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Abstract: In the increasingly globalized economy these days, the major crude oil markets
worldwide are seeing higher level of integration, which results in higher level of dependency
and transmission of risks among different markets. Thus the risk of the typical multi-asset
crude oil portfolio is influenced by dynamic correlation among different assets, which has
both normal and transient behaviors. This paper proposes a novel multivariate wavelet
denoising based approach for estimating Portfolio Value at Risk (PVaR). The multivariate
wavelet analysis is introduced to analyze the multi-scale behaviors of the correlation
among different markets and the portfolio volatility behavior in the higher dimensional
time scale domain. The heterogeneous data and noise behavior are addressed in the
proposed multi-scale denoising based PVaR estimation algorithm, which also incorporates
the mainstream time series to address other well known data features such as autocorrelation
and volatility clustering. Empirical studies suggest that the proposed algorithm outperforms
the benchmark Exponential Weighted Moving Average (EWMA) and DCC-GARCH model,
in terms of conventional performance evaluation criteria for the model reliability.

Keywords: Portfolio Value at Risk; multivariate wavelet analysis; Exponential Weighted
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1. Introduction

With the increasing level of global economic integration and the development of financial market, in
the crude oil markets we have seen a more volatile as well as more integrated environment [1,2]. On
the one hand, the market is influenced by increasingly complicated factors, aside from the fundamental
causes such as the basic supply and demand relationship. This is exemplified by the recent intensifying
financial crisis, which brought higher level of fluctuations as observed in the crude oil markets. The
traditional risk measurement tools such as standard deviations and equilibrium analysis can no longer
provide sufficient level of risk coverage when potential risk sources are increasingly differentiated and
transient data behaviors are more prevalent. On the other hand, markets across the world are increasingly
integrated with the development in both its technological infrastructure and deregulation wave. This
is also evidenced from the high level of correlations between both WTI and Brent markets crude oil
portfolio forms indispensable part of investment decision making process in the crude oil markets. When
the multi-asset portfolio is constructed to reduce the risk level through diversification during portfolio
allocation, the reliable and accurate risk measurement for the portfolio is essential for the portfolio
management and risk management and affects critically the portfolio performance.

Although the risk measurement research in the crude oil markets has drawn significant research
attempts over years, majority of innovative research methodologies are developed for the risk
measurement for single asset portfolio. Till now there is only limited attempts to explore various
theoretical and empirical issues for portfolio VaR estimation in the literature. One reason is that
compared to the numerous attempts to model univariate time series, researches directed toward the
understanding and modeling of multivariate time series are much more restricted due to the level
of technical difficulties involved. Another reason is that portfolio VaR needs to deal with further
complication of modeling second moments including correlation and covariance matrix among multiple
assets than the single asset VaR, which involves exponentially increasing level of computational
complexity. Typical models used in this field include the much restricted Exponential Weighted Moving
Average (EWMA) and the multivariate VARMA-GARCH model for portfolio risk measurement.

Meanwhile, the wavelet based approach is also gaining momentum in the economics and finance
literature [3–5]. Firstly, wavelet analysis has been used to identify time varying behaviours of
market behaviours, key economic variables and their correlation evolutions. A typical example
would be the studies on multi-scale price movements and lead lag relationships in various financial
markets [3,6–10]. Empirical studies in these markets reveal the multi-scale structure of prices and
evolution of their correlation. Secondly, wavelet analysis is used to smooth data at finer scales. As
the magnitude of noise is time varying and the signal to noise ratio (i.e., the threshold level set for
the distinction) may be subject to investors’ preferences, data smoothness would improve if smoothing
is conducted at a finer time scale domain, and thus improved model fitness and performance would
result. Empirical studies based on wavelet shrinkage techniques in both electricity and foreign exchange
markets have confirmed the potential performance improvement. For instance, Meng et al. [11],
Amjady and Keynia [12] and Aggarwal et al. [13] based their neural network forecasting model on
wavelet pre-processed data series and obtained positive performance improvement [11–13]. Thirdly,
wavelet analysis has been used to decompose data series for a finer level of modelling accuracy.
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Decomposed data series at lower scales are considered dominated by trends and are modelled using
econometric approaches. Decomposed data series at higher scales are considered mostly dominated by
price volatilities and are modelled using time series approaches. Results of experiments in several energy
markets have confirmed the performance improvement [14,15]. For instance, Xu et al. [16] attempted to
combine wavelet analysis with support vector machine and obtained positive performance improvement
in empirical studies on the Australian electricity market [16]. Conejo et al. [17] combined wavelet
analysis and ARMA model to analyze the Spanish electricity market and obtained positive results [17].

In the crude oil forecasting and risk measurement literature, we have only witnessed limited efforts.
Most of them are accumulating quite recently. These attempts mostly use the wavelet analysis to
pre-process the data before time series techniques and machine learning techniques are used to analyze
the data and make forecasts. For instance, Yousefi et al. [15] used wavelet analysis to decompose
crude oil price and extended them directly to make forecasts [15]. de Souza e Silva et al. [18] uses
wavelet analysis to remove high frequency noises, then uses HIdden Markov Model (HMM) to predict
future price movement [18]. Naccache [19] uses wavelet analysis analyze the relationship between
macroeconomic conditions proxied by Morgan Stanley Capital International (MSCI) and the crude
oil price at finer scales [19]. We have conducted some exploratory studies on multi-scale based risk
measure estimates. He et al. [20] used the Morphological Component Analysis with wavelets as bases
to investigate the heterogeneous market microstructure [20]. But the literature on the forecasting aspects
of crude oil price is limited to this extent so far.

Meanwhile, risk measurement in the crude oil markets remains another important research topic, but
has received much less attention compared to the progress made in the forecasting field. Most of current
approaches use the multi-resolution analysis capability of wavelet analysis to look into the past price or
correlation behaviours in the capital markets [21,22], e.g., it has been used to analyze the risk distribution
across differences the scales [23–30]. Some researches such as that by Karandikar et al. [31] has gone
a step further to estimate VaR with this information taken into account. VaR estimated following the
traditional approaches is adjusted by the proportion of risks that corresponds to the investment time
horizon [31]. These approaches are unique in that VaRs are tailored to investor’s investment profile [24].
However, backtesting these VaR estimates may involve additional complexities. Unless risks at all
levels are taken into account, using these adjusted VaRs to calculate VaR exceedances may result in
the underestimated exceedance levels. The reliability may also be statistically overestimated as a result.
Aside from the backtesting issue, the performance of these approaches is also constrained by the accuracy
of the traditional methodology used. Thus, when it comes to models’ reliabilities and accuracies, these
approaches are more useful as risk analysis tool than methodologies that bring further performance
improvement. Recently He et al. [32] used wavelet analysis to analyze the risk structure and construct
the VaR estimation algorithm based on it [32]. It is univariate in nature and not directly applicable to
the much more complicated multivariate environment. The risk measurement literature is limited to this
extent so far concerning the portfolio risk measurement in the multi-scale domain.

