    
 

  
) = ρ1, i.e., ρ1 = Φ( b t

t

p 



). Similarly, from Pr{R > λsPb} = ρ2, we have 

ρ2 = 1 − Φ( b t

t

p 



). Since ρ1 + ρ2 = 1, the cumulative distribution of R is thus equal to 1. 

3.2.2. Formulation of the CPS 

The model (7) only takes into account the expected profit without considering the risk faced by a 

WPP in the bidding process. As previously noted, higher profit is usually accompanied by higher risk. 

In this section, risk is defined as the probability that the target profit cannot be realized. Here we 

introduce a chance-constrained programming-based bidding model to obtain the CPS as formulated  

in (13): 

max

max  

. . Pr{ }

    0  

bp

b

J

s t R J

p p





  
  


 (13)

where J  is the target profit, and β is the probability that J  can be realized. Definitions of other 

parameters can be found in the section above. 

Rewrite Pr{R ≥ J } ≥ β as follows: 

Pr{ } 1R J     (14)
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1 − β describes the risk that the target profit cannot be realized; this varies from 0 to 1. The model (13) 

proposed a method to measure risk quantitatively. 

Now we discuss the general solution for the optimization problem in the model. From Figure 1, 

when H−1(1 − β) ≥ λsPb, we have: 

1(1 )s b r

r

p 





    (15)

where μr and δr can take any distributed parameter of (12), and Φ−1(1 − β) is the upper quantile  

of a standard normal distribution, then we get pb ≤ Φ−1(1 − β)δt + μt. Under this condition,  

the maximal J  should be greater than or equal to λsPb; thus, R follows the below distribution i.e.,  

R ~ N((λs − λsell) pb + λsellμt, λ
2 
sellδ

2 
t ), resulting in: 

1[( ) ]
(1 )s sell b sell t

sell t

J p   


 
  

    (16)

i.e., J  ≤ Φ−1(1 − β)λsellδt + (λs − λsell) pb + λsellμt. 

Similarly, when H−1(1 − β) < λsPb, we have pb ≥ Φ−1(1 − β)δt + μt, and R follows  

the normal distribution below, i.e., R ~ N((λs − λbuy) pb + λbuyμt, λ
2 
buy δ

2 
t ), then we get  

J  ≤ Φ−1(1 − β)λbuyδt + (λs − λbuy) pb + λbuyμt. 

From the above discussion, we learn that maximal J  is a function of pb; thus, let us denote: 

1 1

2 1 1
max

(1 ) ( ) ,     0 (1 )
( )

(1 ) ( ) ,    (1 )

sell t s sell b sell t b t t

b

buy t s buy b buy t t t b

p p
F p

p p P

         

         

 

 

          
         

 (17)

Then the model (13) can be transformed into the model (18) as follows: 

2

max

max ( )

. .0
b

b
p

b

F p

s t p p




 
 (18)

Figure 2 shows F2(pb) as a function of pb. It is not difficult to obtain the analytical solutions of 

model (18); the results of these calculations are listed in Table 1. 

Figure 2. Function F2 versus Pb. 

s sell 

s buy s sell 

s buy 

1(1 ) t tp   

2 ( )bF p

bp
 

  



Energies 2012, 5 4812 

 

 

Table 1. Optimal results of chance-constrained programming-based bidding model. 

Range of β 

Relationship 

among λs, λsell 

and λbuy 

Optimal solution, P* 
b  F2(P

* 
b ) 

max[0,1 ( ))t

t

p 



  s sell   maxp  

1

max

(1 )

  ( )
sell t

s sell sell tp

  
   

  

 
 

s sell  max[0, ]bp p  1[ (1 ) ]s t t     

(1 ( ),1]t

t





  
s buy   0 

1 (1 ) buy t buy t        

s buy   
max[0, ]bp p  1[ (1 ) ]s t t     

max[1 ( ),1 ( )]t t

t t

p  
 
 

   

sell s buy     
max[0, ]bp p  1[ (1 ) ]s t t     

sell s buy     1[0, (1 ) ]b t tp        1[ (1 ) ]s t t     

sell s buy     1
max[ (1 ) , ]t tbp p      1[ (1 ) ]s t t     

sell s buy     1(1 ) t t     1[ (1 ) ]s t t     

It can be seen from Table 1 that the optimal bids under the CPS are related to β, prices, and the 

distributed parameters. 

