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Abstract: Due to the movement and complexity of the carbon market, traditional 
monoscale forecasting approaches often fail to capture its nonstationary and nonlinear 
properties and accurately describe its moving tendencies. In this study, a multiscale 
ensemble forecasting model integrating empirical mode decomposition (EMD), genetic 
algorithm (GA) and artificial neural network (ANN) is proposed to forecast carbon price. 
Firstly, the proposed model uses EMD to decompose carbon price data into several 
intrinsic mode functions (IMFs) and one residue. Then, the IMFs and residue are composed 
into a high frequency component, a low frequency component and a trend component 
which have similar frequency characteristics, simple components and strong regularity 
using the fine-to-coarse reconstruction algorithm. Finally, those three components are 
predicted using an ANN trained by GA, i.e., a GAANN model, and the final forecasting 
results can be obtained by the sum of these three forecasting results. For verification and 
testing, two main carbon future prices with different maturity in the European Climate 
Exchange (ECX) are used to test the effectiveness of the proposed multiscale ensemble 
forecasting model. Empirical results obtained demonstrate that the proposed multiscale 
ensemble forecasting model can outperform the single random walk (RW), ARIMA, ANN 
and GAANN models without EMD preprocessing and the ensemble ARIMA model with 
EMD preprocessing. 

Keywords: carbon price; multiscale prediction; empirical mode decomposition; artificial 
neural network; genetic algorithm; partial autocorrelation function 
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1. Introduction 

Climate change has been a common challenge in the last few decades. In order to reduce 
greenhouse gas emissions at the lowest overall cost, the European Union Emissions Trading Scheme 
(EU ETS) was launched within European Union covering around 12000 installations in 25 countries 
and six major industrial sectors in 2005. EU ETS is the largest carbon market in the World to  
date [1], which has proven to be not only an important tool for human beings to address climate 
changes, but also a major choice for investors to decentralize their investment risks [2]. Therefore, the 
need for more accurate forecasts of carbon price is driven by the desire to reduce risk and uncertainty. 

Recently, although there is much literature on carbon price analysis [1–4], seldom existing literature 
regarding carbon price forecasting can be found. In fact, carbon price forecasting is a kind of time 
series forecasting. During the past few decades, various approaches have been developed for time 
series forecasting, among which the so-called autoregressive integrated moving average (ARIMA) 
method has been found to be one of the most effective forecasting methods. The popularity of the 
ARIMA method is due to its statistical properties as well as the well-known Box-Jenkins methodology 
in the modeling process. However, the ARIMA method is only a class of linear model and thus it can 
only capture linear patterns of time series. In order to overcome the limitations of the linear models 
and account for the nonlinear patterns existing in real problems, numerous nonlinear models have been 
proposed, among which artificial neural networks (ANNs) have shown excellent nonlinear modeling 
capability. Although a large number of successful applications have shown that ANNs can be a very 
useful tools within the stationary forecasting domain [5–7], however, carbon price data are highly 
nonstationary [3,4], which will make its forecasting precision still unsatisfactory. 

The Empirical Mode Decomposition (EMD) [8], proposed by Huang et al. in 1998, appears to be a 
new adaptive data analysis approach to improving forecasting precision for nonlinear and 
nonstationary carbon price data. EMD can capture the physical properties of the observed data 
accurately and has strong local performance capacity. Therefore, EMD is effective in dealing with 
nonlinear and nonstationary carbon price data [9]. If the original carbon price data are directly fed into 
an ANN, carbon price data will not present any outstanding characteristic quantities and it will take a 
longer time for the ANN to understand and grasp the data’s characteristics. Through EMD, carbon 
price data are decomposed into several independent intrinsic mode functions (IMFs), thus simplifying 
the interference and coupling across characteristic information of different scales in carbon price data. 
Meanwhile, each IMF itself describes different local characteristics of the carbon price data, thus an 
ANN can better understand and grasp the IMF’s characteristics so as to improve the efficiency of 
learning as well as accuracy of forecasting if any IMF is used as an input of ANN [3]. In recent years, 
some studies have applied an EMD based ANN model for time series forecasting and obtained good 
results [3,10,11]. However, they often use the traditional back-propagation ANN (BPANN) as 
predictor, which may lead to overfitting of the data. Moreover, existing literature regarding carbon 
price analysis has not adopted EMD processes, and this study thus aims to fill this gap. 

