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Abstract: The adoption of Plug-in Hybrid Electric Vehicles (PHEVs) is widely seen as an 

interim solution for the decarbonization of the transport sector. Within a PHEV, 

determining the required energy storage capacity of the battery remains one of the primary 

concerns for vehicle manufacturers and system integrators. This fact is particularly 

pertinent since the battery constitutes the largest contributor to vehicle mass. Furthermore, 

the financial cost associated with the procurement, design and integration of battery 

systems is often cited as one of the main barriers to vehicle commercialization. The ability 

to integrate the optimization of the energy management control system with the sizing of 

key PHEV powertrain components presents a significant area of research. Contained within 

this paper is an optimization study in which a charge blended strategy is used to facilitate 

the downsizing of the electrical machine, the internal combustion engine and the high 

voltage battery. An improved Equivalent Consumption Method has been used to manage 

the optimal power split within the powertrain as the PHEV traverses a range of different 

drivecycles. For a target CO2 value and drivecycle, results show that this approach can 

yield significant downsizing opportunities, with cost reductions on the order of 2%–9% 

being realizable. 

Keywords: PHEV; battery; energy management; equivalent consumption minimization 

strategy (ECMS); component sizing; optimization 
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Abbreviations 

AER All Electric Range 

APU Auxiliary Power Unit 

Batt Battery 

BSFC Brake Specific Fuel Consumption 

CAN Controller Area Network 

CB Charge Blending 

CD Charge Depleting 

CO2 Carbon Dioxide 

CS Charge Sustaining 

DOT Department of Transport 

DOD Depth of Discharge 

DP Dynamic Programming 

ECMS Equivalent Consumption Minimization Strategy 

EOL End of Life 

EPA Environment Protection Agency 

EU European Union 

EV Electric Vehicle 

GPS Global Positioning System 

HEV Hybrid Electric Vehicle 

HV High Voltage 

ICE Internal Combustion Engine 

INV Inverter 

NEDC New European Driving Cycle 

NN Neural Network 

PHEV Plug-in Hybrid Electric Vehicle 

PI Proportional plus Integral Controller 

PSAT Powertrain Systems Analysis Toolkit 

SoC State of Charge 

SoCinit Initial State of Charge 

Trn Transmission 

UNECE United Nations Economic Commission for Europe 

US United States 

Notations 

 ݎܨ Total resistive force on the tyre (N) 

 ݈ܪ Lower heating value of fuel (J/kg) 

 ݒܯ Total mass of the vehicle (kg) 
 ݈ݕܿܰ Number of strokes per cycle (-) 

 ݔݑܽܲ Power drawn by the ancillaries (W) 
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ܾܲ  Power provided by the battery (W) 
 ሻ݇ܽ݁݌ሺݐܾܽܲ Peak power of the battery (W) 

ܲ݀݉݀  Power demand (W) 
ܲ݁݉ሺ݇ܽ݁݌ሻ  Peak power of the electric machine (W) 

ܲ݁݉  Power drawn by the electric machine (W) 
ܲ݁݉ሺ݈݀݁ܽܿݏሻ  Scaled peak power of the electric machine (W) 
ܲ݅ܿ݁ሺ݇ܽ݁݌ሻ  Peak power of internal combustion engine (W) 

ܲ݅ܿ݁  Power provided by the ICE (W) 
ܾܳ  Capacity of the battery (Ah) 
݈݈ܳܿ݁  Capacity of the individual cell (Ah) 

ܴܾ  Resistance of the battery pack (Ω) 

ܴ݈݈ܿ݁  Resistance of an individual cell (Ω) 

ܴ௜௡௧ Internal Resistance of the battery (Ω) 

ܶ݁  Torque of the engine (Nm) 

ܶ݁݉  Torque of the electric machine (Nm) 
ܶ݁݉ሺܾܽ݁ݏሻ  Torque of the base electric machine map (Nm) 
ܶ݁݉ሺ݈݀݁ܽܿݏሻ  Scaled torque of the electric machine (Nm) 

 ݓܶ Torque at the wheels (Nm) 

ܸ݀  Volumetric size of the engine (m3) 

ܿ݉݁  Mean piston speed (m/s) 
݂݃݀  Final drive gear ratioratio(-) 

ܾ݅  Battery current (A) 
݂݉  Mass of fuel (kg) 

݉ܿ  Mass of the chassis (kg) 

 ݐܾܽ݉ Mass of the battery (kg) 

݉݁݉  Mass of electrical machine (kg) 

݉݅ܿ݁  Mass of the ICE (kg) 
 ݏݏ݋݈݌ Mechanical loss in terms of pressure (Pa) 
 ݁݉݌ Mean effective pressure (Pa) 
 ݂݉݌ Mean fuel pressure (Pa) 

 ݓݎ Radius of the wheel (m) 

 ܿ݋ݒ Open circuit voltage of the battery pack 
 ሺ݈݈ܿ݁ሻܿ݋ݒ Open circuit voltage of an individual cell 

 ݐݒ Terminal voltage at the battery (V) 
 ݁ߟ Efficiency of the engine (-) 
 ݉݁ߟ Efficiency of the electric machine (-) 

߱݁  Engine speed (rad/s) 

߱݁݉  Speed of the electric machine (rad/s) 

ܵ  Stroke length (m) 

݁  Thermodynamic efficiency (-) 

 ݒܽݎ݃ Acceleration due to gravity (9.81 m/s2) 

 ݌݊ Number of parallel strings 
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 ݏ݊ Number of cells in series 

 ݒ Vehicle velocity (km/h) 

 ߙ Slope of the road (-) 

 ߚ Power split ratio 

 ߞ Equivalence ratio for battery fuel consumption (-) 

 

1. Introduction 

Within the automotive and road transport sector, one of the main drivers for technological 

development and innovation is the need to reduce the vehicle’s fuel consumption and the emissions of 

carbon dioxide (CO2) [1]. Legislative requirements are motivating manufacturers and subsystem 

suppliers to develop new and innovative electric vehicles (EV) and hybrid electric vehicle (HEV) 

concepts. In recent years, plug-in hybrids (PHEV) have also attracted considerable interest from both 

academia and industry. 

The adoption of PHEVs or range extended EVs is widely seen as an interim solution for the 

decarbonization of the transport sector [2]. Augmenting the electrical components of the powertrain 

with a small internal combustion engine (ICE) helps to overcome the limited range of existing EVs [3]. 

This improvement in range can be achieved without significant financial investment for new 

recharging infrastructure or a step-change improvement in the energy density of the storage technology 

being required [1,2]. 

Within a traditional series HEV the inclusion of the energy storage device, allows the ICE to be 

decoupled from the load acting on the vehicle. As a result, the ICE is able to operate for longer periods 

within a higher efficiency region or along the best specific fuel consumption (BSFC) line. The 

inclusion of a plug-in capability means that the state of charge (SoC) of the battery can be replenished 

through connection of the vehicle to the electrical grid. Therefore negating the need for the vehicle to 

employ a charge sustaining (CS) energy management control strategy. 

