
Energies 2012, 5, 5279-5293; doi:10.3390/en5125279 
 

energies 
ISSN 1996-1073 

www.mdpi.com/journal/energies 

Article 

Wind Turbine Tower Vibration Modeling and Monitoring by 
the Nonlinear State Estimation Technique (NSET) 

Peng Guo 1,* and David Infield 2 

1 School of Control and Computer Engineering, North China Electric Power University,  

Beijing 102206, China 
2 Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University 

of Strathclyde, Glasgow G1 1XQ, UK; E-Mail: david.infield@strath.ac.uk 

* Author to whom correspondence should be addressed; E-Mail: huadiangp@163.com;  

Tel./Fax: +86-10-6177-2654. 

Received: 7 September 2012; in revised form: 29 November 2012 / Accepted: 30 November 2012 / 

Published: 14 December 2012 

 

Abstract: With appropriate vibration modeling and analysis the incipient failure of key 

components such as the tower, drive train and rotor of a large wind turbine can be detected. 

In this paper, the Nonlinear State Estimation Technique (NSET) has been applied to model 

turbine tower vibration to good effect, providing an understanding of the tower vibration 

dynamic characteristics and the main factors influencing these. The developed tower 

vibration model comprises two different parts: a sub-model used for below rated wind 

speed; and another for above rated wind speed. Supervisory control and data acquisition 

system (SCADA) data from a single wind turbine collected from March to April 2006 is 

used in the modeling. Model validation has been subsequently undertaken and is presented. 

This research has demonstrated the effectiveness of the NSET approach to tower vibration; 

in particular its conceptual simplicity, clear physical interpretation and high accuracy. The 

developed and validated tower vibration model was then used to successfully detect blade 

angle asymmetry that is a common fault that should be remedied promptly to improve 

turbine performance and limit fatigue damage. The work also shows that condition 

monitoring is improved significantly if the information from the vibration signals is 

complemented by analysis of other relevant SCADA data such as power performance, 

wind speed, and rotor loads. 
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1. Introduction 

Vibration can be a good indicator of the operating conditions of a range of mechanical components 

and structures and thus can support condition monitoring of important wind turbine components such 

as the rotor, drive train and tower [1,2]. Analysis of vibration signals in both the time and frequency 

domain can be used to identify incipient failure of these components, but the vibration sensor and 

analysis methods for tower and drive train are different. For the tower, because the vibration frequency 

is quite low, a low frequency sensor (0–200 Hz) and an appropriate model based analysis method are 

used, while for the drive train bearing and gearbox, a high frequency acceleration sensor (3–20 kHz) 

and fast Fourier transform (FFT), Cepstrum methods are used [3]. However, there are two difficulties 

in the application of vibration analysis to wind turbines. First, large-scale wind turbines operate these 

days in a variable speed mode to optimize performance in relation to time changing wind speed and so 

the rotational speed of the rotor, gearbox and generator are changing significantly in time. Because the 

rotation speed of the gearbox is changing, the width of the vibration sidebands is not fixed, and this 

creates difficulties in locating the exact locations of gear or bearing faults. It is conventional as in [4] 

to use order analysis to deal with this problem, or equivalently azimuthal data sampling (rather than 

fixed time interval sampling) in which the rotor vibration is analyzed based on samples recorded at 

equidistant rotational angles instead of time equidistant samples. Second, there is strong aerodynamic 

and vibrational coupling between different turbine components and thus many interconnected factors 

may influence the vibration signatures. Rotor dynamics and control can for example, significantly 

influence tower vibration (TV). When the wind speed is above the rated one, the blade angle will 

normally be adjusted to maintain the rated power. This will result in changes to the aerodynamic forces 

acting on the rotor, and thus can lead directly to changes in tower vibration (both frequencies and 

amplitudes). It therefore makes sense to analyze vibration in wider context. 