Therefore, this paper proposes a novel multivariate wavelet denoising approach for estimating Value
at Risk for portfolio in the crude oil markets. Following Heterogeneous Market Hypothesis (HMH), it is
assumed that the underlying DGPs vary in their scales, corresponding to different scales of investment.
Thus taking different investment scales (i.e., portfolio sizes) as the discriminatory factor, wavelet based
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denoising algorithm is used to gain insights into heterogeneous market structures categorized roughly on
scales of investment. In this paper, we introduce the multivariate wavelet analysis in higher dimensional
space to analyze the second moments evolution of crude oil portfolio data. The introduced multivariate
wavelet denoising methodology is then used to extract data of distinct characteristics, which are modeled
further incorporating the Multivariate GARCH (MGARCH) framework.

The theoretical motivation for the present research is that recognizing these complicated and
heterogeneous nature of the crude oil markets, there exists diverse patterns of behavior of different
participants, which is the target for the separation and extraction process. These participants need to
be categorized and separated from the original data based on their unique behavioral patterns, resulting
from different investment horizons and strategies. For example, the behavior of noise traders are
temporal and nonlinear, usually resulting from highly speculative behavioral patterns, while the behavior
of fundamental investors are characterized with features subject to the extensive studies over years,
including auto correlation, heteroscedasticity, mean reverting and long memory, etc.

The practical and technical motivation for the present research is that the challenge to improve
estimation reliability and accuracy has been difficult to improve beyond the traditional EWMA and
MGARCH models. Recent empirical researches suggest that this is due to its complicated and
nonlinear data nature, compared to the linear assumptions adopted before. Besides, crude oil markets
typically represent a more volatile and risky environment than the traditional financial markets and
demonstrate unique characteristics due to several reasons. Firstly, crude oil is traded less frequently than
equities. There are considerable transaction and opportunity costs involved, resulting in higher levels of
fluctuations and relatively lower levels of efficiency. Secondly, price movements in crude oil markets
are frequently influenced by numerous factors, such as weather conditions, political stability, economic
prospects, consumer expectations and business indicators, etc. The complex dynamics involved exhibit
multi-scale non-linear characteristics, which are beyond explanatory capabilities of current models and
methodologies for forecasting and risk measurement purposes. Despite its significance, forecasting of
crude price and the measurement of risk in crude oil markets have not received sufficient attentions,
as compared to equities markets. Research in this paper attempts to address the unique characteristics
of crude oil markets when constructing useful models for forecasting and risk measurement purposes
and to fill the gap in the relevant literature. Meanwhile, wavelet denoising in higher dimension
involves directional projection of time series, i.e., multivariate time series can be projected into different
directions, normally vertical, horizontal and diagonal. Projections into different directions are associated
with different correlations among time series at different time lags.

The key findings and contributions include the following aspects. There have been limited attempts
in the literature to model the conditional correlations among portfolio using multivariate GARCH
model [33,34]. The most related one is Vacha and Barunik [35]. However, it ignores the dependence
structure among portfolio assets, which can only be investigated in the higher dimension. Besides, it
does not deal with the utilization of these time varying correlation information into the modeling of risk
evolutions, which this paper addresses using the DCC model in the multi-scale framework. Meanwhile,
most research focuses on the single variate VaR estimation, among which the most related one is
Cifter [36] that is mainly based on univariate wavelet analysis. This paper instead introduces multivariate
wavelet analysis in the estimation of portfolio Value at Risk. Few studies in the literature have
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investigated the the portfolio risk measurement with time varying correlation. Work in this paper
represents one of few attempts to investigate the estimation of portfolio VaR using multivariate wavelet
based techniques.

The rest of the paper proceeds as follows: Section 2 provides a brief account and also literature review
on the relevant theories used to construct the proposed algorithm. This includes the portfolio value at
risk, multivariate GARCH models and multivariate wavelet analysis theories. Section 3 proposes the
multivariate wavelet denoising approach for estimating portfolio value at risk, with detailed economic
rationale explained and numerical procedures. The performance of the proposed algorithm against
benchmark alternatives are evaluated in Section 4. The empirical studies are conducted in the benchmark
US WTI and Europe Brent markets and experiment results are reported to justify the superiority of the
proposed algorithm. Section 5 provides some concluding remarks.

2. Relevant Theories

2.1. Portfolio Value at Risk Estimates

The Value at Risk (VaR) is the percentile based risk sensitive criteria [37]. It is
the single statistics summarizing the maximal downside risk given the confidence level and
holding horizon. In the more general case of a portfolio of n assets with returns rt,
(t = 1, 2, ..., n) and portfolio weight ωt, (t = 1, 2, ..., n), the VaR is defined for a portfolio worth X
at the confidence level cl over the holding period h as in (1).

P (ω
′

trt < V aRcl) = α (1)

where α = 1 − cl and P (.) is the probability density function, V aRcl is the VaR threshold at the
confidence level cl.

Similar to the univariate case, the main approaches to estimate portfolio VaR can also be roughly
categorized into three categories, i.e., parametric, non-parametric and semi-parametric, but with much
less attention than in the univariate case [38,39].

The parametric approach usually refers to a series of models under the well-known
variance-covariance framework. Assuming the multivariate normal distribution, the VaR is defined
as in (2) [39].

V aR(h, α) = [−hωµ+
√
h
√
ω

∑
ωT zα]X (2)

where za refers to the standard normal distribution, h is the holding period,
∑

is the variance-covariance
matrix, ω is the weight matrix.

The µ and
∑

can be estimated in the conditional framework such as the Riskmetrics’s multivariate
Exponential Weighted Moving Average (EWMA) and Multivariate Generalized Autoregressive
Conditional Heteroscedasticity (MGARCH). As is well known, EWMA can be viewed as a special case
of MGARCH model and has served as the benchmark model in the literature in the past. However, unlike
in the univariate case, multivariate GARCH has not been widely accepted yet as the benchmark model.

The multivariate time series models such as MGARCH are extension of univariate time series models
in the higher dimensional space. However, it is much more complex. It suffers from a problem called
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“curve of dimensions”, which refers to the fact that number of parameters to estimate and the associated
computational complexity increase exponentially with the increasing number of variables.

