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Abstract: Dissolved gas analysis (DGA) has been widely applied to diagnose internal 

faults in transformer insulation systems. However, the accuracy of DGA technique is 

limited because of the lack of positive correlation of the fault-identifying gases with faults 

found in power transformers. This paper presents a laboratory study on the correlation 

between oil dissolved gas formation and partial discharge (PD) statistical parameters. 

Canonical correlation analysis (CCA) is employed to explore the underlying correlation 

and to extract principal feature parameters and gases in the development of different PD 

defects. This study is aimed to provide more information in assisting the separation, 

classification and identification of PD defects, which might improve the existing 

transformer dissolved gas analysis (DGA) schemes. An application of a novel ratio method 

for discharge diagnosis is proposed. The evaluation of DGA data both in laboratory and 

actual transformers proves the effectiveness of the method and the correlation investigation. 

Keywords: partial discharges; dissolved gas analysis; canonical correlation analysis;  

fault diagnosis 
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1. Introduction 

Dissolved gas analysis (DGA) has been widely recognized as a simple, inexpensive and effective 

diagnostic technique to detect internal faults in transformer insulation systems. Various DGA 

interpretation criteria are used in practice, mainly key gas methods, ratio methods and graphic  

methods [1,2]. In the past decades, artificial intelligence techniques were studied to assist the DGA 

method, including system approaches [3,4], fuzzy system approaches [5,6], and the artificial  

neural-network and wavelet network approaches [7–9]. However, the analysis and interpretation of 

these gases is limited due to variability. The accuracy of any analysis is dependent on equipment 

parameters, such as type, location and temperature of the fault; type and rate of oil circulation, and 

design and configuration of the equipment. These DGA criteria are results of empirical evidence, not 

exact science. The main obstacle in the development of fault interpretations is the lack of positive 

correlation of the fault-identifying gases with faults found in actual transformers [10]. 

Among the failures of power transformers, partial discharge (PD) is a symptom of accelerated 

degradation of insulation systems. It refers to an electric discharge that only partially bridges the 

insulation between conductors, and which may or may not occur adjacent to a conductor [11]. Since 

the defects in the insulation system may be present in a large variety of geometrical configuration, size 

and location, the PD activity associated with any defect has a specific feature. In fact, studies show that 

the important attribute of a PD pattern has a strong correlation with the defect (fault or source) causing 

it. Those attributes might include amplitude, rise time, recurrence rate, and phase relationship of 

occurrence of a PD event [12]. As a matter of fact, PDs could not only lead to physical deterioration, 

but also chemical deterioration in the insulation system. However, few investigations have been taken 

on the gas formation of different types of PD defects, which might provide information in assisting the 

separation, classification, identification and, possibly, location of the PD source in a transformer. 

The main objective of this paper is to explore the correlation between the oil dissolved gas 

formation and PD statistical parameters. Principal parameters and gas components are also extracted. 

This paper has several novel features as follows: 

(1) An experimental system for simulation of partial discharge defects in transformers is introduced. 

This system has a function of simultaneous on-line PD pulse signal and oil sampling, including an oil 

circulation system and a temperature control system;  

(2) Since PDs are stochastic events and abundant information is hidden in the PD patterns,  

phase-resolved partial discharge (PRPD) pattern is employed in this work. Twenty-nine statistical 

parameters have been extracted to present the full characteristics of each PD for the correlation 

exploration with gas formation; 

(3) Canonical correlation analysis is employed to analyze the correlation between the vector of PD 

statistical parameters and the group of oil dissolved gas concentrations. By this method, the 

contribution of each factor to its group is also evaluated in a quantitative manner; 

(4) Based on the result of CCA, this paper proposes a novel ratio method for discharge fault 

diagnosis in actual transformers. It provides an application in the practical environment of a 

transformer. 
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2. Simulation Test for Typical Partial Discharge Defects 

