

Review

A Review on Research on Replacement of CH₄ in Natural Gas Hydrates by Use of CO₂

Jiafei Zhao¹, Kun Xu¹, Yongchen Song^{1,*}, Weiguo Liu^{1,*}, Weihaur Lam^{1,2}, Yu Liu¹, Kaihua Xue¹, Yiming Zhu¹, Xichong Yu³ and Qingping Li³

- ¹ Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China; E-Mails: jfzhao@dlut.edu.cn (J.Z.); tjjxxk@126.com (K.X.); weihaur.lam@gmail.com (W.L.); liuyu@dlut.edu.cn (Y.L.); khxue@dlut.edu.cn (K.X.); ymzhu@dlut.edu.cn (Y.Z.)
- ² Department of Civil Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
- ³ CNOOC Research Center, Beijing 100027, China; E-Mails: yuxch@cnooc.com.cn (X.Y.); liqp@cnooc.com.cn (Q.L.)
- * Authors to whom correspondence should be addressed; E-Mails: songyc@dlut.edu.cn (Y.S.); liuwg@dlut.edu.cn (W.L.); Tel.: +86-411-84706722; Fax: +86-411-84706722.

Received: 28 December 2011; in revised form: 6 February 2012 / Accepted: 8 February 2012 / Published: 22 February 2012

Abstract: This paper introduces the research advances on replacement of CH_4 in Natural Gas Hydrates (NGHs) by use of CO_2 and discusses the advantages and disadvantages of the method on the natural gas production from such hydrates. Firstly, the feasibility of replacement is proven from the points of view of kinetics and thermodynamics, and confirmed by experiments. Then, the latest progress in CH_4 replacement experiments with gaseous CO_2 , liquid CO_2 and CO_2 emulsion are presented Moreover, the superiority of CO_2 emulsion for replacement of CH_4 is emphasized. The latest experiment progress on preparation of CO_2 emulsions are introduced. Finally, the advancements in simulation research on replacement is introduced, and the deficiencies of the simulations are pointed. The factors influencing on the replacement of CH_4 in hydrated with different forms of CO_2 is suggested.

Keywords: gas hydrate; replacement; carbon dioxide; feasibility; emulsion; simulation

Nomenclature:

t = time, s X_{CH_4}/X_{CO_2} = ratio of CH₄ and CO₂ in the vapor phase $(X_{CH_4}/X_{CO_2})_0$ = initial ratio of CH₄ and CO₂ in the vapor phase α = fitting parameter related to the a condensation rate of CH₄ molecules from the vapor phase $n_{\rm CH4,H}$ = remaining amount of CH₄ in the hydrate phase, mol $n_{\rm CO_2.H}$ = amount of CO₂ in the hydrate phase, mol f = fugacity, MPa k_{Dec} = overall rate constant of the decomposition, mol/s·m·MPa $k_{\text{Dec,R}}$ = reaction rate constant of decomposition, mol/s·m·MPa $k_{\text{Dec.D}}$ = decomposition rate constant of mass transfer in the hydrate phase, mol/s·m·MPa k_{Form} = overall rate constant of the formation, mol/s·m·MPa $k_{\text{Form.R}}$ = reaction rate constant of formation, mol/s·m·MPa $k_{\text{Form},\text{D}}$ = formation rate constant of mass transfer in the hydrate phase, mol/s·m·MPa A = surface area between the gas and the hydrate phase, m² H = hydrate phase G = gas phase

1. Introduction

Natural gas hydrates (NGHs) are non-stoichiometric crystalline compounds formed by natural gas and water molecules under low temperature and high pressure [1]. NGH widely exists below the ocean floor and in permafrost zones [2], and there is a large amount of NGH in Nature [3,4], so it is regarded as a potential future energy resource with great commercial exploitation potential. At present, the main mining methods for natural gas production from hydrates include depressurization, thermal stimulation and addition of inhibitors [5–7]. The methods promote hydrate decomposition to produce natural gas by destroying hydrate's phase equilibrium under initial conditions. However, as various mining methods' technical and economical features are taken into account, it has to be considered that NGH plays an important role in stabilizing the stratum where it exists [8]. During the process of NGH mining by use of the traditional methods, the decomposition of NGH may make the stratum where it exists become unstable and lead to geological disasters such as earthquakes, submarine landslides, *etc.* [9–11]. On the other hand, as the rapid development of human society produces massive discharges of greenhouse gases this has become a big environmental issue which humans have to face, and CO₂ storage is an effective measure to reduce CO₂ emissions and reduce the greenhouse effect [12,13].

Based on the two points on the above, Ebinuma [14] and Ohgaki *et al.* [15] suggested a new method for natural gas recovery from hydrates in sediments by use of CO_2 . As a method which combines CO_2 long-term storage and NGH mining, this method can not only avoid some traditional mining methods' disadvantages, such as a lack of heat source by depressurization method, the low efficiency of heat by thermal stimulation method, the high cost and damage to the stratum by the inhibitor addition method,

but also provide a way to stabilize the stratum below the ocean floor and store CO_2 for a long time [15,16].

The replacement method by use of CO_2 is regarded as a promising NGH mining method, and has attracted great attention from researchers all over the world, but the slow replacement rate and low replacement efficiency restrict the method's role in commercial applications [2,15]. According to the experimental data reported by Ota *et al.* [17] and Li *et al.* [18,19], during the replacement of CH₄ by use of gaseous CO_2 at temperatures ranging from 271.2 K to 276 K and at an initial pressure of 3.25 MPa, the replacement reaction rate became extremely slow after the early stages (about 10 h), besides, the ratio of CH₄ released from hydrate was no more than 15% within 100 h. If the replacement rate and efficiency cannot be improved, the replacement method should not have any actual practical value.

2. Feasibility Study of Replacement Reaction

2.1. The Thermodynamic Feasibility of Replacement

Figure 1 is the equilibrium diagram of CH_4 - CO_2 - H_2O system drawn based on the data from Sloan *et al.* [20]. In the diagram, areas A and B are above the equilibrium curve of H_2O -hydrate- CO_2 and below that of H_2O -hydrate- CH_4 , so in theory, gaseous CH_4 and CO_2 hydrate can coexist in these areas. Thus, it can be concluded that CO_2 hydrate is more stable than CH_4 hydrate under certain condition.

Figure 1. Diagram of CH₄-CO₂-H₂O phase equilibrium.