The contributions of this paper are twofold. Firstly, we establish an EMD-based ANN multiscale 
ensemble forecasting model to forecast carbon price. Using EMD, carbon price data are decomposed 
into several IMFs and a residue, which are composed into a high frequency component, a low 
frequency component and a trend component using the fine-to-coarse reconstruction algorithm. Then 
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those three components are predicted using an ANN trained by genetic algorithm (GA), i.e., GAANN, 
respectively and the forecasting values are summarized as the final forecasting results of carbon price. 
Secondly, we evaluate the forecasting performance of the single random walk (RW), ARIMA, ANN 
and GAANN models without EMD preprocessing and the ensemble ARIMA model with EMD 
preprocessing, for forecasting the carbon price in the European Climate Exchange (ECX) market. 
Empirical results obtained demonstrate that the proposed multiscale ensemble forecasting model can 
outperform the single RW, ARIMA, ANN and GAANN models without EMD preprocessing and the 
ensemble ARIMA model with EMD preprocessing. 

The remainder of this study is organized as follows. Section 2 describes the EMD, the GAANN and 
proposed multiscale ensemble forecasting models. Section 3 reports the empirical results. Section 4 
provides some conclusions. 

2. Methodology 

2.1. EMD 

EMD assumes that carbon price data simultaneously have many modes of different oscillations. 
Each mode, treated as an IMF, can be extracted from the data based on local characteristic scale of the 
data themselves. IMF meets two conditions [8]: (a) IMF has the same number of extrema and  
zero-crossings or differs by one at the most; (b) IMF is symmetric with the local zero mean. EMD can 
extract the IMFs through a sifting process as follows:  

(1) Identify all the maxima and minima of carbon price data ( )x t ;  
(2) Generate their upper and lower envelopes, max ( )e t  and min ( )e t , with cubic spline interpolation;  
(3) Calculate the point-by-point mean ( )m t  from the upper and lower envelopes:  

max min( ) [ ( ) ( )] / 2m t e t e t= +  

(4) Extract the mean from carbon price data and define the difference between ( )x t  and ( )m t  
as ( )d t : 

( ) ( ) ( )d t x t m t= −  

(5) Check the properties of ( )d t :  

(a) If it is an IMF, denote ( )d t  as the ith IMF and replace ( )x t  with the residue 
( ) ( ) ( )r t x t d t= − . The ith IMF is often denoted as ( )ic t and the i  is called its index; 

(b) If it is not an IMF, replace ( )x t  with ( )d t ; 

(6) Repeat steps (1)–(5) until the residue satisfies some stopping criteria. 

Rilling et al. [12] proposed one stopping criterion by introducing two thresholds 1θ  and 2θ , and 
defining the mode amplitude ( )tα : 

max min( ) ( ) ( ) / 2t e t e tα = +  

and the evaluation function ( )tσ : 
( ) ( ) / ( )t m t tσ α=  

so that sifting is iterated until 1( )tσ θ<  for some prescribed fractions (1 α− ) of the total duration, 
while 2( )tσ θ<  for the remaining fractions. One can typically set 0.05α = , 1 0.05θ =  and 2 110θ θ= . 
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At the end of this sifting procedure, carbon price data ( )x t  can be expressed as:  

1
( ) ( ) ( )

m

i m
i

x t c t r t
=

= +∑  

where m  is the number of IMFs and ( )mr t  is the final residue. Thus, we can achieve the 

decomposition of carbon price data into m  IMFs and one residue.  

2.2. Fine-to-Coarse Reconstruction 

Carbon price data are decomposed into m  IMFs and one residue by EMD, which can be 
decomposed into a high frequency component, a low frequency component and a trend component 
based on the fine-to-coarse reconstruction algorithm [13]: 

(1) Compute the mean of the sum of 1c  to (1 )ic i m≤ ≤ , i.e., 
1

i

i k
k

s c
=

= ∑  for each component (except 

for the residue); 
(2) Select the significance level α  and employ t-test to identify for which i the mean significantly 

departs from zero for the first time; 
(3) Once i is identified as a significant change point, partial reconstruction with IMFs from this to 

the end is identified as a low frequency component, and the partial reconstruction with other 
IMFs is identified as a high frequency component. The residue is identified as a trend 
component. 