There are mainly three approaches to model the multivariate conditional mean and conditional
standard deviation in the literature. To model multivariate conditional mean, Vector Autoregressive
(VAR) model and Vector Autoregressive Moving Average (VARMA) are often utilized. In practice the
VARMA is too complicated to estimate. The VAR model is usually resorted to in practice to model the
multivariate conditional means. There are many multivariate arch type models developed over years to
model the multivariate conditional variance-covariance matrix [40]. Typical examples include BEKK,
Dynamic Conditional Correlation (DCC) and Constant Conditional Correlation (CCC) [41–44]. Among
them, DCC is the most popular because it relaxed the fixed correlation assumptions in the other two
approaches. Both Engle [42] and Tse and Tsui [45] propose slightly different DCC MV-GARCH
specifications respectively [42,45]. Between them, The DCC MV-GARCH proposed by Engle [42]
is used as it allows more flexible GARCH like specification of dynamic correlations than the simpler
weighted sum specification of correlations proposed by Tse and Tsui [45].

The DCC MV-GARCH model is specified as in (3) [42].

rt = α0 + α1rt + µt + εt+1 (3)

where rt refers to the return at time t, rt ∼ N(0, Dt+1RDt+1), µt is the N-dimensional vector
of conditional mean, D2

t can be defined as any univariate GARCH model as D2
t = diag{ωi} +

diag{ki}rt−1r
′
t−1 + diag{λi}D2

t−1, εt = D−1
t rt.

The dynamic conditional correlation matrix Rt of εt at time t is defined as in (4).

Rt = diag(Qt)
−1Qtdiag(Qt)

−1 (4)

where the Qt is N ×N symmetric positive definite unconditional correlation matrix of εt as in (5).

Qt = S ◦ (µ− A−B) + A ◦ εt−1ε
′

t−1 +B ◦Qt−1 (5)

Only until recently some limited attempts emerged to investigate the MGARCH based VaR estimates,
i.e., Rombouts and Verbeek [46], Ku and Wang [47], Huang et al. [48].

The non-parametric approach includes Historical Simulation (HS) and Monte Carlo (MC) simulation,
both directly extendable from univariate to multivariate case and serve as the benchmark in the
literature [39]. The Monte Carlo simulation relies on the repeated draws from the pre-specified
distributional assumptions to simulate the real-life scenarios and estimate the portfolio VaR accordingly.
However, MC is unconditional in nature and is biased toward normal distribution. It is also limited to the
pre-specified distributional assumptions and has difficulty in replicating the extreme event scenario [38].
Some recent attempts have been made to tackle these issues. For instance, Glasserman et al. [49] has
relaxed the distributional assumption behind Monte Carlo simulation to multivariate t-distribution to
improve the performance [49]. The historical simulation approach uses the past information over the
pre-specified window to infer directly the future portfolio VaR. This approach is sensitive to the choice
of the window’s timing and length and overestimate VaR because of the uniform treatment of risk level
when transient events are rare in nature. When transient events are excluded from the window, it would
lead to underestimated PVaR.



Energies 2012, 5 1024

The semi-parametric approach includes some newly emerging techniques such as copula theory, fuzzy
logic, genetic algorithm, etc. [48,50–52]. However, to the best of our knowledge, there has been no
attempts in analyzing the multi-scale portfolio risk behaviors and constructing the PVaR estimation
algorithm using multivariate wavelet analysis in the higher dimension.

2.2. Multivariate Wavelet Denoising Algorithm

In recent years, significant progress has been made in multivariate research in engineering fields,
which has resulted in significant performance improvement that provides inspiration to the current
research. Of more particular relevance to this research is multivariate denoising techniques in the
image processing field, which consist of a series of algorithms including spatial filtering and transform
domain filtering [53–55]. There are several detailed review and surveys in the literature including
Buades et al. [56], Mallat and Peyre [57].

In the literature, the traditional denoising algorithms are known to over-suppress high-frequency
details [58]. Thus there are several nonlinear alternatives proposed in the literature. For example,
Pang and Yang [59] proposes the projection gradient method to solve the transformed image denoising
problem using the duality strategy [59]. Meanwhile, multivariate wavelet analysis has received
considerable attentions in image denoising fields [53,55]. Multivariate wavelet based image denoising
has been explored extensively and positive performance has been reported in different disciplines.
For example, in medical image processing, Chen et al. [60] proposes a homogeneity similarity based
denoising algorithm, which can retain edges and contrast information while avoiding artifacts [60].
Gorgel et al. [61] propose wavelet denoising algorithms with adaptive thresholding functions for
enhancement of mammographic images in breast cancer detection [61]. Kim et al. [58] proposes the use
of filtered directional bases and frequency-adaptive shrinkage to reduce noise in edge regions, which is
claimed to retain sharp details [58]. Kumar and Agnihotri [62] have attempted discrete wavelet transform
and stationary wavelet transform with different threshold techniques in denoising the ECG and MRI
images and have found positive performance [62]. Rabbani and Gazor [63] derive estimators using
maximum a posteriori and minimum mean squared error methods in different sparse domains projected
with discrete wavelet transform and its variant contourlet and curvelet transforms. It was found that
the wavelet based method provides superior performance [63]. Saeedi et al. [64] used fuzzy logic to
incorporate the inter-relation between different channels during the wavelet denoising process and found
improved performance compared with the standard single channel wavelet denoising methods [64].
Tian et al. [65] proposed a nonparametric model to formulate the marginal distribution of wavelet
coefficients in an adaptive manner and integrated it into a Bayesian inference framework to drive
a maximum a posterior estimation based image denoising method with improved performance [65].
Zifan et al. [66] used the mutliwavelet denoising methods to denoise microarray images and found that
the results significantly outperformed wavelet and Wiener filter based methods [66].

Developed in the 1980s, wavelet based transform and its various extension functions have been proven
useful for many different disciplines such as signal analysis, numerical analysis, image compression and
other applied mathematics and engineering branches [67]. The unique feature of wavelet analysis is
its localization capability in both time and scale domain during the analysis. This is in contrast to the
traditional spectrum analysis tool that signifies the patterns at different frequency at the cost of ignoring
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details at time scales. As financial data usually exhibit nonstationary time varying characteristics, wavelet
analysis is appealing when it comes to financial data analysis.

To define wavelet analysis and multi-resolution analysis, in the one dimensional case, firstly a
refinable (scale) function φ : R → C is defined as the solution to the two scale recursion difference
equation in (6).