3.3. Multi-Objective Bidding Strategy 

3.3.1. Multi-Objective Bidding Model 

In this section, we present ECPS based on a multi-objective bidding model that takes into account 

both expected profit and risk. The multi-objective model is formulated as follows: 

1 2

max

max[ ( ), ( )]

. .0
b

b b
p

b

F p F p

s t p p




 
 (19)

where F1(pb) and F2(pb) are as defined in Sections 3.1 and 3.2. Since F1(pb) and F2(pb) are concave 

functions, we convert the problem to a single-function objective through the weighted sum of the 

objective functions (19)–(20): 

max

max ( )

. .0
b

b
p

b

G p

s t p p




 
 (20)

1 2( ) (1 ) ( ) ( )b b bG p F p F p     (21)

where α is the weight selected from [0.0 1.0]. A set of non-dominated solutions can be obtained by 

varying α through this weighted sum method. When α = 0, the model (20) changes into the model (7), 

and when α = 1, it changes into the model (18). Furthermore, model (20) is expressed as shown below: 

When pb ≥ Φ−1(1 − β)δt + μt, (20) can be rewritten as follows: 

1

max

max ( ) 

. . 0
b

b
p

b

G p

s t p p




 
 (22)

where G1(pb) = α[Φ−1(1 − β)λbuyδt + (λs − λbuy)pb + λbuyμt] + (1 − α)F1(pb). When pb ≤ Φ−1(1 − β)δt + μt, 

(20) can be rewritten as follows: 
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max

max ( ) 

. . 0
b

b
p

b

G p

s t p p




 
 (23)

where 1
2 1( ) [ (1 ) ( ) ]+(1- ) ( )b sell t s sell b sell btG p p p F p             . The first derivative and second 

derivative of the objective functions G1(pb) and G2(pb) are shown below: 

1( ) / (1 ) ( ) (1 ) ( )b

b

p

b b s buy buy t t sell t tp
dG p dp f p dp f p dp     




        (24)

2 ( ) / (1 ) ( ) (1 ) ( )b

b

p

b b s sell buy t t sell t tp
dG p dp f p dp f p dp     




        (25)

2 2
1( ) / (1 ) ( ) (1 ) ( ) 0b b buy b sell bd G p dp f p f p          (26)

2 2
2 ( ) / (1 ) ( ) (1 ) ( ) 0b b buy b sell bd G p dp f p f p          (27)

The solutions of the models (22) and (23) are presented in the next section. 

3.3.2. Solution of Multi-objective Bidding Model 

In this section, the general solution for a multi-objective bidding model is developed, and the 

solution is also analyzed in detail for several cases. Specifically, the following details are presented: 

(1) λsell = λs = λbuy 

Since dG1(pb)/dpb = dG2(pb)/dpb = 0, thus, [0,1]  and the optimal bid is arbitrary p* 
b , and 

max[0, ]bp p  , and the maximal value of each objective: F* 
1  = λsμt, F

* 
2  = λs[Φ

−1(1 − β)δt + μt]. 

(2) λsell < λbuy 

Case (1) Φ−1(1 − β)δt + μt < 0, i.e., 0 ≤ 1 − β < Φ(− t

t




) 

If 0 ≤ pb ≤ pmax, we apply the model (22). For simplicity, let us denote 1( )
bp

t tf p dp z


 , then 

dG1(pb)/dpb = λs − αλbuy − (1 − α)λbuyz1 − (1 − α)λsell(1 − z1). 

 Case (1a) if λsell ≤ λs < αλbuy + (1 − α)λsell, we have dg1(pb)/dpb < 0, the function G1(pb) is 

monotonically decreasing, we get p* 
b  = 0, and G* 

1  = G1(0). 

 Case (1b) if αλbuy + (1 − α)λsell ≤ λs ≤ λbuy, from, dg1(pb)/dpb = 0, we have 1

(1 )

(1 )( )
s buy sell

buy sell

z
   

  
  


 

, 

and 0 ≤ z1 ≤1, the extreme point pb = Φ−1(z1)δt + μt. Three cases are considered further: 

if Φ−1(z1)δt + μt < 0, p* 
b  = 0, G* 

1  = G1(0);  

if 0 ≤ Φ−1(z1)δt + μt ≤ pmax, p
* 
b  = Φ−1(z1)δt + μt, G

* 
1  = G1(Φ

−1(z1)δt + μt);  

if Φ−1(z1)δt + μt > pmax, p
* 
b  = pmax, G

* 
1  = G1(pmax). 