2.3. Combining ANN and GA for Regression 

In this study, we develop a hybrid ANN and GA model for regression, i.e., GAANN model, as seen 
in Figure 1. 

Figure 1. Framework of combining ANN and GA for regression. 

 



Energies 2012, 5                            
 

 

359

Since a three-layer feedforward BPANN can map any nonlinear relationship with a desired degree 
of accuracy, we adopt a three-layer BPANN as predictor of the original series and the restructured 
components, in which the transfer functions of hidden and output layers are sigmoid and linear, 
respectively. During the learning process, the error is backward propagated through ANN to adjust the 
weights of the connections and thresholds, minimizing the sum of the mean squared error (MSE) in the 
output layer [14]: 

2

1 1

[ ( ) ( )]
n m

j j
k j

MSE T k Y k
= =

= −∑∑  

where m  is the number of output nodes, n  is the number of training samples, ( )jT k  is the expected 
output, and ( )jY k  is the actual output.  

However, a potential difficulty in the use of BPANN is the possibility of overfitting the data. To 
avoid the overfitting, we employ GA to optimize the weights and thresholds of the ANN. The GA can 
find global optimal solutions by constructing fitter solutions, which processes populations of 
chromosomes by replacing unsuitable candidates according to the fitness function [15]. In this study, 
we define the fitness function as 1/ ( 1)F MSE= + . The objective of the optimization is to maximize 
the fitness values F which will lead to the minimization of the MSE. Thus, the smaller the MSE, the 
closer fitness value to 1 (maximum). Once the fitness values of all chromosomes are evaluated, a 
population of chromosomes is updated using three genetic operators: selection, crossover and 
mutation. The selection operator of the GA is implemented by using the roulette-wheel algorithm to 
determine which population members are chosen as parents that will create offspring for the next 
generation. Crossover is a mechanism of randomly exchanging information between two 
chromosomes. We use arithmetical crossover which can ensure the offspring are still within the 
constraint region. Mutation operation can change the values of randomly chosen gene bits, and this 
process will continue until some predefined termination criteria are fulfilled. This ensures that we can 
obtain a good ANN. 

2.4. EMD-Based GAANN Multiscale Ensemble Forecasting Model 

Figure 2 shows the proposed EMD-based GAANN multiscale ensemble forecasting model, which 
works as follows: 

Step 1: Use the EMD to decompose the carbon price data into a set of IMFs and one residue. 
Step 2: Apply the fine-to-coarse reconstruction algorithm to reconstruct the IMFs and residue 

obtained from decomposition into a high frequency component, a low frequency 
component and a trend component.  

Step 3: Use the GAANN model to forecast the future one-day values of those three reconstructed 
components.  

Step 4: The forecasting results obtained by the sum of the predicted values in the previous step, 
can be treated as the final prediction results for the original carbon price.  
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Figure 2. EMD-based GAANN multiscale ensemble prediction model. 

Carbon price data
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IMF1 IMF2 ··· IMFm Rm
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∑

Forecasting results
 

To summarize, the proposed EMD-based GAANN multiscale ensemble forecasting model is 
actually an “EMD–GAANN–∑” ensemble learning approach, which is an application of the 
“decomposition and ensemble” strategy [10]. In order to verify the effectiveness of the proposed 
EMD–GAANN–∑ model, two main carbon future prices with maturity in December, 2010 (DEC 10) 
and December, 2012 (DEC 12) are used for testing purpose in the next section. 

3. Empirical Analysis 

3.1. Data 

The ECX, located in London, is the largest carbon trading market affiliated under EU ETS, since its 
daily trading volume generally accounts for over 80% of the total trading volume. It goes without 
saying that the state of ECX can reflect the overall state of EU ETS to a great extent.  

As is known to all, there are a great number of carbon prices in ECX. In this study, two carbon price 
series, DEC10 and DEC12 from April 22, 2005 to December 3, 2010, excluding public holidays, with 
a total of 1438 observations, are chosen as experimental samples. For convenience of GAANN 
modeling for DEC10 and DEC12, we take daily data from April 22, 2005 to March 18, 2009, 
excluding public holidays, with a total of 1000 data points are used as the in-sample training sets, and 
the remainder with a total of 438 data points are used as the out-of-sample testing sets, which are used 
to check the forecasting ability based on evaluation criteria. The main reason of selecting these two 
carbon prices is that they are the longest two future contracts covering the entire operating segment of 
EU ETS. The data of two carbon prices used in this paper are daily data, freely available from the ECX 
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website [16]. Figure 3 shows the curve of daily carbon prices for DEC10 and DEC12 in unit of 
Euros/ton, which shows that carbon price movements appear to be nonlinear and nonstationary in that 
the means are changing over time. 