2.1. Test Setup  

2.1.1. Simulating Oil Tank 

In order to make for a better consistency between the PD simulation test environment and the actual 

case in a simple oil-insulated transformer, a simulation system was designed, shown in Figure 1. It has 

the following features: 

(1) An oil circulation system was designed in this simulation. To ensure an even distribution of both 

temperature and dissolved gases in the oil tank, a pump was used for the oil circulation. The flow rate 

was set to 0.8 L/min during the test;  

(2) This system has a temperature control function. A temperature sensor was installed in the oil 

tank and the heaters were placed in a large incubator. During the test, the temperature of the oil was set 

to 60 °C, which was similar to a typical temperature of actual transformers in service [13]. The oil in 

the tank was heated by heat exchange with the air in the incubator;  

(3) Online oil sampling is available in this system, which ensures that the samplings of oil and PD 

signals are simultaneous.  

Figure 1. PD test setup. 

 
 

2.1.2. Artificial Detect Models for PD Tests 

This paper investigates three common standard defects in oil paper insulation. They are corona, 

surface discharge and cavity discharge. All of these artificial defects are studied for pattern recognition 

as their configuration could represent the physical shape of possible defects in dielectrics [14]. In this 

work, the term corona is used to define the partial discharge in oil, generated, in the worst case, by an 

asymmetrical electrode arrangement. This term is not to be used as a general term for all forms of 

partial discharges.  
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These two-electrode models were manufactured according to discussions related to CIGRE Method II 

and ASTM-D149-09 [15–17]. Configurations of these models are shown in Figure 2. All the electrodes 

were made of brass and the insulating papers were Kraft pressboards. All the pressboards were fully 

dried and polished smoothly before oil impregnation. The oil index satisfied the IEC 60296 [18] and 

ASTM D 3487-09 standards [19]. Details of the models are described as follows: 

(1) Surface discharge defect in oil was modeled by a pair of rod-plane electrode arrangement 

immersed in oil. A round edged rod-electrode with a diameter of 20 mm was placed on top of a  

1 mm-thick pressboard with a diameter of 80 mm. The grounding electrode had a diameter of 60 mm 

and thickness of 10 mm; 

(2) Cavity discharge defect was modeled by a pair of sphere-plane electrode arrangements in oil. 

The spherical electrode had a diameter of 3 mm and grounding electrode was the same as surface 

discharge. A cavity was made by a ring of pressboard embedded between two pressboards with the 

same diameter of 80 mm and thickness of 1 mm. The diameter of the hole was 40 mm. The insulating 

glue was employed to seal the cavity, in order to avoid the oil from penetrating into the cavity;  

(3) Corona defect was modeled by a needle-plane electrode arrangement. The needle electrode had 

a point diameter of less than 100 μm and a length of 0.2 mm. A piece of 1 mm-thick pressboard was 

placed on the grounding electrode. The distance between the needle and the pressboard was 10 mm. 

Figure 2. Two-electrode models for partial discharge (PD) tests. 

 
 

2.1.3. Experimental Procedures 

PD signals were detected according to the impulse current method based on the standard of  

IEC 60270 [20]. A discharge-free ac voltage transformer (60 kV/60 kVA) was applied to energize 

samples with a power frequency of 50 Hz. The coupling capacitors (1000 pF) facilitated the passage of 

the high-frequency current impulses. A digital instrument was used to acquire partial discharge sample 

data. The digital instrument mainly comprised of a PD detector with the overall bandwidth from  

20 kHz to 15 MHz, an amplifier, and a Lecroy Wavepro 7100 digital oscilloscope used to measure and 

store the pulse peak and phase angle of the PD signal. The sampling frequency was set to 10 MS/s 

during the test. 