φ(x) =
√

2
∑
k∈Z

hkφ(2x− k) (6)

where hk,k∈Z ∈ L2(Z) are recursion coefficients. Then given some additional constraints, (6) gives rise
to the wavelet functions ϕ which forms the orthonormal basis for L2(R) as in (7).

ϕj,k(x) = 2−jϕ(2jx− k) (7)

The constraints may include orthogonality, compactness of support, vanishing moments, symmetry,
regularity, smoothness, time frequency window and decay, etc. [68]. The typical wavelets used include
Haar, Daubechies, Coiflets, discrete Meyers, biorthogonal and reverse biorthogonal, etc.

Utilizing the wavelets and their appealing time scale localization characteristics, the original data are
projected into the multi-scale domain using wavelet transform as in (8).

W (u, s) =

∫ ∞

−∞
x(t)

1√
s
ψ(
t− u
s

)dtx(t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
W (u, s)ψu,s(t)du

ds

s2
(8)

where ψ( t−u
s

) refers to the wavelet families translated by location parameter u, which corresponds to
time scale localization, and dilated by scale parameter s, which corresponds to the frequency scale
localization. In practice, wavelet analysis including wavelet transform and synthesis is performed at
discrete time interval due to the data availability issue and to avoid the exponential increasing level of
information redundancy.

Wavelet analysis in higher dimension are extensions to the wavelet analysis in one dimension, with
additional complications. There are mainly two approaches to extend and define wavelet analysis and
multi-resolution analysis in the higher dimensional case, i.e., tensor product multi-resolution analysis or
the nonseparable scheme [67]. Between them, tensor product based approach has both computational
and intuitive appeals. In the tensor product scheme, the 2-dimensional wavelet is constructed by taking
the tensor product functions generated by two one-dimensional bases as in (9).

Ψj1,k1;j2,k2(x1, x2) = ψj1,k1(x1)ψj2,k2(x2) (9)

where both the resulting basis Ψj1,k1;j2,k2(x1, x2) and the original bases ψj1,k1(x1) and ψj2,k2(x2) are
orthonormal wavelet bases for L2(R2).

For all f, g ∈ L2(R2), the decomposition and reconstruction in the two dimensional case is defined
as in (10) and (11) respectively.∫ ∞

0

da

an+1

∫ ∞

−∞
db(Twavf)(a, b)(Twavg)(a, b) = Cψ < f, g > (10)

f = C−1
ψ

∫ ∞

0

da

an+1

∫
Rn

db(Twavf)(a, b)ψa,b (11)
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where (Twavf)(a, b) =< f, ψa,b >, ψa,b(x) = a−n/2ψ(x−b
a

), a ∈ R+, a 6= 0, b ∈ Rn.
With wavelet analysis, Multi-Resolution Analysis (MRA) can be conducted to analyze the time and

frequency characteristics of the data. In the more general case in higher dimension, the MRA on L2(Rd)

is defined as a doubly infinite nested sequence of subspaces Vj of L2(Rd) as in (12) [69].

... ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ ... ⊂ L2(Rd) ∩j∈Z Vj = {0} and ∪j∈ZVj = L2(R2)

in which

Vj =
d⊗
i=1

Vj,(i) ⊂ L2(Rd) (12)

where
⊗

is the tensor product operator.
Then for each Vj−1 in Vj , the orthogonal complement space Wj is defined as in (13).

Vj−1 = Vj

⊕
Wj (13)

where the orthogonal complement space Wj consists of several pieces, i.e., one d-variate scaling function
as in (14) and 2d − 1 d-variate wavelet functions as in (15).

φ(x1, ..., xd) =
d∏
i=1

φ(i)(xi) (14)

ψ(l)(x1, ..., xd) =
d∏
i=1

ξ(i)(xi), with ξ = φ or ψ, but not all ξ = φ (15)

Here we take the two dimensional wavelet as a special case for illustration purpose. In the 2-dimensional
case, three subspaces are generated with three orthonormal wavelet bases, i.e., horizontal wavelet
Ψhorizontal(x, y), vertical wavelet Ψvertical(x, y) and diagonal wavelet Ψdiagonal(x, y) [67].

Over years, significant research interests have focused on using the wavelet denoising techniques in
the univariate case, but much less attentions on the denoising of multivariate time series data. The basic
procedure of multivariate wavelet denoising technique is as follows:

1. It firstly projects the original data series into different scales using wavelet transform as in (10).
The resulting coefficients would include approximation coefficients as well as horizontal, vertical
and diagonal directions.

2. For approximation and direction coefficients at each direction, the threshold is chosen specifically
at different scales for different directions and the wavelet coefficients are processed by either
suppression or shrinkage.

3. Using the denoised wavelet coefficients and the scale chosen, the processed wavelet coefficients
are reconstructed into the unified denoised data series using wavelet synthesis as in (11).

In the multivariate setting, given the multivariate time series X , the denoising algorithm assumes that
it consists of both deterministic dataD and undesirable stochastic noises ε in a linearly fashion. Applying
the multivariate wavelet analysis, this relationship is defined as in (16).

O ≡ υX = υD + υε (16)
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where υ is anN×N orthonormal matrix,O is theN dimensional vector of wavelet transform coefficients
Ol : l = 0, ..., N − 1.

The mainstream threshold selection rules include Universal and Steins Unbiased Risk Estimate
(SURE) [70]. Different threshold selection rules have different target and considerations when setting
the noise reduction target. For instance, the universal threshold selection rule aims at reducing the noises
at maximum level possible, so the threshold is selected as ηU = σ̂

√
2logN , where N is the number of

wavelet coefficients and σ̂ is the estimate of the volatility level. Statistically this gives the upper bound
to noises signals given significant sample size N and normally distributed noise series. However, this
method achieves the maximal level of smoothness at the cost of lower goodness-of-fit. The denoised
data risk losing some important data features.

The mainstream thresholding functions are hard and soft thresholding [70,71]. The hard thresholding
is the high pass filter, which suppresses the wavelet coefficients below the chosen threshold values and
leaves the remaining coefficients intact as in (17).