402

Experimental measurements and theoretical calculations both prove the possibility for CH_4-CO_2 replacement in the hydrate thermodynamically. Uchida *et al.* [21] used gas chromatography and Raman spectroscopy to analyze several formation and decomposition processes of CH_4-CO_2 mixed gas hydrates. The experiment and theoretical calculation demonstrated that, when the temperature is below 283 K, the equilibrium pressures of CH_4 hydrate are higher than those of CO_2 hydrate at the same temperature. Anderson *et al.* [22] studied the phase equilibrium conditions of $CH_4-CO_2-H_2O$ system in porous media. Their experimental data supported Uchida's opinion.

Geng *et al.* [23] studied the stabilities of CH₄ hydrate, CO₂ hydrate, and CH₄–CO₂ mixed hydrate by molecular dynamics (MD) simulations; in these simulations, the temperature ranged from 260 to 280 K and a pressure of 5 MPa was chosen. The simulation results indicate that the CH₄–CO₂ mixed hydrate is the most stable among the three hydrates discussed, so in theory, after CO₂ is injected into CH₄ hydrate under suitable conditions, CH₄ hydrate will transformed into the more stable CH₄–CO₂ mixed hydrate, and CH₄ gas is produced at the same time.

Based on chemical thermodynamic basic theory, chemical reactions occur spontaneously if the Gibbs free energy for the reaction is negative. Yezdimer *et al.* [24] analyzed the thermodynamic feasibility of replacing CH₄ gas from the hydrate with CO₂ by MD simulation. Their simulation result showed the residual Gibbs free energy in the mutation process of CH₄ into Ar was negative while that in the mutation process of CO₂ into Ar was positive, this suggested the Gibbs free energy during the CH₄–CO₂ replacement in the hydrate is negative. Thus, the replacement of CH₄ with CO₂ is thermodynamically feasible.

2.2. The Kinetic Feasibility of Replacement

The distribution coefficients of CH₄ and CO₂ between the gas and the hydrate phase were calculated by Ohgaki *et al.* [15]. The results showed that compared with CH₄, CO₂ tended to distribute in the hydrate phase, so the result preliminarily proved the feasibility of replacement. Uchida [25] was the first researcher to prove that the replacement reaction occurs on the contact surface between CH₄ hydrate and CO₂ gas by use of Raman spectroscopy. Besides, his research group suggested that the replacement rate is very slow and the induction time is up to several days. Uchida *et al.* [21] measured the composition ratio of CH₄ and CO₂ in the vapor phase X_{CH_4}/X_{CO_2} at various times during the formation process of CH₄–CO₂ mixed gas hydrates, they found that the ratio varied with the formation reaction progressing. The following logarithmic form was used to fit the data:

$$X_{\rm CH_4} / X_{\rm CO_2} = (X_{\rm CH_4} / X_{\rm CO_2})_0 + \alpha \lg t$$
⁽¹⁾

where *t* is the time, $(X_{CH_4}/X_{CO_2})_0$ is the initial composition ratio, and α is a fitting parameter related to the condensation rate of CH₄ molecules from the vapor phase. From Equation (1), it can be concluded that the ratio of CH₄ in the vapor phase increases with time, this result confirms the conclusion Ohgaki *et al.* drawn [15]. In the experiment, Uchida *et al.* found although the hydrate formation consumed more CO₂ than CH₄ as a whole, more CH₄ was consumed in the early stages. This phenomenon perhaps results from the structure of hydrate and the sizes of CH₄ and CO₂ molecules. On a microscopic scale, crystal structure types of CO₂ hydrate and CH₄ hydrate are both type SI [1,2,26], SI hydrate's unit cell consists of six medium cages (M-cage) and two small cages (S-cage). The CO₂ molecular dimension is a little larger than the CH₄ molecular dimension, and the molecular size of CO₂ is between that of the M-cage and S-cage of SI hydrate [1,2,27], so CO₂ molecules occupy the M-cages mainly. In the early stages, CH₄ molecules were able to occupy both S-cages and M-cages while CO₂ molecules only occupied M-cages, as a result, more CH₄ gas was consumed. In the later stages, a replacement reaction occurred, and CO₂ molecules occupied the M-cages which held CH₄ molecules, CH₄ gas was released, so the ratio of CH₄ in the vapor phase increased. Uchida *et al.* divided the replacement reaction into two phases: (1) some CH₄ hydrate decomposes and the generated gaseous CH₄ transfers into the vapor phase; (2) CO₂ molecules occupy the M-cages and CH₄ molecules re-occupy the S-cages because of the memory effect. Figure 2 [28] is the schematic diagram redrawn from Ota *et al.* [28], it describes the guest molecule exchange process in the M-cages and the CH₄ re-occupation in the S-cages.

Figure 2. Schematic diagram of the guest molecule replacement in the M-cage and the CH₄ re-occupation in the S-cage.

Hirohama *et al.* [29] suggested the driving force for CH_4 – CO_2 replacement in the hydrate seemed to be the fugacity difference between different phases. Ota *et al.* [17,28] built the models for decomposition of CH_4 hydrate and formation of CO_2 hydrate during the replacement process, they assumed the driving force for CH_4 – CO_2 replacement in the hydrate was proportional to the fugacity difference between the gas and the hydrate phase. The model of the CH_4 hydrate decomposition is written as follows:

$$\frac{dn_{CH_4,H}}{dt} = -k_{Dec}A(f_{CH_4,H} - f_{CH_4,G})$$
(2)

$$\frac{1}{k_{\rm Dec}} = \frac{1}{k_{\rm Dec,R}} + \frac{1}{k_{\rm Dec,D}}$$
(3)

where $n_{CH_4,H}$ is the remaining amount of CH₄ in the hydrate phase, t is the reaction time, f is the fugacity, and k_{Dec} is the overall rate constant of the decomposition. k_{Dec} includes $k_{Dec,R}$, which is the

reaction rate constant of decomposition and k_{Dec} , which is the rate constant of mass transfer in the hydrate phase. In Equation (2), *A* is the surface area between the gas and the hydrate phase, and H and G refer to the hydrate phase and the gas phase, respectively. The model of CO₂ hydrate formation during the replacement can similarly be written as follows:

$$\frac{dn_{\rm CO_2.H}}{dt} = k_{\rm Form} A(f_{\rm CO_2.G} - f_{\rm CO_2.H})$$
(4)

$$\frac{1}{k_{\text{Form}}} = \frac{1}{k_{\text{Form,R}}} + \frac{1}{k_{\text{Form,D}}}$$
(5)

where $n_{\text{CO}_2.\text{H}}$ is the amount of CO₂ in the hydrate phase and k_{Form} is the overall rate constant of the formation, k_{Form} includes $k_{\text{Form,R}}$ and $k_{\text{Form,D}}$ rate constants.