PD pulse signal and DGA data were measured as a function of discharge time when the voltage was 

stable. Since the models had different configurations, their withstand voltages were varied. Before the 

tests, the test voltage for each model was determined by repetitive tests, according to that the discharge 

was near breakdown after 36 h of discharges. Generally, 20% above inception voltage Vinc should be 

chosen as the test voltage. However, the PD signal of cavity discharge and corona at this voltage often 
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lasts for a certain period and then becomes extinct.  As a result, the test voltages were 1.2 times of Vinc 

for surface discharge, 1.5 times of Vinc for cavity discharge and 1.6 times of Vinc for corona, 

respectively. Under this condition, stable PD signals could be obtained from the oscilloscope. A slow 

voltage ramp was applied to the specimens until the test voltage was arrived. Then data were sampled 

every 30 minutes until 36 h of discharges. 

2.2. Statistical Parameters of PDs 

Phase-resolved partial discharge pattern (PRPD) is the most commonly used and successful pattern 

for discharge identification. PRPD contains several distributions: the maximum pulse height 

distribution Hqmax(φ); the mean pulse height distribution Hqave(φ); the pulse count distribution Hn(φ) 

and the distribution Hn(q) of the number of discharges n as a function of the discharge magnitude q. 

Various statistical parameters are extracted from these spectra to describe the PD features at different 

discharge stages. All the above distributions of 103 groups of experimental data are drawn in this work. 

Examples of surface discharge at discharge time of 15 h and 23 h are depicted in Figure 3. 

Figure 3. PRPD Pattern spectra. (a) 15 h after surface discharge inception; (b) 23 h after 

surface discharge inception. 

(a) Hqmax(φ) Hqave(φ) 

 

 
Hn(φ) Hn(q) 

 

(b) Hqmax(φ) Hqave(φ) 

 

 
 Hn(φ) Hn(q) 
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In this work, the sampled PD signals were first processed by wavelet denoising. An adaptive soft 

thresholding strategy of “Rigrsure” (Matlab’s “rigrsure” root) was used for thresholding selection. 

Coefficients were obtained from the decomposition of PD signal at level 6 by “db6” wavelet. Then, 

statistical parameters were extracted from the four PD distributions listed in the above paragraph. 

Definitions of these statistical parameters can be found in [14,21]. According to the PRPD pattern 

distributions, statistical parameters of each distribution were calculated. The result of surface discharge 

at discharge time of 15 h and 23 h is shown in Table 1. 

Table 1. Statistical parameters of PD histogram. 

15 h of 
discharge 

sk− sk+ ku− ku+ pe− pe+ asy cc 

Hqmax(φ) 0.2946 0.3538 3.0298 3.3077 39.0000 32.0000 1.0101 0.8297 
Have(φ) 0.2013 0.3050 1.8716 2.1127 39.0000 32.0000 0.9807 0.6876 
Hn(φ) 0.1766 0.2354 2.7575 2.8397 27.0000 20.0000 0.8623 0.4058 

Hn(q) 
Sk Ku Pe α β 

2.0915 4.0213 58.0000 0.0261 0.6138 

23 h of 
discharge 

sk− sk+ ku− ku+ pe− pe+ asy cc 

Hqmax(φ) 0.4159 0.4071 2.9269 2.5022 40.0000 38.0000 0.9445 0.7832 
Have(φ) 0.3874 0.3902 2.8713 1.0782 40.0000 38.0000 0.8655 0.7643 
Hn(φ) 0.1985 0.2096 2.5797 2.6395 23.0000 18.0000 1.0355 0.1006 

Hn(q) 
Sk Ku Pe α β 

2.5007 5.4836 58.0000 0.0494 0.4287 

sk: skeweness; ku: kurtosis; pk: the number of peaks; asy: asymmetry; cc: cross-correlation coefficient;  

Alpha, beta: parameters of Weibull distribution; +: positive cycle; −: negative cycle. 