Case (2) Φ−1(1 − β)δt + μt > pmax, i.e., max( ) 1 1t

t

p 





     

If 0 ≤ pb ≤ pmax, we can apply the model (23). For simplicity, let us denote
 2( )

bp

t tf p dp z


  then 

dg2(pb)/dpb = λs − λsell − (1 − α)(λbuy − λsell). 
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 Case (2a) if (1 − α)λbuy + αλsell) ≤ λs ≤ λbuy, dg1(pb)/dpb > 0, the objective function is 

monotonically decreasing, we get p* 
b  = pmax, G

* 
2  = G2(pmax). 

 Case (2b) if λsell ≤ λs ≤ (1 − α)λbuy + αλsell, from dg2(pb)/dpb = 0, we have 2 (1 )( )
s sell

buy sell

z
 
  




 
, 

and 0 ≤ z2 ≤ 1. Three cases are considered further:  

if Φ−1(z2)δt + μt < 0, p* 
b  = 0, G* 

2  = G2(0); 

if 0 ≤ Φ−1(z2)δt + μt ≤ pmax, p
* 
b  = Φ−1(z2)δt + μt, G

* 
2  = G2(Φ

−1(z2)δt + μt);  

if Φ−1(z2)δt + μt > pmax, p
* 
b  = pmax and G* 

2  = G2(pmax). 

Case (3) 0 ≤ Φ−1(1 − β)δt + μt ≤ pmax, i.e., max( ) 1 ( )t t

t t

p 


 
 

      

Let us divide the interval 0 ≤ pb ≤ pmax.into 0 ≤ pb ≤ Φ−1(1 − β)δt + μt and Φ−1(1 − β)δt + μt ≤ pb ≤ pmax; 

thus, we can solve the models (22) and (23), respectively. 

 Case (3a) 0 ≤ pb ≤ Φ−1(1 − β)δt + μt 

In this case, we apply model (23), and then two more cases are considered: 

(i) if (1 − α)λbuy + αλsell ≤ λs ≤ λbuy, the optimal bid is p* 
b  = Φ−1(1 − β)δt + μt, and  

G* 
2  = G2(Φ

−1(1 − β)δt + μt); 

(ii) if λsell ≤ λs ≤ (1 − α)λbuy + αλsell. Three cases are considered further:  

if Φ−1(z2)δt + μt < 0, p* 
b  = 0, G* 

2  = G2(0);  

if 0 ≤ Φ−1(z2)δt + μt ≤ Φ−1(1 − β)δt + μt, p
* 
b  = Φ−1(z2)δt + μt and G* 

2  = G2(Φ
−1(z2)δt + μt); 

if Φ−1(z2)δt + μt > Φ−1(1 − β)δt + μt, p
* 
b  = Φ−1(1 − β)δt + μt and G* 

2  = G2(Φ
−1(1 − β)δt + μt). 

 Case (3b) Φ−1(1 − β)δt + μt ≤ pb ≤ pmax 

In this case, we apply the model (22). Similarly, as in Case (3a), 

(i) if λsell ≤ λs < αλbuy + (1 − α)λsell, the optimal bid is p* 
b  = Φ−1(1 − β)δt + μt, and  

G* 
1  = G1(Φ

−1(1 − β)δt + μt). 

(ii) if αλbuy + (1 − α)λsell ≤ λs ≤ λbuy. Three cases are considered further:  

if Φ−1(z1)δt + μt < Φ−1(1 − β)δt + μt, p
* 
b  = Φ−1(1 − β)δt + μt, G

* 
1  = G1(Φ

−1(1 − β)δt + μt);  

if Φ−1(1 − β)δt + μt ≤ Φ−1(z1)δt + μt ≤ pmax, p
* 
b  = Φ−1(z1)δt + μt and G* 

1  = G1(Φ
−1(z1)δt + μt);  

if Φ−1(z1)δt + μt > pmax, p
* 
b  = pmax, and G* 

1  = G1(pmax). 