The distance a PHEV can travel using only the battery is typically known as the vehicle’s all 

electric range (AER). Typical AER values can range from 32–64 km (20–40 miles) [4]. If the vehicle 

is operating in a charge depleting mode (CD) and for journeys that are shorter than the AER of the 

vehicle, then the PHEV will have zero tank-to-wheel CO2 emissions. However, recognizing that one of 

the primary drivers for the adoption of PHEVs is the ability to use the vehicle for travelling extended 

distances, the design challenge is one of: 

(1) correctly sizing the powertrain components for hybrid operation; and 

(2) managing the energy flows between the ICE and the battery so as to maximize operating 

efficiency and the reduction of CO2 tail-pipe emissions.  

With respect to powertrain component sizing, correctly determining the required energy storage 

capacity of the high voltage (HV) battery remains one of the primary concerns for vehicle manufacturers 

and system integrators [5]. This fact is particularly pertinent since the HV battery constitutes the single 

largest contributor to vehicle mass [6]. Furthermore, the financial cost associated with the 
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procurement, design and integration of large battery systems within vehicles is cited within [7] as one 

of the main barriers to vehicle commercialization.  

For journey distances in excess of the quoted AER, the traditional method of managing the energy 

flows with the powertrain is for the PHEV to be driven in a CD mode until the battery SoC has 

depleted to a lower threshold, before transitioning to a CS mode in which the ICE is used to maintain 

the SoC within the required range. However, research published in [8–10] advocates a third mode of 

operation, namely the charge blended (CB) mode in which both the ICE and the electrical subsystems 

are optimally employed throughout the journey. As discussed in [11] because the ICE is able to operate 

in its most efficient region for comparatively longer an overall reduction in energy consumption and 

CO2 emissions can be realized.  

A fundamental requirement for the design and implementation of a CB strategy within a PHEV is 

the correct identification of the split of power between the ICE and the HV battery. A number of 

publications cite different approaches that include the use of heuristic rule-based controllers through to 

advanced control techniques based on optimization, fuzzy logic and game theory [7,12]. 

The application of more advanced control methods to solve the energy management problem opens 

up a number of possibilities. Discussed in [11] is the potential for higher levels of CO2 reduction 

through the use of an improved Equivalent Consumption Minimization Strategy (ECMS) for energy 

management. The improvement within the design relates to the novel integration of a proportional plus 

Integral (PI) controller within the ECMS strategy to calculate the charge sustaining penalty function. 

This approach extends previously published work in which the penalty function is mainly represented 

by a pre-calculated steady-state look-up table. The research highlights that a CB approach combined 

with the local cost function optimization strategy may yield tank-to-wheel CO2 reductions in the order 

of 4%–10%, when compared to the performance of traditional heuristic based control systems. 

While continued CO2 reduction constitutes the primary driver for a significant proportion of 

transport related research, the objective of this paper is to critically evaluate the use of the improved 

ECMS as a means of reducing the financial cost of key PHEV components. Consideration is 

constrained to the primary elements of the powertrain, namely the combined ICE and generator, the 

HV battery and finally the electrical machine.  

A scalable model of PHEV powertrain has been designed to support system optimization and the 

evaluation of different energy management techniques. As part of the simulation and optimization 

study, the PHEV model is exercised over three separate drivecycles; the New European Drivecycle 

(NEDC), the Artemis Cycle and a real-world cycle. For each drivecycle, the PHEV model is 

parameterized with an appropriate size of electrical machine and battery so it can achieve an AER of 

48, 64, 80 and 96 km (30, 40, 50 and 60 miles) respectively. It is noteworthy, that this initial 

parameterization involves the integrated optimization of the PHEV powertrain components and the 

calibration thresholds for a heuristic, rule-based, control system operating in both CD and CS modes. 

The resultant CO2 output for each PHEV provides a target energy consumption for use within the 

second optimization study discussed in this paper. For the same drivecycles and corresponding CO2 

emissions, the latter study quantifies the opportunities for component downsizing and financial cost 

reduction from using the improved ECMS.  

This paper is structured as follows: Section 2 introduces the drivecycles employed to evaluate the 

performance of the PHEV model. Section 3 discusses the design of the scalable PHEV plant model. 



Energies 2012, 5 4897 

 

 

Section 4 provides an overview of both the heuristic and improved ECMS of energy management. 

Section 5 presents the framework designed to optimize the respective PHEV powertrains for both  

tank-to-wheel CO2 emissions and financial cost. Consideration is given to the selection of the 

optimization algorithm employed and the structure of the cost functions used. Results are presented in 

Section 6 and highlight the variation in PHEV powertrain cost and component sizes as a function of 

the different drivecycles, the target level of CO2 emissions and finally the method of energy 

management control employed. Discussion and Conclusions are presented in Sections 7 and 8. 

2. Drivecycles Employed 

Three different drivecycles were employed as part of the analysis; the NEDC, the Artemis cycle and 

a real-world mixed urban-highway cycle recorded as part of the evaluation of the Smart Move 2  

trial [13]. Appendix A1 shows the speed traces of the drivecycles employed. The slope data recorded 

during the trial has been ignored since current legislative requirements define that tests are performed 

with no additional external force [14]. Appendix A2 provides a short overview of the EV trial 

program, including a description of the Smart ED vehicle and the parameters recorded. Pertinent 

information relating to each drivecycle is presented in Table 1. For each drivecycle, four optimization 

studies have been undertaken using the framework presented Section 5. For each optimization run, the 

AER of the PHEV was changed from 48, 64, 80 and finally 96 km (30, 40, 50 and 60 miles). Each of 

these AER values is classified as Design Cases 1, 2, 3 and 4 respectively. 

As discussed in Section 4, when considering the application of a CB strategy within a PHEV, the 

term AER is no longer applicable. Within the context of the results presented in this research, the 

baseline for comparison between the different energy management approaches is the equivalent CO2 

production over the drivecycle.  

Table 1. Characterization of the different drivecycles. 

Parameters NEDC Real-World Artemis 

Distance 10.93 km 29.83 km 73.02 km 
Top Speed 33.33 m/s 28.04 m/s 36.60 m/s 

Maximum Acceleration 1.04 m/s2 3.23 m/s2 2.86 m/s2 
Number of repetitions 10 7 2 
Total distance covered 109.32 km 208.81 km 146.04 km 

3. Design of a Scalable PHEV Model to Support System Optimization 

In order to evaluate the component downsizing opportunities associated with the use of the 

improved ECMS strategy, an important pre-requisite is the design of a PHEV powertrain model. To 

facilitate an efficient optimization study, a set of low fidelity component models have been derived. 