2.3. Dissolved Gas Analysis 

In accordance of IEC 60567 [22] and ASTM D3612 [23], dissolved gas analysis was carried out, 

including five steps: sampling, carrier gas injection, degassing, gas extraction and analysis by 

chromatography. In this test, 40 mL oil was taken as a sample. Five mL of nitrogen was injected in 

each sample as the carrier gas. After degassing, 1 mL of mixture gas sample was extracted and 

analyzed by chromatography. In case of slight differences might exist among the results of the same oil 

sample over a short period of time, three mixture gas samples were analyzed. The final result was the 

mean arithmetical value of the three results. It consisted of concentrations of seven gas components in 

parts per million (ppm): hydrogen H2, carbon monoxide CO, carbon dioxide CO2, methane CH4, 

ethane C2H6, ethylene C2H4, acetylene C2H2. The detection accuracy of gas concentration is shown in 

Table 2, which meets the requirement of standards [22,23]. 

Table 2. Detection accuracy of dissolved gas components.  

Gas H2 CO CO2 CH4 C2H6 C2H4 C2H2 

Detection accuracy of gas 
concentration(ppm) 

2 1 5 0.1 0.1 0.1 0.1 
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3. Correlation Analysis 

Canonical Correlation Analysis (CCA) is a method of correlating two multidimensional variables. 

This method was first proposed by Hotelling in 1936 [24]. CCA searches for the basis vectors for two 

sets of variables such that the correlations between the projections of the variables onto these basis 

vectors are mutually maximized. But this approach has not been widely used until recent years [25]. 

The problem of huge matrix calculations has been solved by the development of computer technology. 

Then, CCA is now applied to feature extraction [26], data fusion [27], and face classification [28], etc. 

However, few investigations have been done in the field of electrical engineering. Based on the 

principle of CCA, this paper proposes a novel approach of exploring the correlation between PD 

statistical parameters and concentration of gas components.  

3.1. Canonical Correlation Analysis 

CCA can be seen as using complex labels as a way of guiding feature selection toward the 

underlying multiple correlations between two multivariable sets. In general terms, assuming two sets 

of multivariable samples are observed, they are denoted as vector X=[x1,x2,…,xn]   Rp×n and vector 

Y=[y1,y2,…,yn]   Rq×n. Another two vectors wx   Rp and wy   Rq are defined as the directions of X 

and Y, respectively. Canonical correlation is to choose appropriate wx and wy to maximize the 

correlation coefficient ρ between the two projections of T
xw X and T

yw Y. The expression of ρ is shown in  

Equation (1): 
[ ]

[ ] [ ]

T T
x y

T T T T
x y x y

E w XY w

E w XX w E w YY w
 

[ ] [ ]

T
x xy y

T T
x xx x y yy y

w C w

E w C w E w C w
  (1)

where E[f(x,y)] means empirical expectation of the function f(x,y); Cxy = XYT   Rp×q is the covariance 

matrix of X and Y. 

Given that the dimensions of wx and wy do not affect the value of canonical correlation coefficient ρ, 

one can solve this problem by the constrained optimum solution, shown as Equation (2): 

max

. . 1; 1

T
x xy y

T T
x xx x y yy y

w C w

s t w C w w C w




  
 (2)

By solving this equation, the multivariable vectors U1 = 1
T
xw X and V1 = T

yw Y are defined as the first 

pair of canonical variables; wx1 and wy1 are defined as the first pair of canonical weights; ρ1 is the first 

canonical correlation which values the correlative strength between the two canonical variables. If the 

first canonical variables are not fully represent the information between the two original variables, the 

second canonical variables need to be solved similar as the first one, until the kth canonical variables. 

Any canonical variables should be orthogonal to the others. To better interpret canonical correlation, 

significance analysis is always employed to extract primary canonical variables. 

3.2. CCA Procedures in This Experiment 

Based on the principle of CCA, this paper proposes a procedure of investigating the underlying 

correlation between PD statistical parameters and dissolved gas components formation. In order to 
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eliminate the deviation by the units of variables, a step of normalization was taken before CCA. In this 

study, the input multivariable vector X and Y were the normalized results of the PD statistical 

parameters and concentrations of gas components, respectively. All the codes for this processing 

program were developed in the Matlab software (version 2010 b). The flowchart of this experiment is 

shown in Figure 4. 