Ota *et al.* calculated the fugacity from the model including the van der Waals–Platteeuw theory [20,30] and the Soave–Redlich–Kwong equation of state (SRK-EOS) [31]. The experimental conditions (T, P) were fixed in the SRK-EOS equation to calculate fugacity and the resulting compositions were measured by Raman spectroscopy. The surface area between the gas and the hydrate phase was treated as a constant. The slope of the Arrhenius plot was used to calculate activation energies for CH_4 hydrate decomposition and CO_2 hydrate formation. Ota *et al.* pointed that the rate constant of decomposition seemed to dominate the CH_4 hydrate decomposition, while the mass transfer likely dominated the CO_2 hydrate formation during the replacement process.

According to the experimental data for CO₂ and CH₄ hydrate formation respectively reported by Nagayev *et al.* [32] and Rueff *et al.* [33], the activation energy for CO₂ hydrate formation is 57.98 kJ/mol and that for CH₄ hydrate decomposition is 54.49 KJ/mol. While Ota *et al.* [17] calculated that the activation energy for CO₂ hydrate formation is 73.3 KJ/mol and that for CH₄ hydrate decomposition is 14.5 KJ/mol from these models. The data of Li's experiment [19] shows the activation energies are 68.4 KJ/mol and 28.8 KJ/mol respectively from these models. These differences of activation energy may result from the interaction between formation of CO₂ hydrate and decomposition of CH₄ hydrate during the replacement process. By means of analysis and comparison of the activation energy during the replacement process, it can be concluded the formation of CO₂ hydrate can supply enough heat for the decomposition of CH₄ hydrate, and the extra heat can prevent CH₄ hydrate's self-protection and promote decomposition of CH₄ hydrate further.

3. Experiment Study of Replacement Reaction

3.1. Replacement of CH_4 Hydrate by Use of Gaseous CO_2

Researchers have done the replacement experiment by use of gaseous CO_2 under different conditions [16–19]. The adapted schematic diagram of the experimental apparatus for replacement with gaseous CO_2 is illustrated in Figure 3 [17]. The apparatus mainly consists of a high-pressure cell which has a magnetic agitator inside it for hydrate formation and replacement reaction, a cooling system for keeping the temperature of the cell constant, a data acquisition system for data collection, and a laser Raman spectrometer or a gas chromatograph for gas phase composition analysis. The experimental procedure is as follows: (1) the desired amount of distilled water is firstly introduced into

the cell, When the pressure is controlled at the set value, the magnetic agitator is started to promote the CH₄ hydrate formation; (2) CH₄ hydrate formation is considered to be completed when the experimental measurements remain unchanged. Then the cell is purged by high pressure CO₂ gas, which is confirmed by the laser Raman spectrometer or the gas chromatograph; (3) the replacement reaction starts when the system is controlled at the required pressure and temperature. After the reaction starts, a little gas sample is taken out to be analyzed at required intervals; (4) after a given elapsed time, the hydrate mixtures are decomposed by heating, and the compositions are quantified.

Figure 3. Schematic diagram of the experimental apparatus. 1: CO_2 cylinder; 2: Cooler; 3: CO_2 buffer; 4: CH_4 buffer; 5: Cell with cooling jacket; 6: Windows; 7: Stirrer; 8: Pressure reducer; 9: CH_4 cylinder; 10: Thermocouples; 11: Pressure gauge; 12: Back pressure regulator; 13: Laser Raman spectrometer or a gas chromatograph; 14: Tank.

Figure 4 drawn based on the data from Ota *et al.* [17] shows how the amount of the decomposed CH₄ hydrate ($Q_{CH_4,Dec}$) and formed CO₂ hydrate ($Q_{CO_2,Form}$) changes with time respectively in the experiment.

Figure 4. Amount of the decomposed CH₄ hydrate ($Q_{CH_4,Dec}$) (**a**) and the formed CO₂ hydrate ($Q_{CO_2,Form}$); (**b**) against time.

becomes slow after that.

60

50

40

20

10

0

0

25

Q_{CO2, Form} [mmol] 30

100

125

150

Time [h] Based on the experimental data, we can reach three main conclusions: (1) it promotes CH₄ hydrate decomposition and CO₂ hydrate formation to increase the temperature appropriately at the same pressure; (2) the amount of decomposed CH_4 hydrate is nearly consistent with that of formed CO_2 hydrate. The phenomenon proves the replacement reaction's essence is the process of CO₂ molecules occupying CH₄ molecules' cages; (3) the reaction rate is rapid in the early stages (about 10 h), but it

50

75

The experimental data reported by Wang et al. [16] and Li et al. [18,19] show the variation tendency of the decomposed CH₄ hydrate and formed CO₂ hydrate during the replacement process is the same as that of Ota's experiment. In Wang's experiment, after the first 2 h, the rate of CH₄ hydrate decomposition and CO₂ hydrate formation slows, and in Li's experiment, the high replacement rate is sustained for about 10 h, but in their experiments, the amount of CO₂ hydrate formed is much more than that of decomposed CH₄ hydrate. The highest ratio of formed CO₂ hydrate and decomposed CH₄ hydrate can be up to 5.6 and 6.0, respectively. The difference is mainly caused by the free water. In Ota's experiment, there is no free water at the beginning of the replacement reaction, so the amount of decomposed CH₄ hydrate is consistent with that of formed CO₂ hydrate, while in the experiment of Wang and Li, free water exists in the hydrate stratum, and the amount of CO₂ gas dissolved in the free water and formed CO₂ hydrate with the free water is much more than that used for replacing CH₄ from the hydrate. Thus, the factor of the free water in the NGH stratum should be taken into consideration in the actual exploitation of natural gas with CO_2 .

Based on the experimental results reported by different researchers, it is proven feasible to replace CH₄ from the hydrate by use of gaseous CO₂, but the replacement rate becomes extremely slow after the early stages of reaction, and the replacement efficiency can't satisfy the requirements of commercial production of NGH. Thus more efficient methods of exploiting natural gas from the hydrate with CO₂ should be developed.