O
(ht)
l =

{
0 if |Ol| ≤ δ

Ol otherwise
(17)

where Ot refers to the wavelet coefficients, η is the set threshold value.
The soft thresholding focus on the signal smoothing. It suppresses the wavelet coefficients below the

set threshold value and subtracts the threshold value from the remaining wavelet coefficients. Compared
with the hard thresholding, the data processing following soft threshold selection rules are smoother but
lost the abrupt changes in the original data. It filters the signal as in (18):

O
(st)
l = sign(Ol)(|Ol| − δ)+ (18)

where

sign(Ol) =


+1 if Ol > 0

0 if Ol = 0

−1 if Ol < 0

and

(x)+ =

{
x if x ≥ 0

0 if x < 0

3. Multivariate Wavelet Denoising Model for Portfolio Value at Risk Estimates

In the mainstream literature the Efficient Market Hypothesis (EMH) underpins most econometric
models in the crude oil markets, which depicts the market structure and price behavior based on
the assumption of homogeneous agents with rational expectations and single time horizon. This
approximates the market well when there is relatively stronger control and much regulations in place.
However, with the deregulation waves, more empirical researches suggest that the market exhibits diverse
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individual characteristics not just in the frequency domain, but over multi-scale time horizons. Thus the
Heterogeneous Market Hypothesis (HMH), initially proposed in the exchange rate and equity market, is
proposed in this paper to complement the traditional EMH and recognize these new empirical stylized
facts [72–80].

HMH can be viewed as a more restricted form of FMH, focusing on heterogeneous features of market
microstructure, which comes natural when the market has fractal characteristics. It also complements the
traditional EMH [74–80]. It assumed that different actors in the heterogeneous market have different time
horizons and dealing frequencies. The market is heterogeneous with a fractal structure of time horizons
as it consists of short-term, medium-term and long-term components. Different actors are likely to
settle for different prices and decide to execute their transactions in different market situations. In other
words, they create volatility. The market is also heterogeneous in terms of geographic locations of the
participants. Based on these assumptions, the HMH postulates that the market consists of heterogeneous
agents with heterogeneous investment strategies and investment time horizons. Compared with the
homogeneous reaction to the news shocks in the EMH, HMH states that these agents or investors react to
news shocks differently based on their own characteristics. On one hand, their investment time horizon
and dealing frequency are diversely different. Their time scale behaviors could range from short and
temporal to long and stable characteristics. For instance, pensions funds and central banks tend to
have low dealing frequency focusing on long time horizon while the market traders tend to have high
dealing frequency with short time horizon. On the other hand, these agents or investors employ diversely
different investment strategies or measures based on their own characteristics and focus. Their frequency
behaviors could range from stationary to transient characteristics.

In the literature, these micro market structures were studied incorporating information at the
operational and transaction level. However, results from these studies are constrained by the restricted
access to the concerned data, some insider in nature. The data obtained are also significantly lagged in
time due to the regulations on protection of sensitive information. Thus it would be difficult to test the
theory and implement it for real time trading environment.

Meanwhile, a different alternative is to use the time series itself without dependence on unreliable
external information to extract and separate the underlying components from the original data directly.
Certainly it is a difficult problem as the underlying components are unknown latent variables, whose
structures are vulnerable to inappropriate separation processes. The multivariate case is made even more
complicated by the time varying correlations. The wavelet based approach is promising as it is supported
by positive results for decomposing and denoising of univariate time series. However, using wavelet to
denoise and separate data features in multivariate time series involves further complications that deserve
further investigations.

Therefore, in this paper we propose a different approach to extract and separate the underlying
components from the original data directly.

Since the accuracy of the noise and denoised data separation and extraction process affects critically
the generalizability of the models fitted, appropriate tools need to be selected. Traditional data denoising
techniques include spectrum analysis methods such as simple averages, Kalman filtering and Fourier
transforms, etc. However, these methods did not receive significant attentions in the mainstream
empirical research literature. This is due to the insignificant performance improvement during the
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application of these approaches, as they are mostly based on spectrum and frequency scale domain
while ignoring the multi-scale heterogeneous structure in the data. More specifically these approaches
would result in two critical issues: Firstly, the data may be distorted during the denoising process due
to the single time horizon approach, and there are patterns left in the noises removed, which would
reduce the forecasting accuracy if ignored. The denoising algorithm with different parameters further
complicate this situation. Secondly, following HMH, the noises may vary in level in the multi-scale
domain for multi-scale data structure, corresponding to different investment strategies and time horizon.
To tackle these issues, the analysis and modeling of the individual components behaviors, including
both the separated denoised data and noises, in the multi-scale domain need to be conducted during
the denoising process, as it would reduce the risk of using biased estimates with lower goodness of
fit and contributes to the overall performance improvement. For example, the behavior of transient
data component is significantly different from the behavior of data component driven by normal market
activities. Each of them need to be modeled separately to avoid the biased estimate due to violations of
assumptions of the unsuitable models.

Thus the wavelet based denoising algorithm is proposed to serve as a promising alternative modeling
tool to extract heterogeneous data features of distinct characteristics, in a real time manner without the
need of insider information. This is a more refined approach compared with the normal spectrum or
frequency domain approach taken by traditional data denoising techniques such as spectrum analysis
methods, e.g., simple averages, Kalman filtering and Fourier transforms, etc.

Applying the wavelet based time frequency analysis in the higher dimensions, a two stage Multivariate
Wavelet Denoising Portfolio Value at Risk Model (MWDNPVaR) is proposed to track portfolio risk
evolution in the higher dimensions space and estimate portfolio VaR.

Accordingly the numerical procedure for the two stage hybrid estimation process is listed as follows.
In the first stage, the multivariate wavelet analysis based denoising algorithm is used to separate the

noises matrix from the original data matrix, leaving the rest data matrix with more distinct characteristics.
Then the multivariate time series models are used to extract the denoised and noise matrix

respectively, resulting in different model parameters tuned for distinct data characteristics and
dependency structure.

In the second stage, since we assume that the denoised and noise data are independently distributed,
the conditional means are aggregated from the individual conditional mean forecast matrix forecasted
for both denoised and noise data components as in (19).

Rt = RD,t +RN,t (19)

where Rt is the aggregated conditional mean forecast at time t, RD,t and RN,t are conditional mean
forecasts for both denoised and noise data respectively, at time t.

As the wavelet decorrelates the data series, suppose data series across different scales are independent.
Thus the variance-covariance matrix can be aggregated from the individual variance-covariance matrix
forecast at different scales as in (20). ∑

t
=

∑
D,t

+
∑

N,t
(20)
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where
∑

t is the aggregated conditional variance-covariance forecast matrix at time t,
∑

D,t and
∑

N,t are
conditional variance-covariance forecast matrix for both denoised and noise data respectively, at time t.∑

t = Cov(Xt, Yt) is the covariance matrix at time t, Cov(XD,t, YN,t) = 0 and Cov(XN,t, YD,t) = 0.
Then, suppose a unit worth portfolio investment with ω weights and one day holding period with

the forecasted conditional mean and covariance matrixes, we follow the traditional variance-covariance
approach for estimating portfolio V aR as in (21).