Figure 4. Flowchart of the experimental procedure. 

 

4. Results and Discussion  

4.1. Gassing Tendency of PDs 

Establishing a baseline is an important procedure for dissolved gas analysis. Before tests, the 

unused transformer oil was heated to the test temperature. Then, transformer oil was sampled every 6 h 

for dissolved gas analysis. Without discharge, those gases remained constant at a low level.  

Since CO2 are dissolved in the oil in the heat exchange process by air, the concentration of CO2 

dissolved in oil had a larger magnitude than any other gas. Dual axis plot is employed in this work for 

better observation. 
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Gassing tendencies of different PD models were illustrated in Figure 5. The inception voltages of 

surface discharge, cavity discharge and corona were 14.7 kV, 5.1 kV and 16 kV, respectively. From 

this figure, one can easily observe that the concentration of H2 and C2H2 boosted when the discharges 

became high intensity. In the case of cavity model, the concentration of C2H2 was larger than that of 

H2 at the latest stage. In the corona model, although the intensity of discharge was constantly high, the 

gases remained steady at a comparatively lower value. Referring to the suggested guides, these gas 

concentrations were under the limits when the PDs were in the early and middle stages. That suggested 

that the PDs at these stages cannot be diagnosed by the existed guides. However, these PDs were 

intense enough to cause damage to the insulation system. For example, in the corona case, the apparent 

discharge magnitude reached 400 pc when the discharge time was 11.5 h. Also, the curve associated 

with any defect had a specific feature. Discussion would be presented in the next two sections with the 

results of CCA. 

Figure 5. Plots of gas components vs. discharge time of different PD models. (a) Surface 

discharge gassing tendency; (b) Cavity discharge gassing tendency; (c) Corona  

gassing tendency. 

(a) 

 
(b) 
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Figure 5. Cont. 

(c) 

 

4.2. CCA Results  

By means of CCA, the relationship between PDs and their dissolved gas formation was further 

studied. To illustrate the CCA results, the case of surface discharge is discussed first. In CCA, the 

linear correlation between the two groups could be measured by the correlation coefficient. Besides, 

similar to principle component analysis (PCA), principle factors of each group are extracted by the 

measurement of canonical weights. 

Seven pairs of canonical variables were obtained according to the procedure. Results of CCA and 

significance test are shown in Table 3. From this table, the first three canonical correlations were larger 

than 85%, which indicated that there was a strong correlation between the group of PD parameters and 

the group of gas formation. For better evaluation, three common distributions were employed in the 

significance test: Wilk’s lambda, Chi-square and F distribution. By significance test, only the first two 

pairs of canonical variables had a significance level below 5%. Therefore, the first two pairs of 

canonical variables were selected for further correlation analysis. Since the dimensions of the two 

groups of variables were large, histograms were employed to express the canonical weights for better 

understanding. The two groups of canonical weights of surface discharge are shown in Figure 6. In the 

first canonical weights of chart Figure 6a, sk − max had the largest absolute weight value among all the 

statistical parameters. Then, there in turn came sk − ave (negative value), pk + n and pk − ave (negative 

value). In the gaseous canonical weights, C2H4 had the largest absolute value (negative). After this, 

there came C2H6, CH4 (negative) and H2. From the results, one can observe that the degree of 

skewness and number of peaks had a strong correlation with evolved gases, mainly C2H4, C2H6, CH4 

and H2. The four gases were produced along with the development of surface discharge. Also, the 

weights of sk − ave, pk − ave, C2H4 and CH4 were all negative, which meant that the productions of 

C2H4 and CH4 had positive correlations with surface discharges in the negative semi-cycle. In a similar 

way, discharges in positive semi-cycle were more associated with C2H6 and H2. In the second 

canonical weights, it had a similar meaning with the first group although the correlation between  

sk + ave and C2H2 was emphasized.  
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Table 3. Results of CCA and significance test of surface discharge. 