3.2. Replacement of CH_4 Hydrate by Use of Liquid CO_2

Ota *et al.* [28] and Zhou *et al.* [34] have done the replacement experiment in the pure hydrate using liquid CO₂. The initial temperature is 273.2 K and the initial pressure is chosen at 3.25 MPa in their experiments. Compared to the experimental apparatus used for replacement by use of gaseous CO₂, a liquefying apparatus is added to be used for liquefying CO₂ in this experiment. The procedure is as follows: (1) the desired amount of distilled water and CH₄ gas is first introduced into the cell. When the system is pressurized to the required value, the agitation in the cell is started to promote the CH₄ hydrate formation; (2) when the CH₄ hydrate formation is completed, the cell is purged by high pressure CO₂. Then the system is pressurized to the required to the required value by keeping introducing CO₂; (3) when the temperature of the system is controlled at the required value, saturated liquid CO₂ is then introduced into the cell to replace CH₄ from the hydrate; (4) the replacement process is observed and analyzed with *in situ* Raman spectroscopy. After a given amount of time, the CO₂ remaining in the cell is released and the remaining hydrate mixture is resolved and analyzed.

Figure 5 drawn according to the data from Ota *et al.* [28] shows the time profile of the mole fractions of CH_4 and CO_2 in the hydrate phase in experiment. It can be seen the mole fraction of CH_4 hydrate decomposition is consistent with that of CO_2 hydrate formation, the phenomenon confirms the feasibility of replacement of CH_4 in the hydrate by use of liquid CO_2 , and proves the replacement reaction's essence is the process of CO_2 molecules occupying CH_4 molecules' cages further.

Zhou *et al.* [34] studied the replacement of CH_4 in the hydrate by use of liquid CO_2 under the same conditions as in Ota's experiment [28]. Figure 6 redrawn from Zhou *et al.* [34] shows the CH_4 ratios replaced from the hydrate of the two experiments, from the figure we can see that the results are equivalent approximately in less than 100 h. Li *et al.* [35] changed the experimental conditions in the replacement reaction by use of liquid CO_2 , the initial temperature and pressure were 282.2 K and 6 MPa respectively, and the experiment was conducted in porous sediment. His research showed

the recovery ratio of CH_4 can reach approximately 45% after 288 h, while in Ota's experiment, the recovery ratio is about 37% after 307 h and the recovery ratio is 18.6% after 96 h in Zhou's experiment.

Figure 6. CH₄ ratios replaced from the hydrate of the two different experiments.

Ota *et al.* [28] observed the guest molecules' transformation in the different cages and hydrate during the replacement process with Raman spectroscopy. Figure 7 redrawn from Ota *et al.* [28] shows the CH_4 remaining in each cage and hydrate with time.

Figure 7. Time evolution of CH₄ in the M-cages, S-cages and hydrate.

It can be seen that the CH_4 remaining in both the M-cages and S-cages decreased with time, however, the decay in the S-cages is much slower than that in the M-cages, and the ratio of CH_4 in the M-cages is practically consistent with that of CH_4 in the hydrate, which proves the replacement reaction mainly proceeds in the M-cages.

Researchers have applied experimental methods to prove the feasibility of replacing CH_4 from the hydrate with liquid CO_2 . Compared with the replacement experiments with gaseous CO_2 , the replacement rate, efficiency and reaction time in the experiments with liquid CO_2 are all improved, this shows that liquid CO_2 is more suitable for the replacement than gaseous CO_2 .

3.3. Replacement of CH₄ Hydrate by Use of CO₂ Emulsion

Researchers have paid attention to finding out the reason why the replacement rate becomes slow after the early stages of reaction. According to an experimental study, Yoon *et al.* [36] pointed that in the early stages, the contact area between CO_2 molecules and CH_4 hydrate is large, so the reaction rate is fast. As the reaction progresses, the crust layer of CH_4 hydrate is covered with CO_2 hydrate, the CO_2 hydrate layer provides a shielding effect, hinders the CH_4 hydrate decomposition, and leads to the rate's decrease and the reaction finally ceases.

In order to improve the replacement reaction rate, McGrail *et al.* [37] put forward the method of enhanced gas hydrate recovery (EGHR). The key of the method is to prepare an emulsion in which water is the continuous phase and CO_2 is the dispersed phase, and the emulsion is substituted for gaseous and liquid CO_2 to replace CH_4 gas from the hydrate. In McGrail's opinion, this method combines the advantages of controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media, makes full use of the physical and thermodynamic properties of mixtures in the H_2O-CO_2 system, thus it can increase the contact area between CO_2 molecules and CH_4 hydrate and enhance the replacement reaction. White *et al.* [38] used numerical simulations to analyze the replacement process of CH_4 from the hydrate stratum by use gaseous CO_2 , liquid CO_2 and CO_2 emulsion, and his simulation results show the replacement rate with CO_2 emulsion is the highest among the three methods.

Replacement by CO_2 emulsion is regarded as the best one among the three replacement methods by use of CO_2 , but the technique for preparing CO_2 emulsions is still immature. DhanuKa *et al.* [39] used a new kind of emulsifier, TMN-6 (octa(ethylene glycol)-2,6,8-trimethyl-4-nonyl ether), for CO_2 emulsion preparation. According to DhanuKa's experiment, at a temperature below 318 K, the stability of the emulsion increases with pressure and the mass ratio of CO_2 in the emulsion, in some cases the stable time of the emulsion with 90% CO_2 in the emulsion can exceed 24 h.

A schematic illustration of the experimental apparatus for the CO_2 emulsion formation redrawn form Zhou *et al.* [34] is shown in Figure 8. The apparatus mainly includes a CO_2 liquefier used for liquefying CO_2 , a high-pressure cell for emulsion formation, a cooling system for controlling temperature and a high-speed magnetic agitator for promoting the CO_2 emulsion formation. The emulsion was prepared as follows: (1) known amounts of water and TMN-6 are placed into the high-pressure cell; (2) CO_2 gas is introduced into the cell to pressurize the system, after the pressure in the cell achieves the required value, liquid CO_2 is injected into the cell, and the temperature is controlled to the required value by running the cooling system; (3) the magnetic agitator is started to promote the CO_2 emulsion formation. **Figure 8.** Experimental apparatus for CO₂ emulsion formation. 1: CO₂ cylinder; 2: plunger pump; 3: CO₂ liquefier; 4: liquid distributing cell; 5: high-pressure cell; 6: pressure gauge; 7: PC; 8: data collector.

Zhou *et al.* [34] used the prepared CO₂ emulsion to replace CH₄ in the hydrate in porous media. The procedures and apparatus of the experiment are similar to the experiment by use of liquid CO₂, the only difference is that CO₂ emulsion is substituted for liquid CO₂. Zhou did three groups of replacement experiments using CO₂ emulsion, the experimental initial pressure and temperature were the same, 90:10, 70:30, and 50:50 (W_{CO2} : W_{H2O}) CO₂-in-water (C/W) emulsions were used to replace CH₄ from its hydrate. The CH₄ ratios replaced from the hydrate of the three groups of experiments by use of CO₂ emulsion and one group of experiment by use of liquid CO₂ at set intervals are calculated and shown in Figure 9 redrawn from Zhou *et al.* [34].