In recent years, wind turbine condition monitoring using supervisory control and data acquisition 

system (SCADA) data analysis is increasingly common. The SCADA system for a wind turbine 

records hundreds of important variables that can give a more comprehensive indication of the wind 

turbine health condition. The work reported in [5] starts from basic laws of physics applied to the 

gearbox to derive robust relationships between temperature, efficiency, rotational speed and power 

output. With this relationship, an abnormal rise in the gearbox oil temperature as represented in the 

SCADA data can be used to predict gearbox failure. In [6], the authors use SCADA data and data 

mining algorithms to predict possible wind turbine faults. The study reported in [7] used a neural 

network to construct normal operating temperature models of the gearbox and generator based on 

SCADA data. When the residual between the model prediction and the measured value becomes very 

large, a potential fault is identified. In this paper we also use SCADA data for tower vibration 

modeling and monitoring. The vibration signals in the SCADA system are analyzed alongside other 

related variables to give an improved assessment of the tower and rotor condition. 
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This paper is arranged as follows: Section 2 gives a detailed description of the NSET modeling 

methodology. Section 3 introduces the SCADA data used and analyzes which factors or variables are 

most important with regard to their influence on tower vibration. The above and below rated operational 

regimes are dealt with separately. Section 4 uses the NSET technique to construct the two required 

sub-models for tower vibration. In Section 5, the TVM is used to detect the blade angle error/asymmetry. 

The paper finishes with a discussion and conclusions in Section 6. 

2. Tower Vibration Modeling Method: Nonlinear State Estimation Technique (NSET) 

NSET is a non-parametric model construction method first proposed by Singer [8]. It is now widely 

used in the nuclear power plant sensor calibration, electric product lifespan prediction and software 

aging research [9–11]. 

Assuming that there exist n  variables or parameters of relevance for a particular process or device, 

then at time i , an observation of the variables can be written as an observation vector: 

 T21)( nxxxi X  (1)

Construction of a memory matrix D  is the first step of NSET modeling approach. During a period 

of normal operation of the process or device, m  historical observation vectors are collected covering 

the range of different operating conditions (such as high or low load, start up, before shut down, etc.) 

that the process or device is subject to, so as to construct the memory matrix D  as: 
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Each observation vector in the memory matrix represents an operating state of the process or device. 

With proper selection of the m  historical observation vectors, the subset space spanned by the memory 

matrix D  can represent the whole normal working space of the process or device. The construction of 

memory matrix D  is actually the procedure of learning and memorizing the normal behavior of the 

process or device. 

The work reported in [12] provides a systematic approach to data vector selection and memory 
matrix construction. The input to NSET is a new observation vector obsX  obtained at some time and 

the output from NSET is a prediction estX  for this input vector for the same moment in time. For each 

input vector obsX , NSET will produce a m  dimensional weighting vector W : 

 T21 mwww W  (3)

with: 

)()2()1( 21est mwww m XXXWDX    (4)

Equation (4) means that estimation in NSET is the result of a linear combination of the m  historical 

observation vectors in the memory matrix D . The residual between the NSET estimation and the input is: 

estobs XXε   (5)



Energies 2012, 5 5282 

 

 

The residual sum of squares for ε  is: 
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In order to obtain the weighting vector W , we need to minimize the residual sum of square and let 
the partial derivatives for mwww ,,, 21   to be zero as follows: 
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Equation (7) can be written as: 

   
    













n

i

n

i

m

j

m

j
j

n

i
ikijikijjik wDDDDwDi

1 1 1 1 1
obs )(X , mk ,,2,1   (8)

If Equation (8) is written in matrix form: 

obs
TT XDWDD   (9)

From Equation (9), we can obtain the weighting vector as: 

   obs
T1T XDDDW 


 (10)

Substitution of Equation (10) into Equation (4) gives the model predicted vector as: 

   obs
T1T

est XDDDDWDX 


 (11)

From Equation (11), we can clearly see that the predicted vector is the linear combination of the 

historical observation vectors in the memory matrix, as mentioned above. In Equation (11), DD T  

denotes the dot product between every two vectors in the memory matrix, and obs
T XD   the dot product 

between the new input vector and each vector in the memory matrix. Euclidean distance is the simplest 

way to identify the relationship (distance) between any two vectors, and within NSET is used an 

intuitive measure of the similarity between vectors and so, in order to give NSET a more direct 

physical interpretation, this norm is used as nonlinear operator and replaces the dot product in DD T  

and obs
T XD   in Equation (11). 