First canonical 
variable 

Canonical 
correlation 

Significance level 
for Wilk’s lambda 

Chi-square 
statistic 

Significance 
level for Chisq

F statistic  
Significance 
level for F 

1 0.9667 <0.001 217.7 <0.001 1.890 <0.001 
2 0.9465 0.0012 155.5 0.0059 1.491 0.0313 
3 0.8859 0.0113 103.9 0.1509 1.140 0.2881 
4 0.8408 0.0527 69.04 0.4420 0.9404 0.5982 
5 0.7556 0.1798 40.96 0.7542 0.7382 0.8493 
6 0.7257 0.4191 21.42 0.8744 0.5810 0.9308 
7 0.3387 0.8853 3.110 0.9989 0.1573 0.9994 

Through CCA and significance test, the results of 3 PD defects were depicted in Figure 7. 

Canonical correlations of cavity discharge, surface discharge and corona were 0.9988, 0.9667 and 

0.9971, respectively. It suggested that PDs’ statistical parameters were strongly correlated to the gases 

dissolved in the oil. It can also be seen from Figure 7 that a certain gas formation by a certain PD had 

its own features, too. 

Figure 6. Histograms of canonical variables’ coefficients of surface discharge; (a) PD 

statistical parameters; (b) oil dissolved gas components.  

(a) 

(b) 
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Figure 7. Histograms of canonical variables’ coefficients of PD models (a) PD statistical 

parameters; (b) oil dissolved gas components. 

(a) 

 

(b) 

 

By CCA, the most representative parameters of PD information were selected. In the cavity 

discharge, they were ku + max, pk + max and asy − ave. And in the corona model, they were ku + ave, 

ku − n and ku + max. Also, the principle characteristic gases of cavity discharge were C2H4, H2 and 

C2H2 while those of corona were C2H4, CH4 and H2. In general, the gas formation of cavity discharge 

model was more explicit than those of others. 

4.3. Analysis of Oil Dissolved Gas Formation with PDs 

Based on the tendencies of gas formation and results of CCA, the following discussions  

are presented: 

(1) C2H4 has the largest correlation with the development of all the three PDs among the gas 

components. According to Halstead’s thermal equilibrium partial pressures as a function of 

temperature, C2H4 has a large formation rate in the temperature interval between 500 °C to 800 °C [29]. 

And the formation is strongly dependent on the temperature. This temperature caused by joule heat of 

PDs has fallen into this area. Therefore, the detection and proper diagnosis method of C2H4 could be 

used to identify the intensity of PDs; 
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(2) With the development of PDs, large amounts of H2 and some CH4 were produced. However, the 

correlations between the two gases and PD parameters were smaller than C2H4. Therefore, these two 

gases could be used as a criterion of determining the existence of PDs. However, it might be difficult 

to decide the stage (intensity) of PDs with this information; 

(3) Among the three defects, surface discharge has the most symmetrical electrodes and the 

discharge signal distributes more evenly in both semi-cycles. As described in the last section, the most 

representative statistical parameters of surface discharge are sk and pk. According to the meanings of 

PD statistical parameters, sk (skewness) is a measure of asymmetry of the PD signal to the normal 

distribution. It means that the PD signal spreads to phase 0°and 180° when sk+ is bigger and sk− is 

smaller. Combined with the increase of pk (peak) numbers, the surface discharge becomes intensifier. 

In addition, C2H6 has a larger correlation with the surface discharge than the other discharges; 

(4) Compared to the surface discharge model, the cavity discharge model has more asymmetrical 

electrodes. Therefore, the discharge inception appears at around the phase 270°. Besides, the discharge 

in the negative semi-cycle is more intense than that in the positive semi-cycle. According to the results 

of CCA, parameters ku and pk contain the primary information about the intensity of cavity discharge. 