The primary components of the drivetrain, namely the vehicle mass, HV battery, electrical machine 

and the ICE are represented by their, steady-state, non-linear efficiency characteristics. 

Figure 1 presents the PHEV powertrain architecture under investigation. The on-board charger, 

battery (Batt), electric machine (EM), Inverters (INV), Transmission (Trn), DC/DC converter and 

wheel have all been modeled using data recorded from the Smart Move 2 Vehicle Trial Program. A 
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detailed description of this process and validation of the models has been published previously in [13,15] 

and will therefore not be repeated here. For each powertrain component the model execution equations 

have been listed. Further, for each of the powertrain components, the discussion is extended to 

highlight how key system parameters may be scaled as part of the optimization study to enable 

component resizing.  

Figure 1. Layout of the PHEV powertrain. 

 

The scalable parameters chosen for the PHEV model are engine volumetric size (Vd), peak power of 

electric machine (Pem(peak)) and the number of parallel battery strings (np). The sequence of execution of 

the model is given in Figure 2. Stage 1 consists of loading the baseline data obtained from the EV trial. 

Stage 2 represents the generation of a scaled set of PHEV components. Stage 3 relates to loading the 

different drivecycles and updating the mass of the PHEV based on the respective component mass 

values. Stage 4 is the execution of the model for a selected control strategy and drivecycle. Finally, 

Stage 5 verifies that the component constraints are maintained throughout the simulation. The 

remainder of the section defines in greater detail, the methods and equations involved at each stage of 

the process when generating and executing a scalable PHEV model. 

3.1. Vehicle Model 

The first part of this sub section introduces the model execution equations (Stage 4). In the second 

part the calculation of the mass of the powertrain components is depicted (Stage 3).  

In order to calculate the resistive forces (Fr) acting on the mass of the vehicle a vehicle coast down 

curve was experimentally obtained for the Smart ED. Equation (1) presents the 3rd order polynomial 

that defines Fr as a function of vehicle speed (v). The constant term of 146.8 N represents the tire 

rolling resistance. The slope of the terrain (α) could be calculated using the measured height data 

obtained from the vehicle’s onboard GPS. However, during the simulations performed in this paper the 

value of α was always considered to be zero: 

௥ܨ ൌ ሺ8 ൈ  10ିହሻ ڄ ଷݒ ൅  ሺ0.0241ሻ ڄ ଶݒ ൅ ሺ0.1456ሻ ڄ ݒ ൅ 146.8 ڄ cos ሺߙሻ  (1)
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For a given vehicle speed, the associated torque at the wheels (Tw) is calculated using Equation (2), 

where rw defines the rolling radius of the wheel, g is the gravitational constant and Mv is the total 

vehicle mass: 

௪ܶ ൌ ൬ܯ௩ ڄ
ݒ݀
ݐ݀

൅ ௥ܨ  ൅ ௩ܯ ڄ ݒܽݎ݃ ڄ sin ሺߙሻ൰ ڄ ௪ (2)ݎ

The value of Mv is calculated before the execution of the model at Stage 3 of the simulation as the 

summation of the chassis mass (Mc), and the respective mass contributions from the electrical machine 

(Mem), battery (Mbat), and the ICE (Mice). The mass of the vehicle chassis is held constant at 700 kg: 

௩ܯ ൌ ௖ܯ ൅ ௘௠൫ܯ ௘ܲ௠ሺ௣௘௔௞ሻ൯ ൅ ௕௔௧൫ܯ ௕ܲ௔௧ሺ௣௘௔௞ሻ൯ ൅ ௜௖௘൫ܯ ௜ܲ௖௘ሺ௣௘௔௞ሻ൯ (3)

Figure 2. Flowchart of execution of the simuation. 
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3.2. Integrated Electric Machine and Transmission 

The first part of this subsection consists of the model execution equations (Stage 4). The Smart ED 

employs a 55 kW brushless DC machine. For the PHEV model, the electric machine and the associated 

inverter have been considered as a single integrated system. The final drive ratio (gfd) is given as 8.67. 

As discussed in [13], the values of battery terminal voltage (vt), battery current (ib) and the rotational 

velocity of the machine (ωem) were recorded under a number of different operating conditions during 

vehicle evaluation. These values were used within Equations (4–6) to calculate the efficiency of the 

electric drive system. Figure 3 shows the mean efficiency for the electrical machine expressed as a 

function of shaft torque (Tem) and rotor velocity for the baseline map of 30 kW. This map is loaded at 

Stage 1 of the simulation. Further information regarding the derivation of this figure is provided  

in [13]: 

௘ܶ௠ ൌ ௪ܶ

݃௙ௗ
 (4)

߱௘௠ ൌ ߱௪ ڄ ݃௙ௗ (5)

௘௠ߟ ൌ ௘ܶ௠ ڄ ߱௘௠

௧ݒ ڄ ݅௕
 (6)

Figure 3. Efficiency of electric machine (ߟ௘௠ሻ. 

 

In order to employ the model within the optimization study, Equation (7) shows how the torque 

( ௘ܶ௠ሻ of the efficiency map can be scaled as a function of the peak power requirements of the 
subsystem ൫ ௘ܲ௠ሺ௣௘௔௞ሻ൯. This equation is represented as EM scale function at Stage 2 of the simulation: 

௘ܶ௠ ൌ ௘ܶ௠ሺ௕௔௦௘ሻ ڄ
௘ܲ௠ሺ௣௘௔௞ሻ

30,000
 (7)
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where 30 kW is the maximum power of the conventional Smart ED machine. This approach has been 

successfully applied in a number of comparable optimization studies reported in the literature [10,16]. 

When scaling the torque and efficiency characteristics of the electrical machine, the same regenerative 

braking strategy observed from Figure 3 is maintained. Finally, using manufacturers published data, 

the mass of the electrical machine and inverter system is updated using a linear function of peak power 
ሺ݃௘௠ሻ [17]: 

3.3. Battery Model 

Within the HV battery model during model execution, SoC is quantified using the generic method 

of coulomb counting, in which SoCinit defines the initial condition of the battery SoC and Qb the 

capacity of the battery expressed in Ah: 

ሻݐሺܥ݋ܵ ൌ  
௜௡௜௧ܥ݋ܵ ڄ ܳ௕ ڄ 3,600 െ ׬ ݅௕ ڄ ݐ݀

௧
଴

ܳ௕ ڄ 3,600
 (9)

In order to ascertain the real-world operating efficiency of the HV battery a Rint type equivalent 

circuit model was used. This method is widely reported within the literature and comprises of an open 

circuit voltage (voc) in series with a charge and discharge resistance (Rb) [18]. The value of voc was 

estimated using the data recorded from [13]. The data was analyzed and the points in which ib was zero 

were noted. Under these conditions, the value of voc equals the measured battery terminal voltage (vt). 