V aR(a, t) = −wRt +

√
ωt

∑
t
ωTt zα (21)

4. Empirical Studies

4.1. Data and Descriptive Statistics

Empirical studies are conducted in the US West Texas Intermediate (WTI) and Europe Brent markets,
which are the marker markets where most trading and transactions are conducted. Together they form
essential part of the crude oil portfolio. The data source is the Energy Information Administration,
Department of Energy, US. The data set covers the same date range from 2 January, 2002 to 1 October,
2009 for both markets. The starting date for the data set is chosen since the equilibrium price level has
shifted to a new regime since 2002. The potential cause is that the balance between the demand and
supply of crude oil is increasingly constrained by its limited and scarce nature in recent years, due to
the increasing demand and steady level of supply, as well as the wave of liberalization and globalization.
Meanwhile, this time period would reduce the impact of previous direct systematic market disruptions
such as the Gulf war, the minimum. The end date for the data set is chosen based on data availability.
However, this results in different number of daily observations for each market respectively, i.e., 1939
for WTI market and 1996 for Brent market, as normal trading are interrupted at different time points
due to different trading regulations and holidays. For the purpose of constructing a valid portfolio in
both market, only observations for the valid trading days in both markets are retained in the data set,
i.e., if trading in either one market is disrupted with holiday or regulations, observations for this day are
excluded in both markets as no valid portfolio can be constructed. This results in 1939 observations. We
assume a one dollar investment portfolio with equal holding positions, i.e., 50% in the WTI market
and another 50% in the Brent market. The data set is divided into three subsets, i.e., the training
set for determination of model parameters (40%), the model tuning set to select and determine the
empirically optimal model specifications (20%) and the test set for the out-of-sample test to evaluate
the performance of different models (40%). This results in 776 daily observations for out-of-sample test,
yielding statistically significant results. The one day ahead forecast is performed using rolling-window
method. The size of the window is 775 to cover the relevant information available. As autocorrelation
and partial autocorrelation function indicates the trend factors, the daily prices are log differenced at the
first order to remove them as in yt = ln pt

pt−1
. We assume one day holding period to conduct one step

ahead PVaR estimations.
The descriptive statistics for both markets are listed in Table 1.
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Table 1. Descriptive statistics and statistical tests.

Data rWTI rDN,WTI rN,WTI

Mean 0.0011 0.0011 0
SD 0.0227 0.0160 0.0160

Skewness −0.4177 −0.4975 0.0288
Kurtosis 4.8569 6.4738 3.2942
JB Test 0 0 0.1064

BDS Test 0.0037 0 0
Data rBrent rDN,Brent rN,Brent

Mean 0.0011 0.0011 0
SD 0.0219 0.0165 0.0144

Skewness −0.1009 −0.4202 0.0069
Kurtosis 4.3219 6.2835 2.8970
JB Test 0 0 0.5000

BDS Test 0.6313 0 0

Descriptive statistics in Table 1 show some interesting stylized facts. On the aggregated level, the
distribution of the original data approximates the normal distribution, as indicated by four moments.
However, the rejection of the null hypothesis for Jarque–Bera (JB) test of normality suggests the
deviation of return distribution from the normal distribution [81]. The rejection of the null hypothesis
for BDS test suggests the existence of unknown correlations, potentially nonlinear dynamics, in the
data [82]. However, compared to descriptive statistics of individually denoised data series in Table 1, the
multivariate denoising algorithms extract correlated denoising data and noises data. The paired data in
both markets exhibit similar descriptive statistics, suggesting that they are governed by correlated or the
same underlying DGP.

Figure 1 shows the surf plot of return series in both markets.
Results in Figure 1 show that multivariate wavelet analysis effectively separates data of distinct

characteristics and shapes. The middle figure for denoised data show distinctively different shapes and
behaviors than the right figure for noise data. Behaviors of both of them are different than the left figure
for the original data. Interestingly, these figures show that some of the data features in the left figure
are signified in the middle figure while others are signified in the right figure. For instance, the abrupt
changes in the left figure are mostly captured in the middle figure.

4.2. Multi-scale Analysis of Correlation of Portfolio

As we argue that the correlation between different markets consists of varying strength of correlations
at different scales, the cross correlation wavelet analysis is used to analyze and illustrate the multi-scale
structure of correlation movements. The rolling windows over which the correlation is calculated is 775.
For the portfolio data series decomposed at scale 8 with Daubechies 8 wavelet family, correlation for
data series at the first three levels along with the correlation for the original portfolio are shown in the
scatter plot in Figure 2.



Energies 2012, 5 1032

Figure 1. The surf plot of the original, denoised and noise data.

Figure 2. Dynamic correlation between WTI and Brent markets at different scales.
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Experiment results in Figure 2 show that the correlation between WTI and Brent market is
dynamically changing over the entire investment time horizon, between 0.44 and 0.6. This justifies
the use of DCC-GARCH model, in which the dynamic correlation assumptions better conform to the
real data.

Using wavelet analysis, the underlying structure of correlation is recovered when relating the strength
of correlation to the investment time horizon. For instance, over the short term investment time horizon,
the correlation is relatively low for these particular portion of markets. We also observe strong correlation
between particular portion of both markets over the medium to long term time horizon.

In addition to the multi-scale correlation structure, there are also heterogeneous structure for the
correlation evolution, i.e., the correlation between different markets may be influenced by underlying
correlations of different strength and characteristics. Therefore, we further use the cross correlation
wavelet analysis to analyze and illustrate the heterogeneous correlation movements. The original,
denoised and separated noise correlation between WTI and Brent market are shown in the scatter plot
in Figure 3.

Figure 3. Dynamic correlation between WTI and Brent markets.
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Experimental results in Figure 3 show that correlation for the extracted denoised data series exhibits
time varying behavior at higher range between 0.75 and 0.95, while correlation for the noise data series
also exhibits time varying behavior at lower range between −0.15 and 0.1. This shows that under
the HMH framework, the multi-scale heterogeneous structure of correlations can be recovered using
wavelet analysis to extract dependency structures of distinct nature, which drives the dynamic correlation
behaviors. In this case, they are roughly categorized into denoised and noise parts to signify their distinct
characteristics. Therefore they need to be modeled using different model specifications and parameters.
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These experiments signify the multi-scale and heterogeneous correlation structure as important
stylized facts that need to be incorporated during the modeling process. Wavelet analysis based denoising
algorithm provides an interesting alternative to uncover the multi-scale heterogeneous correlation
structure, by projecting the original data into different time scales and extracting different denoised
and noise components at these scales.