From the above discussion, we have shown that when 0 ≤ Φ−1(1 − β)δt + μt ≤ pmax, the maximal 

value of the objective is max{G1(p
* 
b ),G2(p

* 
b )}, and that the corresponding p* 

b  is the optimal bid. 

3.3.3. Best Compromise Solution 

The solution obtained from the multi-objective model is a Pareto-optimal set of non-dominated 

solution, from which WPPs should choose a solution as the final decision. This section proposed a 

method based on fuzzy theory to determine the best compromise solution [25]. Each objective function 

of the m-th solution is represented by a membership function 
i

m
Fu  

defined as: 
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where F max 
i  is the objective value only considering objective i, and F min 

i  is the objective value 
considering other objectives except objective i. Thus, we can obtain 0 ≤ uFi ≤ 1, in which uFi = 1 

reflects that the decision maker is totally satisfied with the objective and uFi = 0 reflects the opposite. 

For each non-dominated solution m, the normalized membership function um 
D  is calculated by: 

1

1 1
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m
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where M is the number of non-dominated solutions. The best compromise solution is the one having 

the maximum of um 
D . 

4. Numerical Simulation 

Simulations are performed on a hypothetical wind farm with an installed capacity of 200 MW. The 

bidding problem is analyzed for one day using 24 hourly cases which are general and representative. 

Hourly mean values and standard deviations of wind power for the day are assumed to be obtained 

from historical data as shown in Table 2 [23]. 

Table 2. Hourly expected value and standard deviation of day-ahead wind power forecast. 

Hour 
Expected 

value/MW 
Standard  

deviation/MW 
Hour 

Expected 
value/MW 

Standard  
deviation/MW 

1 70.0 31.37 13 133.0 84.76 
2 45.5 27.32 14 129.5 87.06 
3 24.5 21.53 15 147.0 96.39 
4 28.0 24.61 16 140.0 97.62 
5 42.0 32.08 17 133.0 98.6 
6 59.5 40.5 18 108.5 92.18 
7 70.0 46.63 19 84.0 83.86 
8 80.5 52.49 20 77.0 82.92 
9 94.5 59.78 21 66.5 79.4 

10 112.0 68.26 22 42.0 65.2 
11 126.0 75.22 23 35.0 61.34 
12 139.5 80.23 24 63.0 84.53 

Hourly MCPs based on the spot prices on 08/03/2012 provided by the European Power Exchange 

(EPEX SPOT SE) [26] and the hypothetical imbalance prices which follow the relation set forth in (1) 

are listed in Table 3. Note that there is both an up- and down regulating price for each hour in Table 3, 

in fact, our strategies can still work when there is only either up- or down-regulation price for each hour. 
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Table 3. Hourly day-ahead market price and imbalance prices. 

t 
λs 

(€/MWh) 
λsell 

(€/MWh) 
λbuy 

(€/MWh) 
t 

λs 
(€/MWh) 

λsell 
(€/MWh) 

λbuy 
(€/MWh) 

1 53.54 25.23 59.56 13 52.02 35.43 71.32 
2 49.72 24.12 62.69 14 49.72 36.65 68.56 
3 41.6 23.16 59.68 15 45.36 38.26 72.63 
4 38.1 20.16 55.79 16 42.57 37.42 74.2 
5 35.07 24.68 56.2 17 41.66 35.87 75.36 
6 38.2 27.56 61.32 18 45.63 34.39 67.74 
7 42.57 30.2 62.28 19 52.01 42.16 79.68 
8 49.72 32.59 65.2 20 59.28 40.68 74.8 
9 53.54 35.63 68.21 21 59.28 37.33 70.12 
10 53.54 38.65 70.81 22 53.54 32.1 66.37 
11 53.54 38.55 70.71 23 52.64 24.63 62.09 
12 53.54 39.1 73.36 24 45.92 27.65 65.07 

We first present results for one individual hour (i.e., period 2), looking at how the objective 

functions in the three tested bidding strategies change as functions of day-ahead bid quantity. Then, we 

discuss how the risk 1 − β and standard deviation of wind power forecast affect optimal decision 

making. Finally, we calculate the optimal bidding decisions for all the hours of the day. 