Figure 3. DEC10 and DEC12 from April 22, 2005 to December 3, 2010. 

 

3.2. Evaluation Criteria 

For the sake of measuring the forecasting performance, two main criteria, root mean squared error 
(RMSE) and directional prediction statistic ( statD ), are used to evaluate the level prediction and 
directional forecasting, respectively: 

2

1

1 ˆ[ ( ) ( )]
n

t

RMSE x t x t
n =

= −∑  and 
1

1 100%
n

stat t
t

D a
n =

= ×∑  

where ( )x t  is the actual value, ˆ( )x t  is the predicted value, n  is the number of predictions, 1ta =  if 
ˆ ˆ[ ( ) ( 1)][( ( ) ( 1)] 0x t x t x t x t− − − − ≥ , and 0ta = . 

For comparing the prediction capacity of the proposed EMD–GAANN–∑ model with other widely 
used forecasting approaches, we employ the single RW, ARIMA, ANN and GAANN models as 
benchmark models. Moreover, a variant of the ensemble model, the EMD–ARIMA–∑ model, is also 
used to predict carbon price for the purpose of comparison. 

3.3. Forecasting Results 

We conduct the prediction experiments following the previous steps as shown in Section 2.4. 
Firstly, we decompose each of the two typical carbon price series into a set of IMFs and a residue. 
Before that, the thresholds and tolerance level of the stop criterion are determined by 

1 2[ , , ] [0.05,0.5,0.05]θ θ α = . We get graphical representations of the decomposition results through 
EMD, as illustrated in Figures 4 and 5. Obviously, DEC10 is decomposed into eight IMFs and one 
residue, DEC12 is decomposed into seven IMFs and one residue.  
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Figure 4. The decomposition of DEC10 derived from EMD. 

 

Figure 5. The decomposition of DEC12 derived from EMD. 
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Table 1. Mean of is  and t value of DEC10. 

Item s1 s2 s3 s4 s5 s6 s7 s8 
Mean −3.23 × 10−4 2.54 × 10−3 −4.52 × 10−4 −4.90 × 10−3 1.20 × 10−2 −4.13 × 10−2 −9.71 × 10−2 −6.55 × 10−2

t value −0.044 0.399 −0.058 −0.551 1.273 −3.463 −6.325 −4.527 

Table 2. Mean of is  and t value of DEC12. 

Item s1 s2 s3 s4 s5 s6 s7 
Mean −1.24 × 10−4 −1.81 × 10−3 −5.27 × 10−3 −1.74 × 10−2 −6.21 × 10−3 −1.28 × 10−2 2.52 × 10−2 
t value −0.016 −0.276 −0.682 −2.031 −0.657 −1.073 1.698 

Figure 6. The reconstruction of DEC10 derived from EMD. 

 

Figure 7. The reconstruction of DEC12 derived from EMD. 
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Then, the fine-to-coarse reconstruction algorithm is used to reconstruct the IMFs and residue into a 
high frequency component, a low frequency component and a trend component. The t values of 
DEC10 and DEC12 corresponding to means of si based on fine-to-coarse reconstruction algorithm are 
shown in Tables 1 and 2. We can find that the means of the fine-to-coarse reconstruction depart 
significantly from zero at 6i =  (DEC10) and 4i =  (DEC12) for the first time. Thus, for DEC10, the 
partial reconstruction with IMF1, IMF2, IMF3, IMF4 and IMF5 represents the high frequency 
component, the partial reconstruction with IMF6, IMF7 and IMF8 represents the low frequency 
component and the residue is separately treated as the trend component. For DEC12, the partial 
reconstruction with IMF1, IMF2 and IMF3 represents the high frequency component, the partial 
reconstruction with IMF4, IMF5, IMF6 and IMF7 represents the low frequency component and the 
residue is also separately treated as the trend component. As seen from Figures 6 and 7, each 
component is more stationary and regular, which can help improve the prediction performance by 
employing the “decomposition and ensemble” strategy [10]. 