Figure 9. CH₄ ratios replaced from the hydrate with different forms of CO₂.

Figure 10 redrawn from Zhou *et al.* [34] shows the replacement rates of CH_4 versus time in different experiments. From the figures we can see that the replacement ratios of CH_4 with the above

emulsions are higher than that with liquid CO_2 , the former are about the latter 1.5 times, and the replacement efficiency increases with the mass ratio of liquid CO_2 in the emulsion increasing. In addition, the replacement rate with emulsions reaches 5–7 times of the rate with liquid CO_2 . Thus, it can be concluded that CO_2 emulsion is more efficient than liquid CO_2 in replacing CH_4 from the hydrate.

Figure 10. Replacement rates of CH₄ with different forms of CO₂.

In addition, in order to prove the superiority of CO_2 emulsion in replacing CH_4 from the hydrate, Zhou *et al.* [40] compared the replacement ratio of CH_4 by use of CO_2 emulsion and gaseous CO_2 . Zhou did three groups of contrast experiments under different conditions. The different molar quantities of CH_4 gas replaced by gaseous CO_2 and CO_2 emulsion is shown in Figure 11 which is drawn based on the data from Zhou *et al.* [40].

Figure 11. Amount of the replaced CH_4 gas by use of gaseous CO_2 and CO_2 emulsion against time.

The graph (a) shows the molar quantity of free CH_4 gas in the replacement process with gaseous CO_2 and the graph (b) shows that in the replacement process with CO_2 emulsion. From the figure, we can reach two conclusions: (1) CO_2 emulsion is more effective than gaseous CO_2 in replacing CH_4 (2) the replacement rate with gaseous CO_2 becomes slow after reaction for 10 h, and the reaction stops in about 50 h, the rate with CO_2 emulsion is higher, and the reaction time can last over 100 h. Zhou pointed out that the result may due to the higher reaction temperature and the better conductivity and diffusibility of the CO_2 emulsion. The heat given by emulsion promotes CH_4 hydrate decomposition and increases the replacement rate, the better diffusibility of the CO_2 emulsion leads to larger reaction area between CO_2 molecules and CH_4 hydrate, thus the reaction time extends.

Zhang *et al.* [41] pointed that the kinetics of CH_4 replacement by CO_2 emulsion, the varieties and contents of emulsifier, the ratio of water and liquid CO_2 , the influence on replacement rate of dispersed phase in the emulsion have to be further researched. In the actual exploitation, the existence of porous media, the statistical circumstances of CH_4 hydrate presence in the stratum and the pumping of CO_2 emulsion need to be considered.

Compared with gaseous CO_2 and liquid CO_2 , CO_2 emulsion is proved to be more efficient in replacing CH_4 from the hydrate by experimental methods, but the preparation technique of CO_2 emulsion is still immature, and the experimental research on the replacement with CO_2 emulsion is scarce, so the influencing factors of reaction are not quite clear. Thus, the technique of CO_2 emulsion preparation and the optimum conditions for replacement with CO_2 emulsion should be studied further in the future work.

4. Advances in Simulation Research on Replacement

The Phase Field Theory (PFT) has been proved to be one of the most effective methods to model solidification in binary, ternary and multi-component melts over the past decade. PFT is applied to describe complex solidification morphologies, including thermal and solutal dendrites and eutectic/peritectic fronts [42]. The technique of Magnetic Resonance Imaging (MRI) is supposed to be a useful tool to visualize the process of hydrate formation and decomposition [43]. Baldwin *et al.* [44]

and Ersland *et al.* [45] used MRI to observe CH_4 hydrate formation and spontaneous conversion of CH_4 to CO_2 hydrate in porous media, and confirmed the feasibility of visualizing the replacement process by use of MRI. In order to investigate the micro-mechanism of replacement, researchers combine the PFT and the observation approach of MRI, and build corresponding models to simulate the replacement process.

Kvamme *et al.* [42,43] applied MRI to observe the replacement process by use of liquid CO_2 and developed a corresponding model based on PFT. The model was used for describing the nucleation of hydrate in aqueous solution and the transformation of CH_4 hydrate to CO_2 hydrate. According to their reported results, the PFT-based model is more accurate than the classical nucleation theory in describing the nucleation process of hydrate. The theory simulations of Kvamme's model indicate that the reformation kinetic rate is directly proportional to the kinetic rate characteristic for CO_2 transport through an aqueous solution. The conclusion agrees with Yoon's suggestion [36], but in Kvamme's model, the effects of many other factors are ignored, and the model doesn't give a good explanation of the replacement mechanism, so multiscale simulations are required for describing the replacement mechanism further.

Tegze *et al.* [46] built a multiscale model based on PFT to calculate the nucleation and growth rates of CO₂ hydrate in aqueous solutions in which the parameters of the model were deduced from experiment and molecular dynamics simulation. In the paper, in order to determine the thickness of the CO₂-hydrate–aqueous-solution interface, Tegze *et al.* performed molecular dynamics simulations taking realistic interaction potentials. The interface thickness from the MD simulations and the experimental interfacial free energy were used to fix the model parameters of multiscale model based on the PFT. Tegze *et al.* applied phase field calculations to determine the rate of the homogeneous nucleation and the velocity of the growth of CO₂ hydrate in the aqueous solutions. The simulation result shows a homogeneous nucleation can be ruled out as a possible mechanism for initiating a hydrate formation, and the most probable obstruction factor of hydrate growth seems to be kinetic barriers caused by complex molecular motions.

In order to investigate the replacement microscopic mechanism further, Tegze *et al.* [47] built a multiscale model combining the phase field approach and the purely diffusive model, the model was used to describe the CH_4 replacement process with liquid CO_2 under conditions characteristic of underwater hydrate reservoirs. Data from experiments and atomistic simulations was used to fix the modes' parameters, while the diffusion coefficient of CO_2 in the hydrate phase was a set value, which was adjustable. The simulation result shows the replacement rates predicted by both the PFT and purely diffusive models are consistent with experimental results from MRI measurements. The agreement between the predicted and experimental rates supports the assumption that the hydrate conversion process is controlled by solid state diffusion. The PFT simulations indicate that hydrate simulation is an convenient tool to describe the replacement process microscopically. Besides, Tegze *et al.* pointed out that in further work, dedicated atomistic simulations should be added to the multiscale model to identify the micro-mechanism for the solid state transformation and to extend the model is proved to be conversion of natural gas hydrates.