Figure 4 shows the result of this exercise and presents the estimated value of voc as a function of 

measured battery temperature and SoC. This map is loaded at Stage 1 of the simulation. Further 

information regarding the derivation of this Figure is provided in [13]. For a given value of ib, the 

battery terminal voltage can be calculated using Equation (10): 

௧ݒ ൌ ௢௖ݒ െ ݅௕. ܴ௕ (10) 

In order to calculate ib and vt, battery power is calculated based on Equation (11). Paux is the 

auxiliary power needed for the vehicle and includes such loads as the headlights, air conditioning, 

entertainment system etc. On average this was measured at 1kW within the Smart ED. Pem is the power 

of the electric machine and is equal to the drive power demand. Within a PHEV, the energy 

management strategy must control the engine power (Pice) to ensure that the power constraints and SoC 

of the battery are not exceeded: 

௕ܲ ൌ ௘ܲ௠ ൅ ௔ܲ௨௫ െ ௜ܲ௖௘ (11)

As part of the optimization routine discussed in Section 5.1, Equations (12–15) present how the HV 

battery is scaled by altering the number of parallel strings (np). This set of equations is executed at 

Stage 2 of the simulation as the battery function to create the voc map. The number of cells in series (ns) 

is maintained constant to ensure compatibility with the electrical machine: 

ܴ௕ ൌ ܴ௖௘௟௟ ڄ
ݏ݊
݌݊

 (12)

௢ܸ௖ ൌ ௢ܸ௖ሺ௖௘௟௟ሻ ڄ (13) ݏ݊

௘௠ܯ ൌ ݃௘௠൫ ௘ܲ௠ሺ௣௘௔௞ሻ൯ (8)
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ܳ௕ ൌ ܳ௖௘௟௟ ڄ (14) ݌݊

௕ܯ ൌ ௖௘௟௟ܯ ڄ (15) ݌݊

It is noteworthy that the mass of each cell (Mcell) includes no just the cell mass but also a weighting 

term to account for the mass compounding effects of introducing large battery systems. 

Figure 4. Measured battery open circuit voltage. 

 

3.4. Integrated ICE and Generator 

The ICE model consists of two parts. In the first part a scalable fuel consumption map is developed. 

This part is represented as the ICE function in Stage 1 of the simulation. In the latter part the derived 

scalable map is combined with the electric machine map to give a combined efficiency map. This map 

is used to identify the best specific fuel consumption line (BSFC) of the engine. These steps are carried 

out at Stage 2 of the model execution. The BSFC line is then used in the simulation model to calculate 

fuel consumption.  

3.4.1. Creation of Engine Efficiency and Fuel Consumption Map 

Creation of the scalable ICE model was first proposed in [19] by using the Willans line technique. 

Later the methodology was improved and used to size the ICE components of a HEV in [20]. The 

concept is based on the average pressures acting on top of an imaginary piston to produce the same 

torque as the ICE. Consider the expression shown in Equation (16), pmf is the ideal pressure acting on 

top of the piston in the case of no losses and all chemical energy being converted to mechanical 

energy. The term e, can be described as the thermodynamic efficiency of the engine and ploss is the 

pressure loss due to the mechanical losses in the system. The resulting average pressure pme is the 

mean effective pressure which is equivalent to the engine producing torque Te. The peak value of pme is 
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fixed for a type of engine and is expressed as a function of the mean piston speed cm. ploss and e can 

also be defined as functions of cm. The value of these terms does not change for different engine 

volumetric sizes for a particular engine technology, which has been validated in [19]. 

A map of these three parameters was obtained from [19] for a naturally aspirated three cylinder 

engine. The variation of these parameters with cm is shown in Figure 5. This base map is loaded in 

Stage 2 of the simulation. The experimental work performed in [19] shows that e can also be expressed 

by cm and pmf to capture the reduction in efficiency of the system during high load conditions:  

௠௙݌ ൌ
௠௘݌ ൅ ௟௢௦௦݌

݁
 (16)

Figure 5. Estimated ploss and e of engine. 

 

From the value of pmf the fuel flow rate can be calculated based on Equation (17), where Hl is the 

lower heating value of fuel and Vd is the volumetric size of the engine: 

 ݉௙ሶ ൌ
௠௙݌ ڄ ௗܸ

௟ܪ
 (17)

Finally in order to convert the pme values to engine torque Te and cm values to engine speed 

Equations (18–19) are used: 

௘ܶ ൌ
௠௘݌ ڄ ௗܸ

௖ܰ௬௟ ڄ ߨ
 (18)

߱௘ ൌ
ܿ௠ ڄ ߨ

ܵ
 (19)

Ncyl represents the number of power strokes per cycle. In this case it is 4 since the engine is a  

4-stroke engine. S represents the stroke length of the engine, based on the original data 0.067 m was 
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used. As a result, a fuel consumption map with engine speed and engine torque as the x- and y-axis has 

been developed for a particular volumetric size which is shown in Figure 6. 

In order to perform an initial validation of the derived ICE efficiency map, the baseline model was 

incorporated with the vehicle model [Equations (1) and (2)] and then exercised over the NEDC in a 

backward facing simulation. The fuel consumption was found to be 5.49 L/100 km. manufacturer’s 

published data for the vehicle cites a value of 5.64 L/100 km, 2% greater than the estimated value. 

3.4.2. Identification of best operating line 

In the second part, the map of an electric machine is formulated using the scaling procedure 

described in Section 3.2. The peak power of the machine is matched such that the electric machine has 

enough power to work across the entire BSFC line. In order to identify the BSFC line the fuel 

consumption map is converted to an efficiency map of the engine and combined with the electric 

machine efficiency. The equation to convert fuel consumption to engine efficiency is given below: 

௘ߟ ൌ ௘ܶ ڄ ߱௘

݉௙ ڄ ௟ܪ
 (20)

For each power point, the combination of speed and torque values which give the highest efficiency 

is identified. Finally for the best operating speed, torque points corresponding fuel consumption is 

determined from the previously derived map. The fuel consumption map and the best operating points 

for a 0.5 L ICEis shown in Figure 6. 

Figure 6. Operating line for best specific fuel consumption. (a) Based ontorque-speed 

map; (b) Power-fuel-flow line. 

(a) (b) 
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3.5. Financial Cost Model 

Several financial cost metrics have been proposed within the literature to quantify and evaluate 

different technology options within the automotive sector. As discussed in [16,21], these include the 

procurement cost of components, their operating cost and the residual cost or value that may be 

realized at the vehicle end of life (EOL). The primary aim of this research is to quantify the financial 

cost of powertrain components installed within the PHEV at the point of sale to the consumer. 

Research published by the National Renewable Energy Laboratory (NREL) in [22,23] quantifies 

system cost for the HV battery, electrical machine and ICE.  