We first take DEC10 for single-step-ahead forecasting. RW modeling is implemented via the Excel 
2003 software produced by Microsoft Corporation. ARIMA modeling is implemented via the Eviews 
statistical software package produced by Quantitative Micro Software Corporation. The model with the 
lowest Akanke Information Criteria (AIC) and Schwarz criterion (SC) is the best model. Once the 
optimal ARIMA model has been identified, it can be used to predict the high frequency component, 
low frequency component, trend component and the original series. Meanwhile we aggregate the 
forecasting results of those three components to produce an ensemble forecasting result, which is the 
EMD–ARIMA–∑ modeling process. 

Moreover, the ANN, GAANN and EMD–GAANN–∑ models are established with the neural 
network toolbox (Version 5.0) of the Matlab software package produced by the Mathworks Laboratory 
Corporation. Inspired by the identification of parameter p in ARIMA(p,d,q) model, we use the 
statistical tools, the partial autocorrelation function (PACF) and the resulting partial autocorrelation 
graph which is simply the plots of PACF against the lag length, to determine the input variables of 
(GA)ANN for orienting on the matter [11]. At the same time, we adopt the Kolmogorov theorem 

2 1s m= +  [17] to determine the number of hidden layer nodes, where m  represents the number of 
input nodes and s  represents the number of hidden layer nodes. Furthermore, GA is operated with real 
code, initial population size of 100, genetic algebra of 1,000, uniform crossover rate of 0.9, uniform 
mutation probability of 0.1 and other default parameters of GAOT toolbox [18]. 

We can thus get the partial autocorrelogram of the high frequency component, low frequency 
component, trend component and the original series, which are shown in Figure 8. According to the 
input selection method through observing Figure 8, with the output variable xt, the input variables of 
these four series for (GA)ANN modeling are as follows: 

• DEC10: ( 1 2,t tx x− − ); 
• High frequency component: ( 1 2,t tx x− − ); 
• Low frequency component: ( 1 2 3 4, , ,t t t tx x x x− − − − ); 
• Trend component: ( 1tx − ). 
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where the series of { }ix  represents those four series respectively. In the iterative process of one-step 
forecasting, ix  represents the corresponding forecasting value of each series unless i  exceeds the 

length of the series. 

Figure 8. The PACFs of the original series and the reconstructed components of DEC10. 
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Figure 9. The PACFs of the original series and the reconstructed components of DEC12. 

 

Having modeled those four series by (GA)ANN and rescaling them, we obtain the predictors of 
those three components and the original series. Moreover, the EMD–GAANN–∑ model is similar to 
EMD–ARIMA–∑, which only uses GAANN to forecast the high frequency component, low frequency 
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component and trend component and aggregate their forecasting results. Furthermore, we have run the 
(GA)ANN model ten times and averaged the results to stabilize its outputs, and the final forecasting 
results obtained from those six models for DEC10 are presented in Tables 3 and 4.  

Table 3. RMSE comparisons for different forecasting models. 

Models DEC10 DEC12 
RMSE Rank RMSE Rank 

RW 0.2962 4 0.3176 5 
ARIMA 0.3002 6 0.3197 6 

ANN 0.2986 5 0.3078 4 
GAANN 0.2952 3 0.2986 3 

EMD-ARIMA-∑ 0.2886 2 0.2912 2 
EMD-GAANN-∑ 0.2817 1 0.2856 1 

Table 4. Dstat comparisons for different forecasting models. 

Models DEC10 DEC12 
Dstat Rank Dstat Rank 

RW 48.40 5 49.77 5 
ARIMA 47.72 6 48.86 6 

ANN 64.38 4 60.96 4 
GAANN 67.58 3 64.16 3 

EMD-ARIMA-∑ 69.18 2 67.58 2 
EMD-GAANN-∑ 70.09 1 69.63 1 

For DEC12, in the same way we can obtain the partial autocorrelogram of the high frequency 
component, low frequency component, trend component and the original series which are shown in 
Figure 9, so the input variables of these four series for (GA)ANN modeling are as follows: 

• DEC12: ( 1 2,t tx x− − ); 
• High frequency component: ( 1 2,t tx x− − ); 
• Low frequency component: ( 1 2 3 4 5, , , ,t t t t tx x x x x− − − − − ); 
• Trend component: ( 1tx − ). 