Multiscale simulation combining PFT and molecular dynamics provides a theoretical research method for analyzing the replacement microscopic mechanism, but current research on simulation of replacement focuses on the replacement with liquid CO_2 , the combination of simulations and advanced micro detection techniques are few, and the comparison between simulation results and experimental data is lacking, so in future work, researchers should pay attention to combining simulations and advanced detection techniques, develop simulations based on PFT and molecular dynamics, study the interfacial effect in the porous media and the effect of CO_2 emulsion during the replacement process further, and build models which are suitable for explaining the replacement with CO_2 emulsions.

5. Research on Factors Influencing the Replacement Reaction

Although the replacement method is regarded as a promising NGH exploitation method, the low replacement rate and efficiency are important obstacles to its application in commercial production. In order to improve the replacement rate and efficiency, researchers have utilized experimental and simulative methods to search for the optimal conditions for replacing CH₄ from the hydrate with CO₂.

The effects of the initial temperature and pressure during the replacement by use of gaseous CO_2 have been studied with experimental methods [9,16–19,48,49]. According to the experimental data reported by the literature, higher initial temperature and pressure are both beneficial to improve the replacement rate and efficiency. Graph (a) in Figure 4 shows the effect of the initial temperature on the replacement efficiency with CO_2 gas, and Zhou's [48] experimental data show the ratio of released CH_4 gas from the hydrate increases from 20.0% to 44.9% with the initial pressure of CO_2 gas ranging from 3.97MPa to 4.84 MPa. Wang *et al.* [16] and Qi *et al.* [49] found the effect of temperature is more obvious than that of pressure. In addition, Li *et al.* [18] studied the effect of sodium dodecyl sulfate (SDS) on the replacement reaction, and the results show that SDS is beneficial to improving the replacement rate. Adding SDS may become a method for enhancing the replacement reaction, but the feasibility has to be studied further.

Ota *et al.* [50] investigated the effects of pressure and fugacity on the CH₄–CO₂ replacement in CH₄ hydrate using quantitative analysis with *in-situ* laser Raman spectroscopy. It was found that the CH₄–CO₂ replacement at the boundary of liquid and hydrate phase (273.2 K and above 3.60 MPa) proceeds faster than that at the boundary of gaseous and hydrate phase (273.2 K and 3.26 MPa). The result shows the liquid CO₂ is more effective in replacing CH₄ from the hydrate than gaseous CO₂. Zhou *et al.* reached the same conclusion with experimental method [40]. Ota *et al.* also found that in the replacement process by use of liquid CO₂, pressure dependence was hardly observed under the conditions studied (3.60–6.00 MPa), but according to the experimental data reported by Xiong *et al.* [35], the recovery ratio of CH₄ can reach approximately 45% after 288 h, which is higher than the results from obtained by Ota *et al.* [28], as in Ota's experiment, the recovery ratio is about 37% after 307 h. The initial conditions in Xiong's experiment are 282.2 K and 6.00 MPa, so through comparison of the two experiments, it can be concluded the initial temperature has an important influence on the replacement efficiency by use of liquid CO₂, and a higher initial temperature favors of improved replacement efficiency.

White *et al.* [38] applied a simulation method to simulate the replacement process with gaseous CO_2 , liquid CO_2 and CO_2 emulsion, respectively, and proved the superiority of CO_2 emulsion.

Zhou *et al.* [34,40] used experimental methods to compare the replacement rate and efficiency using different forms of CO₂, and the experimental results are shown in Figures 9–11. From the figures, it can be concluded that the replacement rate and efficiency with CO₂ emulsion are both higher than that with gaseous CO₂ and liquid CO₂. Furthermore, Zhou *et al.* proved that the higher quality fraction of CO₂ in water results in the higher replacement efficiency, and Dhanuka *et al.* [39] pointed the varieties and contents of emulsifier have an important influence on the stability of CO₂ emulsions and suggested that a higher pressure and quality fraction of CO₂ in water can improve the stability of CO₂ emulsions. To sum up, CO₂ emulsion with higher quality fraction of CO₂ and opportune emulsifier should be selected for the replacement reaction, and the initial pressure should be appropriately high. Literature about replacing Ch₄ from the hydrate with CO₂ are few at present, and the micro-mechanism of the replacement process with CO₂ emulsion is still an issue, so the factors influencing preparation of CO₂ emulsions, the influences of porous media, statistics circumstance of CH₄ hydrate in the stratum should be also taken into account.

6. Conclusions

This paper introduces the research advances on replacement of CH_4 from NGHs by use of CO_2 at home and abroad, proves the feasibility of replacement from the points of view of kinetics and thermodynamics, summarizes the progress of experiments and replacement simulations, and analyzes the factors influencing the replacement with different forms of CO_2 . The following conclusions are drawn according to this paper:

(1) The feasibility of replacing CH_4 from the hydrate by use of CO_2 has been proven from the points of view of kinetics and thermodynamics, and experiments on replacement confirm the conclusions. Besides, by means of experimental observation, the replacement reaction mainly occurs in the hydrate phase and its essence is the process of CO_2 molecules occupying CH_4 molecules' cages, so the replacement method is beneficial to stabilize the NGH stratum during natural gas recovery.

(2) Replacement of CH_4 from the hydrate by combining the techniques of CO_2 liquefaction and CO_2 emulsification are new methods considered to be able to enhance the replacement reaction. According to the experiments on replacement with different forms of CO_2 , it is concluded that the replacement reaction with CO_2 emulsion has faster reaction rates, higher replacement efficiencies and longer reaction times compared to that with gaseous and liquid CO_2 , so the replacement method with CO_2 emulsion is considered as a new approach for commercial production of CH_4 from the hydrates.

(3) The multiscale simulation combined the PFT and molecular dynamics provides a theoretical research method for analyzing the replacement microscopic mechanism. The simulation results prove the superiority of CO_2 emulsion in replacement and indicate the diffusivity of CO_2 in the hydrate phase is the key to the replacement efficiency, but the research on simulation of replacement is still in its infancy, and the descriptions of the micro-mechanism of replacement are still immature, so the simulation of replacement should be studied further, and multiscale models for replacement, especially for replacement with CO_2 emulsion, should be built in the future work.

(4) The factors influencing the replacement reaction with different forms of CO_2 are discussed. The factors mainly include the phases of CO_2 , the initial pressure and temperature, and the effect of additives. The ultimate purpose of the analysis of different factors is to find the optimal conditions for

enhancing the diffusivity of CO_2 in the hydrate reservoir and improve the replacement efficiency and rate. Besides, in actual exploitation, the sizes of the porous media, the distribution of NGH in the actual stratum, and the manners of CO_2 injection to the NGH reservoir should be also taken into account.