The nonlinear operator for Euclidean distance in n-space is simply: 
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When Equation (12) is used to replace the dot product in Equation (11), the result is: 

   obs
T1T

est
~

XDDDDX 


 (13)

In the construction of memory matrix D , the Euclidean distance between every two observation 

vectors of the m  vectors should be big enough to ensure that the condition number of DD T  is not 
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excessive. Otherwise, it will be very difficult to calculate the inverse matrix of DD T  and the NSET 

model may become ill conditioned. 
If we are only interested in predicting one parameter such as nx  in the observation vector, then 

Equation (13) could be simplified as follows: 
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In this case, the prediction for nx  is simply a linear combination of the m  historic observation values 

of nx . The Euclidean norm is used to calculate the similarity between the new input vector obsX  and 

the m  vectors of the memory matrix. Assuming that the new input measurement is most similar (in the 

Euclidian sense) to the vector )(iX  in memory matrix, then, the Euclidean distance between them is 

the smallest of all m  possible distances and the weight iw  corresponding to )(iX  is the largest within W . 

In summary, the vector in memory matrix that has the best similarity with the new input will contribute 

the most to the prediction for nx . 

When the process or device works normally, the input observation vector of NSET should be 

located in the normal working space that is represented by the memory matrix D , and it is thus similar 

to some of the historical vectors in the memory matrix. In the case, the NSET estimation should be 

highly accurate. When problems or faults arise with the process or device, its dynamic characteristics 

will change, and the new observation vector will deviate from the normal working space. In this case 

the linear combination of the historical vectors in the memory matrix will not provide an accurate 

estimate of the input and the residual will increase in magnitude, sometimes very significantly. 

NSET is quite different from the Artificial Neural Network (ANN), a very common data driven 

modeling method, in following two respects:  

(1) An ANN uses historical data to train the network. During the training, the network absorbs the 

information from the training data into the weights. After training the data is discarded. For 

each new input vector, the weights of the network remain constant and the prediction is the 

nonlinear combination of the variables in the input vector. And the weight for the network has 

no clear meanings. In contrast, with NSET modeling, for each new observation vector, the 

weights W are individually generated by (14). Prediction with an NSET model is the linear 

combination of the historical observation data. The weights for NSET model show the 

similarity between the new input vector and vectors already in the memory matrix. 

(2) It is difficult to determine the structure for an ANN. In practice, it heavily depends on the user’s 

experience to choose the number of neurons and the number of hidden layers. ANNs with a 

simple structure generally don’t have enough modeling ability, while those having a complex 

structure will often over-fit the problem. NSET is a non-parametric modeling method and does 

not need a pre-determined structure. Good construction of the memory matrix alone will ensure 

satisfactory modeling accuracy. The modeling abilities for these two contrasting methods have 

been compared for a particular application [12], and confirm the comments above. 

When NSET is used for wind turbine condition monitoring, the operational time span covered by 

NSET model (i.e., from which the memory matrix is selected) should be carefully considered. The 
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ambient temperature and wind speed distribution can be quite different according to the time of year, 

and this is certainly true of wind turbine studied here, which is located in Zhangjiakou, north of Beijing 

where there are pronounced seasonal variations. Such meteorological parameters have a significant 

influence on the operation of wind turbine components. In order to achieve satisfactory model accuracy, 

the time span covered by the NSET model should not be too long, and ideally should be constrained to 

be within a particular season. This does mean that an NSET model would have to be constructed for 

each season, and although this adds to the effort required, the task should not be onerous once the 

procedures for model construction are in place. A related issue is whether the memory matrix should 

be renewed to reflect new operation conditions for wind turbine. It is attractive to add to the memory 

matrix new vectors representing more extreme external conditions than might have been available 

when the matrix was first formed, but care must be taken to ensure that the wind turbine is still 

operating normally. The danger is that faulted operation is incorporated into the matrix, making it then 

less likely to identify future faults as anomalies. These difficulties concerning renewal or amendment 

of the memory matrix relate to whether we can distinguish an observation vector representing a normal 

operating condition from one associated with a fault. The former could be added to the memory matrix 

while the later should be rejected. Principal Components Analysis (PCA) could perhaps be used to 

distinguish these two categories of observation vectors. 