We first present results for one individual hour (i.e., period 2), looking at how the objective 

functions in the three tested bidding strategies change as functions of day-ahead bid quantity. Then, we 

discuss how the risk 1 − β and standard deviation of wind power forecast affect optimal decision 

making. Finally, we calculate the optimal bidding decisions for all the hours of the day. 

In period 2, the mean value and the standard deviation of wind power forecast are 45.5 MW and 

27.32 MW, respectively. MCP, the price for the positive energy, and the price for the negative energy 

are 49.72 €/MWh, 24.12 €/MWh, and 62.69 €/MWh, respectively. Figure 3 shows the change trend of 

expected profit under EPS. The expected profit first increases and then decreases; the optimal bid 

quantity is 57.05 MW and is greater than the mean value (45.5) in period 2. This shows that larger bid 

quantity does not lead to larger expected profit because of the imbalance costs, as is shown in Figure 4. 

Figure 3. Expected profit under the EPS versus bid quantity. 

 
0 50 100 150 200

200

400

600

800

1000

1200

1400

1600

1800

2000

Bid quantity/MW

E
xp

ec
te

d 
pr

of
it 

un
de

r 
E

PS
/€



Energies 2012, 5 4817 

 

 

Figure 4. Imbalance costs versus bid quantity under the EPS. 

 

Figure 5 shows the change trend of target profit as a function of bid quantity with different risk 

parameters; due to the imbalance costs, it has a trend similar to that of expected profit under the EPS, 

and the optimal bid quantity under the CPS increases when the risk parameter increases.  

The maximal optimal bid quantity with different 1 − β is 31.17 MW (1 − β = 0.3), which is smaller 

than the mean value. With the risk increasing, the target profit which a WPP can realize also increases. 

This is in accordance with the notion that high risk leads to high profit. In addition, the CPS can also 

help a WPP to set appropriate target values, for example, when a WPP is willing to face very low risk 

(1 − β = 0.1), then the maximal reasonable target profit is 521.46 €. If the target profit is set higher 

than 521.46 €, the risk the WPP faces will thus increase. 

Figure 5. Target profit under the CPS versus bid quantity with different 1 − β. 

 

Figures 6 and 7 show how the expected profit and target profit change as a function of bid quantity 

with 1 − β = 0.1under the ECPS. As is shown, the expected profit and target profit are two conflicted 

objectives when the bid quantity varies from 10.48 to 57.05 MW. The expected profit increases 

monotonically versus the bid quantity, while the target profit decreases monotonically. 
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Figure 6. Expected profit versus bid quantity under EPCS with 1 − β = 0.1. 

 

Figure 7. Target profit versus bid quantity under EPCS with 1 − β = 0.1. 

 

Figure 8 gives the Pareto optimal front versus different 1 − β in the EPCS. The values shown in the 

square boxes are the optimal values of each objective. The optimal bid quantities (i.e., the best 

compromise solutions) are 44.31 MW (1 − β = 0.3), 40.68 MW, and 34.28 MW, respectively. The 

maximal and minimal values of Fi used here to calculate the membership function are listed in Table 4. 

Based on these calculations, it can also be expected that the higher risk the WPPs face, the more profit 

they will obtain. 
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Figure 8. Pareto optimal front versus different 1 − β under the ECPS. 

 

Table 4. Maximal and minimal values of single objectives and best compromise values of 

F1 and F2. 

1 − β Fmin 
1  (€) Fmax 

1 (€) Fmin 
2  (€) Fmax 

2  (€) F1 in square box (€) F2 in square box (€) 

0.1 1316 1877.7 −79.11 521.46 1747.4 200.72 
0.2 1555.9 1877.7 674.35 1119 1798.6 892.1 
0.3 1694.8 1877.7 1217.7 1549.9 1839.9 1379.5 

Figure 9 shows a comparison of the bid quantity versus risk between the CPS and the EPCS. In both 

strategies, the bid quantity increases when the risk increases. The CPS takes into account only the risk, 

while the ECPS considers both the expected profit and risk; thus, the variation range of bids under the 

CPS is larger than that under the ECPS and is similarly more sensitive to risk than the ECPS. 

Figure 9. Comparison of bid quantity versus 1 − β between the CPS and ECPS. 