Through the same process mentioned above, we can obtain the forecasting results of RW, ARIMA, 
ANN, GAANN, EMD–ARIMA–∑ and EMD–GAANN–∑ models, which are also presented in  
Tables 3 and 4. 

In terms of RMSE, the proposed EMD-GAANN-∑ model performs the best, followed by  
EMD-ARIMA-∑ model, GAANN model, ANN model, RW model and ARIMA model. Both ANN 
and GAANN are better than ARIMA, mostly because the former two models are nonlinear and the 
latter is a class of linear model, which is not suitable to forecast the nonstationary and nonlinear carbon 
price; GAANN is better than ANN, mainly because the global optimization capacity of GA can improve 
the ANN’s forecasting ability. EMD-based multiscale ensemble forecasting models are better than each 
of single models, possibly because the EMD decomposition can promote the predication performance. 
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With regard to Dstat, the proposed EMD-GAANN-∑ model also performs better than other models. 
EMD-based multiscale ensemble forecasting models are also better than the single forecasting models, 
possibly because the advantages of ensemble strategy have a great effect on the overall forecasting 
ability. Both ANNs and GAANN models are better than ARIMA, mostly because highly nonlinear 
carbon price data have such complex intrinsic characteristics, and the latter is a class of linear model 
which cannot capture such characteristics well; GAANN is better than ANNs, which demonstrates that 
GA’s global optimization capacity can improve ANN’s learning and forecasting ability. 

In general, according to the experimental results of carbon price forecasting for DEC10 and DEC12 
presented in this study, we can draw the following conclusions: (1) The experimental results show that 
EMD-GAANN-∑ model is superior to RW, ARIMA, ANN and GAANN models, as well as  
EMD-ARIMA-∑ model, for the test cases of the two main carbon future prices, in terms of accuracy 
level of prediction, as measured by RMSE, and directional prediction statistics(Dstat); (2) The 
prediction performance of the EMD-GAANN-∑ model and EMD-ARIMA-∑ model are much better 
than that of ARIMA model. Likewise, EMD-GAANN-∑ and EMD-ARIMA-∑ models perform better 
than ANN and GAANN models. This indicates that the decomposition-and-ensemble strategy can 
effectively improve the prediction performance, and the results emphasize that EMD decomposition is 
meaningful to prediction performance improvement in carbon price forecasting; (3) EMD-GAANN-∑ 
model is better than RW model in terms of NMSE and Dstat, which provides evidence against the 
efficient market hypothesis and suggests that EMD-GAANN-∑ can forecast carbon prices in the future. 

4. Conclusions 

This study has proposed an EMD-based GAANN multiscale ensemble forecasting model to predict 
carbon prices. The main contribution of this study is to present a novel method as well as a simple 
approach for a stable prediction of nonstationary and nonlinear carbon price data. The proposed 
method preprocesses the carbon price data and decomposes them into more stationary and regular 
components (a high frequency component, a low frequency component and a trend component) using 
the EMD and fine-to-coarse reconstruction algorithms. Furthermore, the corresponding GAANN 
model for each divided component is easier to build. After the components are forecasted in the built 
GAANN models, the forecasting values are then summarized the final carbon price forecasting results. 
The experiments have evaluated two main carbon future prices from the ECX market. This study 
compared the proposed method with the single RW, ARIMA, ANN, GAANN models and the 
ensemble EMD-ARIMA-∑ model, using RMSE and Dstat as the criteria. 

Empirical results shows that the proposed EMD-based GAANN multiscale ensemble forecasting 
model can produce the lowest RMSE and the highest Dstat in the carbon price datasets and exceed the 
single RW, ARIMA, ANN and GAANN models, as well as the ensemble EMD-ARIMA-∑ model. 
According to the experiments, EMD which can fully capture the local fluctuations of data can be used 
as a preprocessor to decompose the complicated raw data into a finite set of IMFs and one residue, 
which have simpler frequency components and high correlations. By this preprocessing, we can not 
only advance the simplification of GAANN modeling, but also obtain much more precise than the RW, 
ARIMA, ANN and GAANN models based on RMSE and Dstat. Therefore, the proposed method is very 
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suitable for prediction with nonlinear, nonstationary and strong complexity data, and is a very 
promising methodology for carbon price forecasting. 
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