4.3. Performance Evaluation

The performance of the proposed MWDNPVaR model is evaluated in the empirical studies in the
marker WTI and Brent market, against benchmark models. In this paper, we use two models as
benchmark models, i.e., the well accepted EWMA as the de facto industry standard and DCC-GARCH
due to its theoretical superiority. The generalizability of the proposed model models is evaluated
against benchmark models in out-of-sample forecast tests, using the Kupiec backtesting procedure for
unconditional risk coverage for reliability of estimates as well as MSE and Clark–West test of predictive
accuracy for the accuracy of estimates [83,84].

The frequency based approach, or the so-called unconditional coverage approach, as suggested by
Kupiec, tests the statistical significance of the patterns of VaR exceedance, i.e., whether the size of the
loss is greater than the estimated VaR values. The null hypothesis for the Kupiec test is that the proposed
model is the correct one and corresponds to the theoretical risk coverage. If the model is acceptable,
the number of tail losses x should follow binomial distribution. Thus, at the given total number of
observations n and confidence level p, the likelihood ratio statistics is calculated as in (22):

LRUC = −2ln[(1− p)n−xpx] + 2ln[(1− x

n
)n−x(

x

n
)x] (22)

The Kupiec likelihood ratio test statistics conforms to the χ2(1) distribution.
The Kupiec backtesting procedure is intuitively and computationally appealing. However, it relies

entirely on frequency of losses information and ignores temporal pattern of exceedances and the
size of losses. Thus, it suffers from lower level of discriminatory power for small sample sizes.
Therefore backtesting procedures addressing other loss exceedances patterns are developed such as the
one proposed by Christoffersen to test for the temporal behavior of losses [85]. However, when the
sample size is sufficiently large, the Kupiec backtesting procedures would offer an acceptable level of
discriminatory power between good and bad models. Therefore, it is adopted in this paper to backtest
and evaluate different models.

The MSE is the simple statistics measuring the deviation of forecasts from actual observations, as
T−1

∑T
i=1 ε

2
i , where εi = ŷi − yi.

Diebold Mariano test of equal predictive accuracy is conventionally used to test the statistical
significance of the differences of empirical losses between competing models and benchmark models,
based on Mean Squared Prediction Error (MSPE). However, it is found that the originally proposed
test statistics is upward biased heavily if models tested are nested. Thus the Clark–West test of
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equal predictive accuracy is proposed to incorporate this important nested model structure in forecast
evaluation problems and adjust for the DM statistics as in (23).

CW =
d

P
√
V̂

(23)

d =
1

P

T∑
t=R+h

d∗t , d
∗
t = e21t − e22t + (ŷ1t − ŷ2t)

2

V̂ =
1

P

T∑
t=R+h

(dt − d)+ 2

P

m∑
j=1

ω(j,m)
T∑

t=j+r+h

(dt − (d))(dt−j − d)

d is sample mean while P is the sample size.
The null hypothesis for the test is: H0 : E(d∗t ) = 0, i.e., equal predictive accuracy or MSPE, for

the proposed model against the benchmark models nested. The test statistics has a asymptotically
normal distribution.

4.4. Experiment Results

In this study, all models are implemented via the Matlab software package from the Mathworks
corporation. As confirmed by numerous empirical studies, the lag order for DCC-GARCH model is
set to be 1 and 1 based on the parsimony principle. Since we assume no particular distribution for data
and there lacks formal methodology to test the goodness of fit of different wavelet family for the data,
we test the in-sample performance of the models with different specifications with the reserved model
tuning set to determine model specification. The size of in-sample model tuning set for the selection of
model specification is 387. Table 2 lists the in-sample experiment results for the number of exceedances
for MWDNPVaR model with different specifications including scales, wavelet basis and shrinkage
algorithm. The number of exceedances for different confidence levels Ncl, (cl = 95%, 97.5%, 99%)

are listed in the parenthesis as (N99%, N97.5%, N95%). The number of exceedances for EWMA and
DCC-GARCH model are (1,4,10) and (3,12,18) respectively. Table 3 lists the p value of Kupiec
backtesting procedure for exceedances observed.

Table 2. Exceedances for different model specifications.

Scale DB2-H DB2-S SYM2-H SYM2-S COIF2-H COIF2-S DMEY-H DMEY-S
1 (4,12,21) (3,9,18) (3,8,20) (1,8,20) (3,8,16) (4,9,14) (3,13,19) (2,5,18)
2 (2,12,29) (4,12,17) (3,11,23) (4,9,22) (5,11,15) (4,7,14) (5,8,20) (4,6,17)
3 (5,13,23) (5,9,14) (4,10,20) (4,12,24) (6,10,20) (1,2,12) (2,12,23) (2,9,20)
4 (5,8,22) (5,9,24) (2,7,17) (5,7,13) (9,22,33) (5,11,25) (6,10,15) (1,5,22)
5 (5,9,16) (5,14,26) (1,5,19) (4,8,18) (4,11,24) (4,8,18) (4,8,18) (6,12,20)
6 (2,7,17) (4,9,19) (3,6,19) (2,12,23) (1,6,16) (4,11,20) (3,8,17) (2,3,13)
7 (4,13,22) (3,7,15) (2,7,20) (2,4,16) (0,4,9) (5,7,16) (4,11,23) (5,11,19)
8 (3,9,14) (4,10,24) (4,10,18) (3,9,14) (4,6,19) (3,8,19) (3,7,24) (5,10,19)
9 (5,10,17) (3,11,20) (2,6,19) (5,10,21) (5,8,19) (4,13,22) (1,6,14) (4,9,27)
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Table 3. P value of Kupiec backtesting procedure for the range of exceedance values.