3. Wind Turbine SCADA Data Preparations and Tower Vibration Analysis 

The machine studied in this paper is a GE model 1.5S LE 1.5 MW-rated variable pitch, variable 

speed wind turbine, located in Zhangjiakou, northwest of Beijing. The cut-in and rated wind speeds for 

wind turbine are 3 m/s and 12 m/s, respectively. The SCADA system records all wind turbine parameters 

every 10 min. This 10-minute resolution data is a time-averaged value. Each record includes a time stamp, 

power, wind speed, blade angle, tower and drive train vibration amongst many others. The accelerometer 

for measuring tower vibration is mounted at the top of tower, where it meets the nacelle. The accelerometer 

for drive train vibration (DTV) is mounted on the high-speed shaft bearing. 10-minute SCADA data from 

the wind turbine from March to April 2006 was used, and there were 8784 10-minute records, covering 

a period of 61 days. Data quality was good and there were no missing records during this period. 
For a large-scale wind turbine, there are several different operational regimes reflecting different 

wind speed ranges. When the wind speed is between cut-in and rated ones, the wind turbine runs in a 

Maximum Power Point Tracking (MPPT) regime. In this regime, the blade angle is usually fixed (at 

around two degrees depending on the blade design) and the rotational speed for rotor is controlled to 

be proportional to wind speed in order to maintain operation at pmaxC  and thus maximize energy 

capture. When the wind speed is above the rated wind speed, the wind turbine is controlled to operate 

at a fixed (rated) power output regime. In this control regime, the power is limited electronically 

through the variable speed drive converter to rated power, while at the same time the wind turbine’s 

aerodynamic power is kept constant on average by adjusting the blade angle to limit the rotor speed 

within an acceptable range. In these two operating regimes, the tower vibration signals recorded by the 

SCADA are of course quite different. Figure 1 shows trends of tower vibration and related variables 

from 25/03/2006 to 29/03/2006. Figure 2 shows trends from 17/04/2006 to 22/04/2006. The physical 

units used for tower vibration and related variables are shown in Table 1. 
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Figure 1. Trends for tower vibration and related variables with below rated wind speed. 

 

Figure 2. Trends for tower vibration and related variables with some operations above the 

rated values. 
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Table 1. Physical units for SCADA variables. 

Variable name Physical unit Notice 

Tower vibration mm/s2 Bandwidth: 0–200 Hz 
Drive train vibration mm/s2 Bandwidth: 3–20 kHz 

Power MW Rated: 1.5 MW 
Wind speed m/s Rated: 12 m/s 

Torque % Rated: 880 kNm 
Blade angle degree Below rated: 2 

3.1. Tower Vibration Analysis below the Rated Wind Speed 

Below rated wind speed, the pitch angle of this GE turbine is fixed at 2 degrees. From Figure 1, we 

can find that the following variables have a great influence on tower vibration magnitude. 

A. Wind speed. Wind speed is stochastic and produces time varying forces and loads on the rotor. 

Most relevant to this analysis are the torque and thrust, both approximately proportional to 

wind speed squared below rated. Even below rated, the higher the wind speed the larger 

magnitude tower vibration, as shown in Figure 1. This is because the amplitude of thrust variation 

increases with wind speed, and wind speed standard deviation also increases with wind speed, 

assuming roughly constant turbulence intensity. 

B. Torque and power. At pmaxC  regime, torque will increase approximately with wind speed squared 

as indicated above, output power with wind speed cubed. Torque and power reflect how hard 

the wind turbine works. The higher torque and power is, the higher the rotating speeds for rotor 

and drive train become that will lead to increased tower vibration. 

C. Drive train vibration. Drive train for wind turbine includes main bearing, gearbox, and 

generator bearing. Because the drive train is located in the nacelle, vibration of the drive train 

will be transmitted to the supporting structure, in this case through the yaw bearing to the tower 

and will directly influence tower vibration. 

In Figure 1, at point 175 (27/03/2006 02:14:05 AM), the wind turbine went through an emergency 

shut down and the blade pitched from 2 degrees to 90 degrees to provide aerodynamic braking of the 

rotor as is normal for such an emergency stop (in this case, a remote manual stop). During such an event 

the aerodynamic forces on the rotor reverse over a very short period of time (typically less than 10 s) 

as it moves from turbine mode to propeller mode. This results in a large impulse force on the tower. 