Equation (21) defines the installed cost of the battery pack as a function of peak power (Pb) and 

energy (Eb). Conversely, Equations (22) and (23) define the financial cost of both the electrical 

machine and the ICE as a function of their respective peak power requirements. A full derivation of the 

financial weightings are discussed in [23] and will therefore not be repeated here. However, it is 

noteworthy that the authors include factors such as market segmentation, vehicle class, and the 

expected profitability within their analysis. Validation of the empirical relationships is provided, where 

the authors verify the financial cost equations for existing commercially available EVs and HEVs: 

ݕݎ݁ݐݐܽܤ ݐݏ݋ܥ ൌ $22 ڄ ௕ܲሺ୫ୟ୶ሻ ൅ $700 ڄ ௕ܧ ൅ $680.00 (21)

ݐݏ݋ܥ ݎ݋ݐ݋ܯ ൌ $21.70 ڄ ܲ௘௠ሺ௣௘௔௞ሻ ൅ $480.00 (22)

ݐݏ݋ܥ ݁݊݅݃݊ܧ ൌ $14.50 ڄ ܲ௜௖௘ሺ௣௘௔௞ሻ ൅ $531.00 (23)

4. Energy Management Control Strategy 

4.1. Thermostat/Heuristic Rule-based Control Strategy 

When the vehicle is operating in a CS mode using a heuristics or rule-based control strategy, the 

main objective is to maintain the SoC of the HV battery within a lower and upper threshold. 

Traditionally, the control strategy is presented as either combinatorial logic or a state transition 

diagram [19]. Algorithm 1 presents the pseudo code for the thermostat energy management strategy 

employed within this study. As it can be seen, the control system will activate or deactivate the ICE to 

maintain the HV battery within a lower and upper SoC region. In addition, the power demand sent to 

the ICE (Pice) is modified to ensure that the HV battery limits are not exceeded during charging.  

For the purpose of this study, the UPPER THRESHOLD calibration has been optimized for each 

drivecycle under investigation. Within [11], consideration is given to the sensitivity of a rule-based 

approach for variations in the power demand of the drivecycle. For reference, Figure 7 presents the 

simulated performance of a PHEV over the NEDC for different calibrations of the upper threshold. For 

each simulation, the lower threshold was set to 25% SoC. As it can be seen, the energy consumption 

and resultant CO2 emissions are variable and largely dependent on the magnitude of the residual 

energy within the battery at the end of the cycle. An energy value above 25% SoC ultimately relates to 

electrical energy that has not been employed to propel the vehicle. Furthermore, the source of this 

energy will have come in part from the ICE and therefore the burning of fossil fuels. 
  



Energies 2012, 5 4906 

 

 

Algorithm 1. Pesudo code for the thermostate energy management control strategy. 

 

Figure 7.Influence of upper threshold. 

 

4.2. Improved Equivalent Consumption Minimization Strategy (ECMS) 

The ECMS of local cost function optimization was first proposed by [24] for a HEV and later 

refined and extended within a number of research publications [9,25–28]. For a given value of driver 

demand power Pdmd, optimization of the energy consumption within the PHEV is achieved by selecting 

the optimal instantaneous power split (β) between the ICE (PICE) and HV battery (PB) while adhering 

to the minimum and maximum power constraints within the PHEV: 

ூܲ஼ா ൌ ߚ ڄ ௗܲ௠ௗ (24)

if (SoC< LOWER TRESHOLD) 
Engine is switched on 

else if (SoC> UPPER THRESHOLD) 
Engine is switched off 

else if (P_dmd>P_bat(max)) 
Engine is switched on 

else 
Repeat previous state 

end 

if (P_eng_best>P_bat +P_dmd) 
P_eng = P_bat + P_dmd 

else if (P_eng_best<P_dmd - P_bat) 
P_eng = P_dmd – P_bat 

else 
P_eng = P-eng_best 

end 
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஻ܲ ൌ ሺ1 െ ሻߚ ڄ ௗܲ௠ௗ (25)

ூܲ஼ா_ெூே ൑ ூܲ஼ா ൑ ூܲ஼ா_ெ஺௑ (26)

஻ܲ_ெூே ൑ ஻ܲ ൑ ஻ܲ_ெ஺௑ (27)

The locally optimized value of β that provides the most efficient power split between the ICE and 

electrical machine is calculated at each time-step, by minimizing the cost function (J): 

ܬ ൌ ሺ݃ܰܫܯ ൅ ݃௘௤௨௜௩ ڄ ሻ (28)ߞ

The term g represents the instantaneous mass flow rate of fuel from the ICE and gequiv represents the 

equivalent amount of fuel used by the battery to deliver PB. Finally ζ defines the charge-sustaining 

penalty function. The value of ζ is calculated from an outer proportional plus integral (PI) control loop. 

The output from the integral term of the controller is saturated between the values of 0 and 10 in order 

to avoid potential instability through the occurrence of integral windup. However, it is noteworthy that 

for the drivecycles evaluated the controller limits were never exceeded. Figure 8 presents the structure 

of the improved ECMS control system. Further information regarding the design and parameterization 

of this control system and the energy consumption improvements associated with its use are discussed 

in [11].  

Figure 8. Improved PI–ECMS energy management approach.  

 

As discussed in [11] for the controller to operate as a CB energy management strategy, a SoC 

trajectory (SOCref) must be defined and known in advance by the control system. For this research, an 

approximation is made based on the work undertaken in [11]. Figure 9 presents the reference 

trajectory, in which SoC is a linear function of journey distance.  

Figure 9. Reference battery SOC. 

 



Energies 2012, 5 4908 

 

 

4.3. Control System Comparison 

A critical review of the comparison between a thermostat strategy, in which the vehicle operates in 

a CD and CS mode and a PHEV operating in CB mode using the advanced ECMS is presented in [11]. 

For illustration purposes, Figure 10 presents an example set of results in which the model of the PHEV 

is exercised over a real-world drivecycle recorded as part of the EV evaluation programme. For the CB 

energy management approach, reductions of 3% to 7% in tank-to-wheel CO2 emission can be realized. 

As discussed in previous studies [10], the primary reason for the improved energy efficiency, is that 

the ICE is able to operate in a higher efficiency region for comparatively longer during the trip.  

Figure 10. Engine ON/OFF events for different control strategies. 

 

5. Component Sizing 

5.1. The Optimization Algorithm 

The optimization algorithm employed as part of this study is codified within Matlab as the function; 

fminsearch and represents a derivative-free local optimization routine. For a given set of initial 

conditions, the optimizer makes use of a neighborhood search method to identify the local optimal 

solution. From a review of existing literature, this algorithm has not been previously employed for 

optimizing the powertrain components within a PHEV. However, within the broader context of 

automotive design, the algorithm has been successfully used for parameter estimation to predict 

capacity degradation within a battery [29] and for identifying the optimal transmission ratios within a 

hydraulic hybrid vehicle [30]. 