 

Figure 10 gives how the expected profit and target profit change as a function of the risk parameter 
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0.4143, the target profit is greater than the expected profit; this implies that WPPs face a high risk to 

realize the target profit. When the risk is smaller than 0.4143, the target profit is less than the expected 

profit, implying that WPPs face a low risk to realize the target profit. WPPs are usually assumed to be 

risk-adverse; the EPCS can help to manage the risk and provide guidelines to set the risk parameter. 

Figure 10. Change trend of target profit and expected profit versus risk under the ECPS. 

 

Period 2 can serve as an example; here, assume 1 − β = 0.1, with other parameters unchanged, the 

impact of the standard deviation on bidding results can be obtained by varying the standard and is 

shown in Table 5. The accuracy of the wind power forecast has a significant effect on the three tested 

strategies. Under the EPS and CPS (1 − β = 0.1), the smaller deviation (i.e., increased accuracy of the 

wind power forecast) will bring greater expected profit and target profit. The objectives under the EPS 

and CPS have a monotonic relation with the standard deviation. However, under the ECPS, the 

objective F1 has a monotonic relation with the standard deviation, while F2 does not, as discussed in 

Section 3.3.2. The values of F1 and F2 are calculated by the best compromise criteria. 

Table 5. Comparisons of the impact of the standard deviation on bidding results. 

Standard 
deviation 

EPS CPS (1 − β = 0.1) ECPS (1 − β = 0.1) 

pb F1 pb  F2 pb  F1 F2 

4.32 47.33 2201.5 39.96 1987 43.87 2180.9 1936.3 
14.18 51.49 2062.7 27.33 1358.7 0 2062.7 1974 
24.04 55.66 1923.9 14.69 730.46 0 1923.9 1773.6 
33.90 59.83 1785.1 2.055 102.19 0 1785.1 1573.1 
43.76 63.99 1646.3 0 −663.30 33.11 1483.8 −1092.8 

We now discuss the optimal bidding strategy for the entire day. Figure 11 shows that the bid 

quantity under the EPS is the greatest among three strategies, and also the closest to the mean value of 

the forecast. The EPS is mainly driven by the standard deviation of the wind power forecast and the 

relationship among the MCP, the price for positive energy, and the price for negative energy. Under 

the CPS, aside from the relationship among the prices and the standard deviation, the bid quantity is 

also strongly correlated to the risk. The bid quantity under the CPS with 1 − β = 0.1 is the lowest, as 
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shown in Figure 11. The ECPS is the compromise of EPS and CPS, and takes into account both the 

expected profit and target profit. WPPs tend to bid a higher quantity than that under the CPS and less 

than that under the EPS.  

Figure 11. Bid quantity with 24 hours. 

 

5. Conclusions 

Due to the stochastic nature of wind resources, wind power producers are sometimes required to 

pay for imbalance costs caused by deviations between bids in the day-ahead market and the real power 

generated in the real-time market. This article has developed three different bidding strategies for wind 

power producers to use when participating in the day-ahead market. The EPS aims to maximize the 

expected profit, and the CPS calculates the target profit considering the risk which is defined as the 

probability that target profit cannot be realized. The ECPS is formulated as a multi-objective model. In 

the test case, we have discussed the optimal bids in the day-ahead market under three strategies. The 

following conclusions are reached: (1) The bid quantity under the EPS is highly dependent on the 

mean value and standard deviation of wind forecast, and also the MCP, the price for positive energy, 

and the price for negative energy; it is also the closest to the mean values of wind forecast. The EPS is 

suitable for WPPs to use when WPPs are risk-neutral; (2) Besides the parameters mentioned above, the 

bid quantity under the CPS is strongly correlated to the risk, and is the farthest from the mean value of 

wind forecast. The ECPS, which combines both the EPS and CPS, tends to bid a higher quantity than 

that under the CPS and less than that under the EPS; (3) Both the CPS and ECPS consider the risk and 

provide an alternative method for risk management; (4) The ECPS acknowledges the significance of 

the relationship between expected profit and target profit, and can help to set appropriate risk 

parameters for WPPs. 

Finally, it should be pointed out that our article does not discuss the prediction techniques for prices 

and wind power in detail. However, high accurate prediction techniques are more helpful for WPPs to 

make better bidding strategies. The state-of the-art prediction tools enable WPPs to bid to the market, 

but of course further research is conducted to further improve the accuracy. 
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