3.2. Tower Vibration Analysis above the Rated Wind Speed 

Regarding Figure 2, we are interested in the period when the wind speed is above the rated value, 

that is, from points 199 to 400. During this period, the wind turbine is operating at constant power 

output regime. From Figure 2, we can see that the blade angle is regulating in accord with the wind 

speed. In this operating regime, the tower vibration is closely related to the following variables: 

A. Blade angle. When the wind speed is above rated, the blade pitch for the GE model 1.5SLE is 

increased to regulate power. With an increase in blade pitch angle beyond the stall point, the 

aerodynamic lift coefficient blade decreases and the drag force coefficient increases rapidly. The 
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net effect is a significant increase in thrust and this result in increased tower deflection and 

vibration amplitudes. 

B. Wind speed. 

C. Drive train vibration. 

The reasons for selecting wind speed and drive train vibration related to tower vibration are same as 

Section 3.1. In this operational regime, torque, output power, and rotational speed are approximately 

constant and thus have little influence on tower vibration. 
A closer look at the magnitude of the difference between the tower vibration (TV) and drive train 

vibration (DTV) in Figure 2 reveals something interesting. This difference is relatively small when the 

blade angle is fixed, that is, when the wind turbine runs at pmaxC  regime but the difference becomes 

considerable when the blade angle is changing, from data points 199 to 400, that is when the turbine is 

operating in the rated regime. The reason for this phenomenon lies with the main bearing characteristics. 

When the wind speed is low the thrust force on the rotor and tower is also small, and most of the load 

transmits to the drive train so that the vibration difference between them are small. In contrast, when 

the wind speed is high, the regulation of blade angle results in significant and rapid changes in thrust; this 

directly excites tower/rotor mode vibration. In this situation, the main bearing thrust ring structure, if 

suitably designed only a small part of the total load is transmitted to the drive train. As a result, the tower 

vibrates significantly while the drive train vibration remains similar to that approaching rated power. 

From Figures 1 and 2, we can see that the variables that have greatest influence on tower vibration 

levels are quite different in the two distinct wind turbine operational regimes. And so the tower 

vibration model (TVM) should comprise two distinct sub-models corresponding to the two different 

turbine control regimes. 

4. Tower Vibration Modeling Using Nonlinear State Estimation Technique (NSET) 

The TVM is used to describe the complex relationship between tower vibration and the parameters 

that govern its behavior. In this paper, the TVM is constructed with use of the established Nonlinear 

State Estimation Technique (NSET) applied to SCADA data obtained when the wind turbine was 

working normally. This model can then be used as a reference to help detect incipient failure when 

contemporary data indicates a significant change in operational characteristics. NSET integrates the 

modeling variable (such as tower vibration) and its related variables (such as wind speed, power, 

toque, etc.) as a “related variable set”. And at a sampling time, variables in the “related variable set” 

make an observation vector. After the TVM is constructed with NSET, by giving a new observation 

vector, the TVM NSET model can make a prediction for the tower vibration. The residual being the 

difference between the prediction and actual value for the tower vibration will reflect the deviation 

between the new input vector and the normal TVM. The magnitude and characteristics of the residual 

can be used to identify possible incipient failure for components such as the wind turbine rotor. 

4.1. Tower Vibration Modeling with NSET Method 

Following the above section, the key steps for vibration modeling with NSET are in sequence: 

selection of the relevant variables to make up the observation vector and construct the memory matrix 
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D  using the SCADA data obtained from the wind turbine during periods of normal (healthy) operation. 

Historic data as shown in Figures 1 and 2 are used to validate the TVM. SCADA data from March to 

April but excluding these two sets used for validation, written as data set M , are used to model the 

tower vibration. As mentioned before, tower vibration has different influential variables in different 
operating regimes. Therefore, data set M  is divided into to two subsets 1M  and 2M . 1M  includes the 

records which wind speed is between cut-in and rated wind speed, while records in 2M  are those 

which wind speed is between rated and cut out wind speed. 1M  and 2M  are used respectively to 

construct the sub-models for below and above the rated operation. 

TVM for Wind Speed Below the Rated (Sub-Model A) 

With the analysis in Section 3.1, the observation vector for regime below rated is made up from 

variables with the greatest influence on tower vibration, including the tower vibration parameter itself. 