A full description of the optimization routine underpinning fminsearch and the method for detecting 

convergence is provided in [31]. The optimization method employs the Nelder–Mead simplex 
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algorithm. A simplex is defined as a set of n + 1 points, where n represents the number of parameters 

to be optimized. For example, in the case where n = 2, the simplex forms a triangle around the initial 

solution. For a given cost function, the optimization routine evaluates each point on the simplex to 

identify if it represents a better performing solution. If one is found, then a new simplex is created 

around that individual. Convergence is reached, when the size of the simplex has been sufficiently 

reduced and a better performing individual cannot be identified within the local search space [31]. 

5.2. The Optimization Framework 

As shown in Figure 11, in order to quantify the component downsizing opportunities associated 

with the use of a CB energy management approach within a PHEV, a three stage optimization process 

has been employed. 

Figure 11. Overall component sizing procedure. 

 

Firstly, for a given AER and drivecycle, the PHEV model developed in Section 3, is executed 

within an iterative loop. Initial conditions for the energy capacity of the HV battery, the peak power 

rating of the electrical machine and volumetric size of the ICE are defined as; 9 kWh, 10 kW and 0.5 L 

respectively. For each execution of the model, if a component constraint is exceeded, the simulation 

terminates and then restarts with an increased component size. If the PHEV is able to meet the power 
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requirements of the drivecycle, and the HV battery is depleted to the lower threshold, the simulation 

terminates and the parameterization set for the powertrain is deemed to represent the smallest feasible 

set of components for that drivecycle and target AER. For this initial simulation the upper threshold of 

the thermostat strategy is fixed at 30% SoC. It is noteworthy that a similar approach is adopted  

within the commercially available PSAT simulation environment for the sizing of EV and HEV 

powertrain components. 

The optimization algorithm within Stage 2 solves the cost function (J2), defined in Equation (29). 

The inputs to the optimization process are: 

 Engine volumetric size (Vd); 

 Electric machine power (Pem(peak)); 

 Battery number of strings in parallel (np); 

 Upper threshold calibration for the thermostat controller. 

The results from Stage 1 provide the initial conditions for each of the above parameters. For each 

iteration of the optimizer, the PHEV model derived in Section 3 is executed to ascertain the vehicle’s 

AER and CO2 emissions. These values are then weighted by fn1 and fn2 within J2. Plots of the 

parabolic functions are presented in Figure 12. The weighting of the two parameters of the cost 

function were calibrated such that the optimization returned the desired AER. The constraints during 

the simulation are given by Equations (30–32). If any of the constraints are violated an artificially high 

number is returned to the optimizer to deem the set of inputs as infeasible. For the final set of PHEV 

powertrain components, Equations (21–23) were used to calculate the financial cost of the powertrain: 

ଶܬ ൌ ሻܴܧܣሺ݂݊1ሺܰܫܯ ൅ ݂݊2ሺܱܥଶሻሻ (29)

0 ൑ ௜ܲ௖௘ ൑ ௜ܲ௖௘ሺ௣௘௔௞ሻ (30)

௘ܶ௠ ൑ ௘ܶ௠ሺ௦௖௔௟௘ௗሻ (31)

௕ܲሺ௠௜௡ሻ ൑ ௕ܲ ൑ ௕ܲሺ୫ୟ୶ሻ (32) 

Figure 12.Cost function for thermostat based PHEV. (a) Parabolic equation fn1;  

(b) Parabolic equation fn2. 

(a) (b) 
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For a given drivecycle and target AER, the output from Stage 2, is a re-optimized set of PHEV 

powertrain components, including the upper threshold calibration for the thermostat strategy. When 

comparing the results from Stage 1 and Stage 2, it is noteworthy that the optimized set of PHEV 

powertrain components does not necessarily equate to the smallest feasible component sizes. It has 

been observed for example, that the optimization routine may return a larger electrical machine, so as 

to facilitate greater levels of regenerative braking during the drivecycle. 

For the same drivecycle and AER, the final stage (Stage 3) of the optimization framework is to 

quantify if further PHEV component downsizing can be realized through the use of a CB energy 

management strategy. The optimization routine is seeded using the resultant values from Stage 2. Once 

again, for each data-set of engine volumetric size, number of parallel strings and electric machine peak 

power, the PHEV model is executed with the improved ECMS approach. The same constraints are 

applied as Stage 2. With the CB approach, Figure 9 defines the target SoC profile across the 

drivecycle. The ECMS defines the instantaneous optimal power split between the ICE and the HV 

battery. For each PHEV solution, the resultant CO2 emissions and the financial cost of the hybrid 

powertrain are calculated, using Equations (21–23). In order to solve J3, the weighting functions fn3 

and fn4 are applied within the cost function J3: 

The constraints applied to the optimization are as previously defined by Equations (30–32). A plot 

of the parabolic functions, fn3 and fn4, are presented in Figure 13. The relatively high weighting of 

fn3, ensures that the required target CO2 values are achieved, thereby facilitating an equitable cost 

comparison to be made between those PHEV solutions that employ the traditional thermostat strategy 

and those that have been re-optimized using the improved ECMS approach to energy management.  

Figure 13. Cost function for charge blended PHEV (a) Parabolic equation fn3;  

(b) Parabolic equation fn4. 

(a) (b) 

 

  

ଷܬ ൌ ଶሻܱܥ൫݂݊3ሺܰܫܯ ൅ ݂݊4ሺݐݏ݋ܥሻ൯ (33)
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6. Results 

6.1. PHEV Powertrain Cost Reduction 

Figure 14 presents the total cost of the PHEV powertrain for the different CO2 thresholds 

corresponding to the AERs of 48, 64, 80 and 96 km (30, 40, 50 and 60 miles). As it can be seen, the 

financial cost of the powertrain increases as the aggressiveness of the drivecycle increases. Inline  

with [32] within the context of this research, aggressiveness relates to the levels of vehicle acceleration 

and braking experienced within the drivecycle. For the same energy management strategy, the PHEV 

powertrain cost can increase by as much as 15% when comparing the two solutions; one optimized for 

the NEDC and the other optimized for the more aggressive, Artemis cycle. In all instances as the 

required AER for the PHEV increases so does the financial cost of the powertrain. For twice the AER 

the financial cost of the powertrain increases by a factor of 1.5. Furthermore, Figure 15 clearly shows 

that the HV battery system dominates the financial cost of the hybrid powertrain. 

Figure 14. Cost comparison among different options. 

 

Figure 15. Component cost for different NEDC optimization runs. 
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When comparing the impact of the energy management strategy on the financial cost of the 

powertrain, Figure 14 highlights that optimization of the powertrain using the improved ECMS, 

consistently delivers cost reductions in the order of 3%–7%. Table 2 quantifies the financial cost 

reductions that may be achieved at the component level. 