Acknowledgment

This study has been supported by State Key Development Program for Basic Research of China (Grant No. 2009CB219507), Major National S&T Program of China (Grant No. 2011ZX05026-004-07) and Natural Science Foundation of China (Grant No. 51006017 and No. 50736001).

References

- 1. Fan, S.S. *Storage and Transportation Technologies of Natural Gas Hydrate*, 1st ed.; Chemical Industry Press: Beijing, China, 2005; pp. 1–2.
- 2. Chen, G.J.; Sun, C.Y.; Ma, Q.L. *Science and Technology of Gas Hydrate*, 1st ed.; Chemical Industry Press: Beijing, China, 2007; pp.1–4.
- 3. Luo, S.S.; Liu, H.J.; Sun, Y. Advancement on natural gas production from hydrate in deep-sea sediments with CO₂. *China Resour. Compr. Util.* **2008**, *26*, 19–23.
- 4. Milkov, A.V.; Sassen, R. Economic geology of offshore gas hydrate accumulations and provinces. *Mar. Pet. Geol.* **2002**, *19*, 1–11.
- 5. Tsimpanogiannis, I.N.; Lichtner, P.C. Parametric study of methane hydrate dissociation in oceanic sediments driven by thermal stimulation. *J. Pet. Sci. Eng.* **2007**, *56*, 165–175.
- 6. Ji, C.; Ahmadi, G.; Smith, D.H. Natural gas production from hydrate decomposition by depressurization. *Chem. Eng. Sci.* 2001, *56*, 5801–5814.
- Gayet, P.; Dicharry, C.; Marion, G.; Graciaa, A.; Lachaise, J.; Nesterov, A. Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter. *Chem. Eng. Sci.* 2005, 60, 5751–5758.
- 8. Zhou, X.T.; Fan, S.S.; Liang, D.Q. Advancement in research on replacement of CH₄ from hydrate with CO₂. *Chem. Ind. Eng. Process* **2006**, *25*, 524–527.
- 9. Maslin, M.; Mikkelsen, N.; Vilela, C.; Haq, B. Sea-level and gas hydrate-controlled catastrophic sediment failures of the Amazon Fan. *Geology* **1998**, *26*, 1107–1110.
- 10. Zhao, X.M. A new advance of gas hydrate research. Mar. Geol. Quat. Geol. 1999, 19, 39-46.
- 11. Xu, W.S.; Yu, X.H.; Liu, N.N.; Liu, W.L. The development perspective and environmental problems of natural gas hydrate. *Nat. Gas Geosci.* **2005**, *16*, 680–683.
- 12. Cui, Z.D.; Liu, D.A.; Zeng, R.S.; Tian, T. Geological Sequestration of CO₂ and China's Sustainable Development. *China Popul. Resour. Environ.* **2010**, *20*, 9–13.
- 13. Kuang, G.S. Global warming and carbon dioxide mitigate. Modern Chem. Ind. 2007, 27, 1-12.
- 14. Ebinuma, T. Method for dumping and disposing of carbon dioxide gas and apparatus therefore. U.S. Patent *5,261,490*, 16 November 1993.
- Ohgaki, K.; Takano, K.; Sangawa, H.; Matsubara, T.; Nakano, S. Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO₂-CH₄ mixed hydrate system. *J. Chem. Eng. Jpn.* 1996, *29*, 478–483.

- Wang, J.B.; Guo, X.Q.; Chen, G.J.; Li, Z.Z.; Yang, L.Y. Experimental research on methane recovery from natural gas hydrate by carbon dioxide replacement. *J. Chem. Eng. Chin. Univ.* 2007, 21, 715–719.
- 17. Ota, M.; Abe, Y.; Watanabe, M.; Smith, R.L.; Inomata, H. Methane recovery from methane hydrate using pressurized CO₂. *Fluid Phase Equilib.* **2005**, *228*, 553–559.
- Li, Z.Z.; Guo, X.Q.; Wang, J.B.; Yang, L.Y. Experiment studies on CH₄ recovery from hydrate using CO₂ in different systems. *Natu. Gas Ind.* 2008, 28, 129–132.
- 19. Li, Z.Z.; Guo, X.Q.; Chen, G.J.; Wang, J.B.; Yang, L.Y.; Wang, T. Experimental and kinetic studies on methane replacement from methane hydrate formed in SDS system by using pressurized CO₂. *J. Chem. Ind. Eng. (China)* **2007**, *58*, 1197–1203.
- Sloan, E.D.; Koh, C.A. Estimation Techniques for Phase Equilibria of Natural Gas Hydrates. In *Clathrate Hydrates of Natural Gases*, 3rd ed.; Heinemann, H., Speight, J.C., Eds.; Taylor & Francis Group, LLC: New York, NY, USA, 2008; Chapter 6, pp. 320–523.
- Uchida, T.; Ikeda, I.Y.; TaKeya, S.; Kamata, Y.; Ohmura, R.; Nagao, J.; Zatsepina, O.Y.; Buffett, B.A. Kinetics and stability of CH₄-CO₂ mixed gas hydrates during formation and long-term storage. *ChemPhysChem* 2005, *6*, 646–654.
- Anderson, R.; Llamedo, M.; Tohidi, B.; Burgass, R.W. Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica. *J. Phys. Chem. B* 2003, *107*, 3507–3514.
- 23. Geng, C.Y.; Wen, H.; Zhou, H. Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO₂. *J. Phys. Chem. A* **2009**, *113*, 5463–5469.
- Yezdimer, E.M.; Cummings, P.T.; Chialvo, A.A. Determination of the gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation. J. Phys. Chem. A 2002, 106, 7982–7987.
- 25. Uchida, T.; Takeya, S.; Ebinuma, T. Replacing Methane with CO₂ in Clathrate Hydrate: Observation Using Raman Spectroscopy. In *Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies*, Cairns, Australia, 13–16 September 2000.
- 26. Yang, G; Qi, Y.X.; Zhang, H.; Tang, C.W. Advancement in experimental research on replacement of CH₄ from hydrate with CO₂. *Cryo. Supercond.* **2010**, *38*, 70–75.
- Fan, Y.; Liu, D.P.; Xie, Y.M.; Zhong, D.L.; Xiao, Y. Feasibility Analysis on Replacement of CH₄ from Hydrate Sediment by CO₂. *Nat. Gas Geosci.* 2007, *18*, 317–320.
- Ota, M.; Morohashi, K.; Abe, Y.; Watanabe, M.; Smith, R.L.; Inomata, H. Replacement of CH₄ in the Hydrate by Use of Liquid CO₂. *Energy Convers. Manag.* 2005, *46*, 1680–1691.
- 29. Hirohama, S.; Shimoyama, Y.; Wakabayashi, A.; Tatsuta, S.; Nishida, N. Conversion of CH₄-hydrate to CO₂-hydrate in liquid CO₂. *J. Chem. Eng. Jpn.* **1996**, *29*, 1014–1020.
- 30. van der Waals, J.H.; Platteeuw, J.C. Clathrate solutions. Adv. Chem. Phys. 1959, 2, 1-57.
- 31. Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. *Chem. Eng. Sci.* **1972**, *27*, 1197–1203.
- Nagayev, V.B.; Gritsenko, A.I.; Murin, V.I. CO₂ Hydrates and CO₂ Sequestration. In *Proceedings* of the All Union Conference on Calorimetry and Chemical Thermodynamics, Ivonovo, Russia, 25–27 September 1979.