It is perfectly acceptable in a NSET model to include the desired model output parameter such as tower 

vibration itself in the observation vector which is shown as Table 2. 

Table 2. Observation vector below rated wind speed. 

Working condition Variables in the observation vector 

below the rated  
(MPPT regime) 

wind speed, torque, power, drive train  
vibration, tower vibration 

For each record in subset 1M , the variables in Table 2 are selected to make up the historical 

observation vector. In total, the number of the historical observation vector available in 1M  is 5369. 

The second and critical step for NSET modeling is to selecting 1d  (usually about several hundreds) 

representative historical observation vectors from the vectors available so as to form the memory 

matrix 1D . [12] has reported a systematic memory matrix construction method. 

TVM for Wind Speed above the Rated (Sub-model B) 

Following the analysis in Section 3.2, observation vectors above rated take to include the following 

variables (Table 3). 

Table 3. Observation vector above rated wind speed. 

Working condition Variables in the observation vector 

above the rated (output 
leveling regime) 

wind speed, blade angle, drive train  
vibration, tower vibration 

One thousand forty seven (1047) historical observation vectors above the rated wind speed are 
available in 2M . With the same constructing method used before, 2d  historical observation vectors are 

selected to form the memory matrix 2D . 

After the construction of memory matrices 1D  and 2D , one or other of the two sub-models can be 

used to provide a prediction for any new input observation vector. In this paper, because we are only 

interested in the prediction for tower vibration alone, Equation (14) will be used to give the prediction 

result. Figure 3 shows how these two sub-models work together to give a prediction for tower vibration. 
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Figure 3. NSET modeling and prediction for tower vibration. 

 

4.2. Validation for the NSET Tower Vibration Models 

Using the memory construction method as outlined in [12], the memory matrix 1D  is formed of 432 

vectors, and 2D  has 261 vectors. 

Validation Case 1: 

The 600 records shown in Figure 1 are used to validate the TVM. During this period, wind speed is 

below the rated and only sub-model A is required for prediction of the tower vibration. Note that when 

the turbine is shuts down, the TVM cannot function and the prediction is thus zero. The validation 

result is shown in Figure 4. Note that in this figure, the pitch angle is shown in natural units (degrees) 

for ease of interpretation, rather than the scaled value between 0 and 1 for other parameters. 

Figure 4. Validation for sub-model A. 

 

From Figure 4, we can see that when the wind turbine shuts down or starts up, the blade angle will 

pitch to the 90 or 2 degree setting (such as at points 175, 243, 260, 562, and 575). Because the blade 

pitches very quickly, the corresponding large change in aerodynamic loads result in abnormally large 

vibration magnitudes and large NSET model residuals. After removing these above points, sub-model 

A has a good prediction for tower vibration. 
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Validation Case 2: 

The 800 records shown in Figure 2 are used to validate the TVM for above rated operation. The 

records of this period cover wind speed both below and above the rated. Sub-models A and B work 

together to give the prediction for tower vibration according to the logic of Figure 3. Validation is 

shown in Figure 5. After removing the isolated large residuals caused by wind turbine shut downs and 

starts ups (such as at points 427, 674 and 688), the combination of these two sub-models demonstrates 

satisfactory modeling accuracy. 

Figure 5. Validation for sub-model B. 

 

5. TVM Used for Rotor Condition Monitoring 

The analysis of Section 3 above shows that the rotor aerodynamic characteristics have a significant 

impact on tower vibration. Incipient rotor failure might be expected to lead to abnormal rotor aerodynamics 

and these changes could be detected through close monitoring and analysis of tower vibration. The 

TVM captures essential aspects of the relationship between the tower vibration and the key turbine 

parameters during normal healthy operation. When changes indicative of incipient failure of rotor 

occur, this normal relationship between the variables in the observation vector will change and deviate 

from the TVM. As a result, the TVM will no longer give an accurate prediction of tower vibration; the 

residual between the NSET model prediction and the measured values will become significant. Standard 

hypothesis testing [13], can be used to determine whether the differences are statically significant. 

Blade angle asymmetry is a common kind of rotor fault and can lead to unacceptable fatigue damage. 