6.2. Downsizing of the HV Battery  

Figures 16 and 17, present the downsizing opportunities within the HV battery both in terms of 

energy capacity and power capacity. Given the dominant cost of the HV battery system, there is a high 

degree of correlation between Figures 14, 16 and 17. When considering the different drivecycles; 

(NEDC, Artemis and Real-World) for design Case 2 and CO2 thresholds of 55, 71 and 77 g CO2/km 

the size of the HV battery system may be reduced by up to 3.7%, 4% and 10% respectively. The 

reduced requirement for energy storage onboard the vehicle, stems directly from the improved ECMS 

philosophy and the optimal use of both the ICE and the battery for the duration of the journey. 

Figure 16. Battery energy for different options. 

 

Figure 17. Battery power for different options. 
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Table 2. Results of component sizing. 

Drivecycle: NEDC 

Parameters 
Design Case 1 Design Case 2 Design Case 3 Design Case 4 

Thermostat Improved ECMS Change Thermostat Improved ECMS Change Thermostat Improved ECMS Change Thermostat Improved ECMS Change 

AER (km) 48 64 80 96 

Vd (mL) 538.13 650.28 21% 507.82 531.90 5% 541.43 500.06 −8% 537.36 500.01 −7% 

Pice (kW) 18.02 21.54 20% 16.98 17.79 5% 18.14 16.75 −8% 17.99 16.75 −7% 

Pem (kW) 38.95 36.50 −6% 41.52 36.80 −11% 38.88 37.35 −4% 40.49 37.30 −8% 

Pbat (kW) 27.32 24.33 −11% 33.21 31.95 −4% 40.19 39.12 −3% 47.88 46.51 −3% 

Qbat (kWh) 13.02 11.59 −11% 15.82 15.22 −4% 19.15 18.64 −3% 22.81 22.16 −3% 

TTW (g CO2/km) 69.99 70.51 1% 54.68 55.26 1% 39.62 40.12 1% 23.29 23.61 1% 

Cost ($) 13,538.67 12,607.44 −7% 15,635.85 15,126.79 −3% 18,118.63 17,633.27 −3% 20,877.84 20,260.40 −3% 

Drivecycle: Real−World 

Parameters 
Design Case 1 Design Case 2 Design Case 3 Design Case 4 

Thermostat Improved ECMS Change Thermostat Improved ECMS Change Thermostat Improved ECMS Change Thermostat Improved ECMS Change 

AER (km) 48 64 80 96 

Vd (mL) 528.00 562.91 7% 546.26 584.83 7% 532.27 500.57 −6% 554.58 500.42 −10% 

Pice (kW) 17.65 18.66 6% 18.32 19.39 6% 17.81 16.77 −6% 18.44 16.76 −9% 

Pem (kW) 41.17 40.74 −1% 44.05 42.35 −4% 44.95 41.82 −7% 46.06 43.05 −7% 

Pbat (kW) 22.60 19.53 −14% 28.24 24.75 −12% 35.53 31.84 −10% 41.77 39.08 −6% 

Qbat (kWh) 10.77 9.30 −14% 13.46 11.79 −12% 16.93 15.17 −10% 19.90 18.62 −6% 

TTW (g CO2/km) 83.17 83.61 1% 77.23 77.82 1% 68.40 68.98 1% 59.97 60.55 1% 

Cost ($) 11,890.76 10,846.26 −9% 13,990.67 12,776.07 −9% 16,578.49 15,143.13 −9% 18,856.06 17,744.06 −6% 

Drivecycle: Artemis 

Parameters 
Design Case 1 Design Case 2 Design Case 3 Design Case 4 

Thermostat Improved ECMS Change Thermostat Improved ECMS Change Thermostat Improved ECMS Change Thermostat Improved ECMS Change 

AER (km) 48 64 80 96 

Vd (mL) 534.05 500.02 −6% 553.96 501.71 −9% 539.05 501.35 −7% 545.27 500.12 −8% 

Pice (kW) 17.87 16.75 −6% 18.49 16.81 −9% 18.06 16.79 −7% 18.28 16.75 −8% 

Pem (kW) 50.59 45.24 −11% 50.00 46.58 −7% 46.77 43.39 −7% 48.94 44.25 −10% 

Pbat (kW) 29.52 27.62 −6% 34.87 33.57 −4% 42.79 41.33 −3% 50.81 49.77 −2% 

Qbat (kWh) 14.07 13.16 −6% 16.61 15.99 −4% 20.39 19.69 −3% 24.21 23.71 −2% 

TTW (g CO2/km) 81.98 83.37 2% 71.48 72.99 2% 57.60 59.17 3% 43.54 45.10 4% 

Cost ($) 14,565.78 13,716.97 −6% 16,486.78 15,863.46 −4% 19,210.74 18,554.40 −3% 22,117.47 21,570.86 −2% 
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6.3. Optimization of the Electrical Machine and ICE 

Figure 18 presents a reduction in the power requirements of the electrical machine through the use 

of CB energy management strategy. With respect to Table 2 for a given drivecycle and CO2 threshold, 

reductions in the order of 3% to 7% may be realized. 

Figure 18. Variation of EM Power for different options. 

 

As a result of the optimization, it is noteworthy that the peak power requirement of the electrical 

machine may not necessarily be the same as the HV battery. When both the ICE and the battery are 

delivering power to the wheels, the ICE can assist the battery during periods of high power demand. If 

the PHEV employs a thermostat control strategy, this can only occur when the vehicle is operating in a 

CS mode. However, within a CB approach the ICE is continually able to augment the power demands 

placed on the electrical subsystems.  

With respect to regenerative braking, depending upon the aggressiveness of the drivecycle, it has 

been observed that the optimization framework may select an electrical machine with a larger peak 

power rating. Under these conditions the potential to recapture energy under vehicle braking outweighs 

the relative disadvantages associated with a larger and heavier electrical machine.  

For a volumetric capacity of 0.5 L, the optimization framework continually limits the size of the 

ICE to a smaller value as possible. Across the different drivecycles and design options only a marginal 

increase in the ICE is suggested by the optimizer. Figure 19 shows the constant value of ICE power 

across the different design cases. 
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Figure 19. Variation of ICE Power for different options. 

 

7. Discussion 

7.1. PHEV Model 

As discussed in [13], parameterization of the electrical components within the PHEV model was 

done using data experimentally obtained from a fleet of EVs operating in the real-world. One the main 

limitations associated with the data-set is the restricted temperature range over which data was 

recorded. Since it has been widely reported in the literature [33], that extremes of temperature can 

decrease battery efficiency and reduce available capacity it is likely that such environmental conditions 

will impact the result obtained from the optimization framework. However, the author’s assertion is 

that the underlying trend would be the same as the results presented here. 