N99% P99% N97.5% P97.5% N97.5% P97.5% N95% P95% N95% P95% N95% P95%

0 0.0053 4 0.0366 11 0.6728 9 0.0072 17 0.5760 23 0.4078
1 0.0805 6 0.1987 12 0.4653 10 0.0166 18 0.7501 24 0.2951
2 0.2924 7 0.3600 13 0.3032 13 0.1162 19 0.9348 25 0.2064
3 0.6436 8 0.5742 14 0.1864 14 0.1902 20 0.8801 26 0.1396
4 0.9473 9 0.8240 15 0.2916 21 0.7041 27 0.0914
5 0.5807 10 0.9162 16 0.4211 22 0.5449 29 0.0355

In Table 3 Ncl, (cl = 95%, 97.5%, 99%) refers to the number of exceedances at different confidence
levels, Pcl, (cl = 95%, 97.5%, 99%) refers to p value of Kupiec backtesting procedure at different
confidence levels. Experiment results from Table 2 show the different in-sample performance for
the proposed MWDNPVaR, using different model parameters. The three numbers in the parentheses
correspond to exceedances at three different confidence levels, i.e., 99%, 97.5% and 95%. The
attempted model parameters are as follows: 4 different wavelet families including Daubechies 2
(DB2), Symlet 2 (SYM2), Coiflet 2 (COIF2) and DMEY 2. Hard and soft thresholding algorithm.
Decomposition levels from 1 to 9. The p value of backtesting procedure is (0.0805, 0.0366, 0.0166)
for the EWMA model and (0.6436, 0.4653, 0.7501) for the MGARCH model. Using exceedances
and their associated Kupiec backtesting statistics as performance measure as in Tables 2 and 3, we
determine the optimal model specification demonstrating the highest level of reliability, as indicated
by the higher p value for the out-of-sample test, i.e., Symlet 2 using hard thresholding algorithm
at decomposition level 3. The shrinkage algorithm is minimax threshold. The thresholding is
conducted in a level dependent manner. The p value of backtesting procedure for the chosen model is
(0.9473, 0.9162, 0.8801).

The reliability performance measure of the proposed algorithm against alternative benchmark models
are listed in Table 4.

Table 4. Reliability comparison of different models.

Models CL Exceedance KTpvalue

99% 32 0
EWMA 97.5% 52 0

95% 67 0
99% 8 0.9313

DCC-GARCH 97.5% 29 0.0395
95% 52 0.0383
99% 7 0.7804

MWDNPVaR 97.5% 20 0.8908
95% 39 0.9737

Experiment results in Table 4 show that the proposed MWDNPVaR algorithm improves the reliability
significantly compared with the traditional EWMA and DCC-GARCH model. The exceedances of the
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MWDNPVaR algorithm decreases substantially across all confidence levels. This result is statistically
significant as confirmed by the significant p value. We also observed significantly improved p value at
both 97.5% and 95% confidence levels from the Kupiec test statistics.

The performance improvement is attributed to the introduction of multivariate wavelet denoising
algorithm as the data separation tool. More specifically, this is mainly attributed to the use of multivariate
wavelet denoising algorithm to separate data and noises, taking into account their distinct behavior
patterns. It is also attributed to the individual modeling of the separated components in the multi-scale
time domain, taking into account the heterogeneous data structure.

We further conduct experiments to investigate the predictive accuracy of the proposed algorithm
against benchmark alternatives. Results from experiments are listed in Table 5.

Table 5. Predictive accuracy comparison of different models.

MSE CW
p−value,EWMA

CW
p−value,DCC−GARCH

99% 0.0028 N/A 1
EWMA 97.5% 0.0022 N/A 1

95% 0.0018 N/A 1
99% 1.1391 1 N/A

DCC-GARCH 97.5% 0.8594 1 N/A
95% 0.6561 1 N/A
99% 18.7991 1 1

MWDNPVaR 97.5% 14.1771 1 1
95% 10.8310 1 1

Experiment results in Table 5 show that the proposed MWDNPVaR achieves inferior predictive
accuracy than the benchmark EWMA and DCC-GARCH based models, as measured by larger MSE.
However, the performance gap is not statistically significant, as shown by the failure to reject the null
hypothesis for Clark–West test of predictive accuracy. This implies that the predictive accuracy of the
proposed MWDNPVaR model is at the comparable level as the traditional MGARCH based PVaR
models in asset allocations and utilization. The main purpose of the downside risk estimate as those
presented in this manuscript is to improve the reliability to allow sufficient capital allocation to cover
the potential significant capital loss due to adverse market price movement. The proposed algorithm in
this manuscript can help to estimate risks more reliably under the turbulent period with the prevalence
of transient or extreme events, at the cost of predictive accuracy, if investors are risk averse.

There are some important implications drawn from the empirical investigations in the paper. Firstly,
although previous researches show that there are increasingly diversified data features, such as extreme
events, that can not be explained by MGARCH models based on normal distribution, our results show
that it could be attributed to the heterogeneous structure of the underlying data components, potentially
much simpler than previously assumed extreme distribution. Thus based on the parsimony principle, it
is inappropriate to disregard MGARCH based models in favor of others, such as the models based on
extreme value theories. By deliberately separating and modeling the data and noise, the performance of
DCC-GARCH model can be improved further to the competent level. Secondly, the optimal performance
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is achieved when the individual components are extracted using Symlet 2 wavelet family and modeled
with different parameters. These observations support the argument that the risk in the crude oil prices
are complicated processes with a mixture of underlying DGPs. Its modeling and analysis is a tricky
issue which requires the detailed look into the underlying structure in the time scale domain. Thus
appropriate recovery of the underlying structure is critical to the further performance improvement and
more thorough understanding of the DGPs during the modeling process.

Results and conclusions are generalizable and are supposed to be valid across different data sets and
time windows, i.e., the proposed algorithm is expected to lead to improved reliability since the disruptive
noise parts are separated in the multiscale domain.

5. Conclusions

In this paper, we introduce the multivariate wavelet analysis to analyze the multi-scale behaviors
of the correlation among different markets. Then we propose a novel multivariate wavelet denoising
based approach for estimating PVaR. The superior performance of the proposed algorithm is supported
by performance evaluation in the empirical studies in the crude oil markets. This is attributed to
the separation of data and noises taking into account their multi-scale dependency structure and the
construction of the hybrid methodology incorporating these information.

The contributions of the proposed methodology is threefold. Firstly, the multivariate wavelet
analysis is introduced to analyze data and noises components in the portfolio, especially their distinct
behavioral and correlation patterns, recognizing the heterogeneous investment strategies over different
time horizons and across different markets. Secondly, the risk for the separated data and noises
components of the portfolio are modeled using DCC-GARCH model with different parameters to
emphasize their different behavioral and correlation characteristics. The incorporation of heterogeneous
investment strategies for portfolio across different markets in the time scale domain leads to improved
PVaR estimates with higher reliability. Thirdly, the proposed multivariate wavelet denoising GARCH
methodology is not sensitive to the underlying distributional assumptions and thus is more robust and
effective. Results from this research may be limited in that the level of accuracy for the boundary or
the edge set by the denoising algorithm could critically affect the performance. These can be possible
directions for future research.
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