When this fault occurs, the blade angles for the three blades become different from each other leading 

to asymmetry of aerodynamic loading. If wind turbine runs in this way for extended periods, the 

unwanted asymmetric loads can cause serious damage to the drive train and even the supporting 

structure. Blade angle asymmetry could be detectable using the TVM developed in Section 4. 
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Blade Angle Asymmetry Detection 

For the wind turbine studied here, at 10:51 on 01/04/2006, the turbine underwent an emergency shut 

down due to excessive blade angle asymmetry. Information regarding this shutdown was recorded by 

the SCADA system and is shown in Table 4. 

Table 4. Failure data. 

Wind turbine ID Date Time Failure code Failure Text 

15401801 01/04/2006 10:51:57 144 Blade angle asymmetry 
15401801 01/04/2006 10:51:57 184 Shut down 

We select 400 records around this failure as input vectors for the TVM constructed in Section 4 

(starting 316 data points prior to shutdown). The trend for tower vibration residuals and trends for other 

related variables are shown in Figure 6. 

Figure 6. Trends for blade angle asymmetry. 

 

The failure mentioned above occurred at point 316, and the blade angle pitched to 90 degrees as 

part of the emergency stop. In the trends for tower vibration and drive train vibration, the difference 

between these two are small before point 275. But after point 275, the tower vibration was much higher 

than before and the difference between the two was sharply increased. This abnormal change in the 

relationship between these variables is detected in a timely manner by the TVM and the residuals 

change in a statistically way after this point. With proper setting of the alarm threshold value or using 

moving window method as in [12], the rotor failure such as blade angle asymmetry can be robustly 

detected before serious damage is caused to the wind turbine. How to set the threshold for failure 
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detection is not the purpose for this paper and readers can refer to papers [12,13] for more details on 

threshold determination. Using the moving window method, this blade angle asymmetry was detected 

at point 279, well ahead the wind turbine shut down at 316. 

6. Discussion and Conclusions 

This paper has characterized wind turbine tower vibration, both below and above the rated wind 

speed. The NSET method has been used to model the dependence of the tower vibration on the most 

influential parameters under normal operational conditions. The derived tower vibration model has 

been used to detect one specific kind of rotor fault: blade angle asymmetry. The following conclusions 

can be drawn: 

(1) For wind turbine condition monitoring, it can be misleading to analyze the vibration signal 

alone. Because of the strong impact of wind on a turbine and the coupling amongst the different 

wind turbine components and vibrational modes, vibration analysis must take other related 

factors into account to give a more accurate representation of the turbine so as to be useful for 

condition monitoring and diagnostics. For example, it is essential when analyzing a wind 

turbine rotor, to take both wind speed and rotational speed into account. 

(2) The results presented have demonstrated that tower vibration must be analyzed in the context 

of the rotor and its different operational regimes. Since the aerodynamic forces acting on the 

rotor are very sensitive to the blade angle, blade angle asymmetries will lead to significant 

differences in the thrust on individual blades. The unbalanced thrust force on the rotor will 

excite the supporting tower structure and cause the tower’s behavior and vibration to deviate 

from the normal operational condition. Therefore, monitoring the tower vibration provides a 

useful method for detecting rotor aerodynamic asymmetries caused for example by poor blade 

pitch adjustment or blade pitch control faults. NSET has been shown to be an effective 

technique to model the relationship between tower and rotor dynamics. The NSET tower 

vibration model (TVM) is able to accurately represent the relationship between rotor loads and 

tower vibration and thus to detect incipient rotor faults (in this case blade asymmetry) in a 

timely manner. Admittedly only one example of successful fault identification has been 

presented in this study, and this cannot prove that all such faults would be identified in a timely 

and thus useful manner. Access to much larger data sets is required in order to provide a 

statically significant sample of faults for detection, and this is work in progress. Nevertheless, 

the methodology presented here is underpinned by an engineering knowledge of the turbine and 

how it is operated, and this together with the successful fault identification allows the conclusion 

that the technique has promise and merits further development. It is also worth noting that 

blade pitch asymmetry is not the only means by which off axis aerodynamic loads could be 

generated that could be seen as abnormal, in contract to wind shear which is of course to be 

expected. Other conditions that would create abnormal off axis loads could include poor yaw 

control, damage to individual blades, and blade icing. All of these faults should in principal be 

detectable using the methodology presented here, and will be the subject of future research. 
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