Data for the scalable model of the ICE was obtained from previously published research [20]. While 

the results presented in [20] have been experimentally validated, engine technology has advanced in 

recent years [34]. As a result, if models of such systems were included within the optimization routine, 

then it is conceivable that the use of ICEs would be more efficient leading to further downsizing within 

the battery and electrical machine. 

7.2. Energy Management Control System 

Both the thermostat and the improved ECMS have been optimized to reduce the tail-pipe CO2 

emissions from the PHEV. As a result, the optimization framework penalizes the use of the ICE in 

favor of the HV battery and electrical machine. While this approach is in keeping with current 

European legislation, in which only tail-pipe emissions are cited when defining vehicle performance, it 

does not take into account the CO2 emission from the electrical grid that are required to replenish the 

battery SoC [14]. For example, given the UK electrical grid mix, the published emission figure is  

594 g CO2 /kWh [35]. 

In addition to the well-to-wheel emissions another factor that is not taken into account is the 

degradation of the HV battery. Research published by [36], highlight that battery degradation is a 

function of battery depth of discharge (DoD) and the transient load placed on the battery. The inclusion 
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of such factors within the improved ECMS cost function represents a valuable area of future research. 

In addition, the inclusion of EOL battery costs with the battery cost function may further refine the 

output of the cost function J3 during PHEV component optimization. 

With respect to the CB energy management approach, the assumption was made that the SoC 

trajectory was a linear function of journey distance. As discussed in [26] further improvements in 

PHEV efficiency could be realized if a more accurate profile of the SoC could be known priori. One 

area of future research would be to more accurately define the SoC trajectory using information such 

as road-type definitions, traffic congestions levels and driving style [5]. 

7.3. Optimization Framework and Component Scaling 

The method of component scaling within the optimization framework employed within this study is 

widely accepted within the literature [8,16,20]. Many studies have provided experimental validation of 

the functions used. Within the optimization framework presented here, the primary consideration for 

component scaling was component mass as a function of the respective power requirements. The 

assumption was made that this relationship is linear. However, in practice the inclusion of secondary 

mass compounding effects and the use ancillary devices may well result in a non-linear relationship 

between component peak power and mass. The assertion is made that irrespective of the exact nature 

of the function, the validity of the optimization framework holds true. This is within the context of this 

research, to understand the methodology and the trends within the technology. Further research may 

wish to explore this relationship to a higher level of detail. In addition, consideration may also be given 

to other system attributes such as component volume, particularly with respect to the HV battery that 

may constitute a pertinent design constraint.  

The financial cost equations presented in Equations (21–23) represent the installed cost of the  

main powertrain components. While the report highlights the underlying trend between the  

respective components, it is noteworthy that absolute values may vary between manufacturer and 

component technology. 

8. Conclusions 

Contained within this paper is an optimization study in which the use of a CB control strategy is 

used to reduce the financial cost of key PHEV powertrain components. An improved ECMS of energy 

management has been used to ascertain the optimal power split within the powertrain as the PHEV 

traverses a drivecycle. The design of this strategy is based on previously published research. In order 

to properly evaluate the downsizing opportunities, comparisons are made against PHEV designs that 

employ a traditional thermostat strategy, in which the component sizes and controller switching 

thresholds have been optimized to deliver a specific AER over a drivecycle. The results presented 

support those published in comparable studies which highlight that the CB approach facilitates a more 

energy efficient design of PHEV. For a target CO2 value and drivecycle, the co-optimization of the 

PHEV components and the ECMS strategy has resulted in between 3% and 14% reductions in the energy 

and power requirements of the HV battery. Since the HV battery represents the single largest contributor 

to vehicle mass and powertrain cost, it is proposed that potential cost reductions in the order of 3%–9%, 

would further support the sustainable market introduction of this variant of low carbon vehicle. 
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Appendix 

A1. Drivecycles 

The drivecycles used in the simulation and optimization study are shown in Figures A1–A3. An in 

depth comparison of the drivecycles has been published previously in [37]. 

Figure A1. NEDC drivecycle. 

 

Figure A2. Real-world drivecycle. 
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Figure A3. Artemis drivecycle. 

 

A2. Trial Programme 

The real-world usage data employed as the foundation for this study was recorded within the UK as 

part of the Smart Move 2 Electric Vehicle Trial [38]. The evaluation program is part-funded by the UK 

Department for Business, Innovation and Skills (BIS). The aim of the Smart Move 2 Electrical Vehicle 

Trial is to further study the performance and acceptance of EVs within both public and private sector 

fleets. It is beyond the scope of this paper, to discuss the evaluation program in detail. A summary of 

pertinent data is provided for reference in Table A1, with further information being available from 

previously published work [39]. During the course of the program, whenever an EV was driven, key 

vehicle parameters were automatically recorded from the vehicles Controller Area Network or CAN 

bus and uploaded to a central database for analysis. With respect to the research reported here, the data 

from the seven Smart Electric Drive (ED) vehicles is employed as the primary focus of the modeling 

and optimization activity.  

Table A1. Smart Move 2 Trial Program Details. 

Trial program parameters  Data 

Duration of Program November 2010–March 2011 
Number of vehicles 8 
Types of Vehicles 7 Smart EVs and 1 Mitsubishi i-Miev 

Total kilometers driven by Smart EVs during program 4268 km 
Number of demonstration days 12 

Number of participating organizations 5 

The Smart ED is an EV designed primarily for deployment within urban areas. It has 16.5 kWh 

Lithium Ion battery, with a peak power rating of 30 kW during discharge and 10 kW for charge. The 

unladen mass of the vehicle has been measured as 965 kg. An integrated single-phase 3.3 kW on-board 

charger enables recharging of the HV battery at both the 220 V and 110 V levels. The vehicle’s 
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controller limits the top speed of the vehicle to 100 km/h. The range of the vehicle, published by the 

manufacturer over the new European driving cycle (NEDC) cycle, is 135 km [15]. 

Conversely within the US, the Environmental Protection Agency (EPA) states the vehicle’s official 

electric range as 101 km. Figure A4 presents a schematic representation of the EV powertrain, while 

Table A2 summarizes the pertinent data recorded from the EVs during their use. 

Figure A4. Layout of the EV Powertrain. 

 

Table A2. Data recorded from each of the EVs. 

Vehicle Parameter Unit Description 

Battery voltage V Terminal voltage of the HV battery 
Battery current A Battery current measured at the terminals of the battery pack 
Machine speed Rad/s Rotational velocity of the electrical machine 
Machine voltage V DC voltage, measured at the input to the inverter 
Machine current A Machine current measured at the terminals of the inverter 
Auxiliary power kW Power consumed by ancillary devices, including power steering and 

thermal management of the cabin and battery pack 
Charger voltage V AC mains voltage measured by the onboard charger 
Charger current A AC Mains current measured by the onboard charger 
Battery temperature °C Individual measurement of battery pack temperature 
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