- 33. Rueff, R.M.; Sloan, E.D.; Yesavage, V.F. Heat-capacity and heat of dissociation of methane hydrates. *AIChE J.* **1988**, *34*, 1468–1476.
- 34. Zhou, X.T.; Fan, S.S.; Liang, D.Q.; Du, J.W. Replacement of methane from quartz sand-bearing hydrate with carbon dioxide-in-water emulsion. *Energy Fuels* **2008**, *22*, 1759–1764.
- 35. Xiong, L.J.; Li, X.S.; Zeng, Z.Y.; Li, G.; Chen, Z.Y.; Zhang, Y.; Li, Q.P. Experimental Investigation into Replacement of CH₄ in Hydrate in Porous Sediment with Liquid CO₂ injection. In *Proceedings of the 7th International Conference on Gas Hydrates (ICGH)*, Edinburgh, UK, 17–21 July 2011.
- Yoon, J.H.; Kawamura, T.; Yamamoto, Y.; Komai. T. Transformation of methane hydrate to carbon dioxide hydrate: *in situ* Raman spectroscopic observations. J. Phys. Chem. A 2004, 108, 5057–5059.
- McGrail, B.P.; Zhu, T.; Hunter, R.B.; White, M.D.; Patil, S.L.; Kulkarni A.S. A New Method for Enhanced Production of Gas Hydrate with CO₂. In *Proceedings of the AAPG Hedberg Conference* on Gas Hydrates: Energy Resource Potential and Associated Geologic Hazards, Vancouver, Canada, 12–16 September 2004.
- 38. White, M.; McGrail, P. Designing a Pilot-Scale Experiment for the production of natural gas hydrates and sequestration of CO₂ in class 1 hydrate accumulations. *Energy Procedia* **2009**, *1*, 3099–3106.
- DhanuKa, V.V.; DicKson, J.L.; Ryoo, W.; Johnston, K.P. High internal phase CO₂-in-water emulsions stabilized with a branched nonionic hydrocarbon surfactant. *J. Colloid Interface Sci.* 2006, 298, 406–418.
- 40. Zhou, X.T.; Fan, S.S.; Liang, D.Q.; Du, J.W. Determination of appropriate condition on replacing methane from hydrate with carbon dioxide. *Energy Convers. Manag.* **2008**, *49*, 2124–2129.
- 41. Zhang, W.; Wang, Z.; Li, W.Q.; Li, W.Y.; He, D.W. Research progress in the enhanced replacing methane out of gas hydrate by carbon dioxide emulsion. *Nat. Gas Chem. Eng.* **2009**, *34*, 59–63.
- 42. Kvamme, B.; Graue, A.; Aspenes, E.; Kuznetsova, T.; Gránásy, L.; Tóth, G.; Pusztai T.; Tegzeb, G. Kinetics of solid hydrate formation by carbon dioxide Phase field theory of hydrate nucleation and magnetic resonance imaging. *Phys. Chem. Chem. Phys.* **2004**, *6*, 2327–2334.
- 43. Kvamme, B.; Graue, A.; Buanes, T.; Kuznetsova, T.; Ersland. G. Storage of CO₂ in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers. *Int. J. Greenh. Gas Control* **2007**, *1*, 236–246.
- Baldwin, B.A.; Stevens, J.; Howard, J.J.; Graue, A.; Kvamme, B.; Aspenes, E.; Ersland, G.; Husebø, J.; Zornes, D.R. Using magnetic resonance imaging to monitor CH₄ hydrate formation and spontaneous conversion of CH₄ to CO₂ hydrate in porous media. *Magn. Reson. Imaging* 2009, 27, 720–726.
- Ersland, G.; Husebø, J.; Graue, A.; Baldwin, B.A.; Howard, J.; Stevens. J. Measuring gas hydrate formation and exchange with CO₂ in Bentheim sandstone using MRI tomography. *Chem. Eng. J.* 2010, *158*, 25–31.
- Tegze, G.; Pusztai, T.; Tóth, G.; Gránásy, L.; Svandal, A.; Buanes, T.; Kuznetsova, T.; Kvamme, B. Multiscale approach to CO₂ hydrate formation in aqueous solution: Phase field theory and molecular dynamics. Nucleation and growth. J. Chem. Phys. 2006, 124, 234710:1–234710:12.

- 47. Tegze, G.; Gránásy, L.; Kvamme, B. Phase field modeling of CH₄ hydrate conversion into CO₂ hydrate in the presence of liquid CO₂. *Phys. Chem. Chem. Phys.* **2007**, *9*, 3014–3111.
- Zhou, W.; Fan, S.S.; Liang, D.Q.; Li, D.L.; Tang, C.P.; Tian, G.L. Influence of pressure to replacement of CH₄ in the hydrate by use of CO₂. J. Wuhan Univ. Technol. (Transp. Sci. Eng.) 2008, 32, 547–550.
- 49. Qi, Y.X.; Zhang, H.; Zhao, S.X.; Ji, L.M. Experimental Research of Thermal Effects on Replacement of Methane Hydrates with Carbon Dioxide. In *Proceedings of the 7th International Conference on Gas Hydrates (ICGH)*, Edinburgh, UK, 17–21 July 2011.
- Ota, M.; Saito, T.; Aida, T.; Watanabe, M.; Sato, Y.; Smith, R.L.; Inomata, H. Macro and microscopic CH₄-CO₂ replacement in CH₄ hydrate under pressurized CO₂. *AIChE J.* 2007, 53, 2715–2721.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).