From a statistical perspective, ku (kurtosis) represents the sharpness of the distribution with respect to 

the normal distribution. Larger ku means the ratio of the maximum discharge to average is larger. 

Observed in this experiment, high intensity discharge appears at a specific phase without obviously 

spreading. Consequently, ku is more appropriate to reveal the intensity of cavity discharges than 

surface discharges. Similar to surface discharges, pk and asy could also help in interpreting the stages 

of cavity discharges. Among the gas components, C2H2 has the largest correlation with cavity 

discharge, which means the discharge energy of cavity discharges is larger than the others. In addition, 

the canonical weights of CO2 and CO are larger than the other models. This phenomenon suggests that 

the cavity discharge process includes solid penetration; 

(5) The electrode system modeling corona discharges is the most asymmetrical one of all the 

defects. For this reason, the importance of ku + ave, ku − n and ku + max is highlighted. About the 

dissolved gas formation, corona has the smallest gas production and least regularity. 

5. Improved Ratio Method for Discharge Diagnosis 

According to the results, among the oil dissolved gas components the concentration of oil dissolved 

C2H4 has the largest correlation with the development of all three PDs. Dissolved gas formation of a 

certain discharge has its own feature: feature gas components of surface discharge are C2H4 and C2H6; 

feature gas components of cavity discharge are C2H4 and C2H2; gas formation of corona is smaller than 

the other two discharges. Based on these findings, major gas components can be used in the 

recognition of the stages and types of PD. The existed ratio methods are available only when the 

concentration of any gas component is larger than the dissolved key gas concentration limit. But the 

gases produced by the low energy discharge are generally not high enough for key gas ratio 

diagnostics. Similar to IEC ratio method, this paper proposes a novel ratio method for discharge fault 

diagnosis, shown in Table 4. Since corona has the smallest gas production and least regularity, this 

method is effective in diagnosis of cavity discharge and surface discharge and their stages.  
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Table 4. Improved ratio method for discharge diagnosis. 

C2H2/C2H4 ≤ 3 
Partial discharge 

C2H2/C2H4 > 3 
Late stage of discharge or arc 

C2H6/C2H2 ≤ 0.1 
Cavity discharge 

C2H6/C2H2 >0.1 
Surface discharge 

C2H6/C2H4 < 0.2 
Cavity discharge 

C2H6/C2H4 ≥ 0.2
Surface 

discharge 
C2H2/C2H4  

≤ 0.5 
Early stage 

0.5 < C2H2/C2H4 

 ≤ 3 
Middle stage 

C2H2/C2H4 

 ≤ 1 
Early stage 

1 < C2H2/C2H4  

≤ 3 
Middle stage 

For evaluating the method presented in this paper, 100 samples of DGA data are obtained by PD 

test in the laboratory. Test results are listed in Table 5. The diagnostic accuracy is above 60%, showing 

its effectiveness. It is better at diagnosing the late stages of discharges because the concentrations of 

gases are greater. 

For the better evaluation, a historical set of DGA in the actual transformers was obtained from a 

regional electrical power research institute. One hundred samples corresponding to electric discharge 

faults were selected in this test. According to the history, the stage of discharge was unknown. By this 

method, the stage and fault type of any discharge can be recognized. The accuracy is lower than that in 

the laboratory. The reason responsible for that might be in two parts. First, dissolved gas 

concentrations are accumulative data. A correct interpretation should be made based on its history. 

Only the concentration of any dissolved gas is observed changing constantly, it is useful to introduce 

the ratio methods for analysis. Second, the actual fault leading to a failure in the power transformers 

may be a combination of different kinds of faults. The dissolved gases are the result of insulation 

decomposition by all the possible faults. 

Table 5. Identifying faults under improved ratio method. 

Source of Sample Fault type Stage Successful diagnosis Diagnostic accuracy 

Laboratory Surface discharge Early stage 13/20 65.00% 

Laboratory Surface discharge Middle stage 15/20 75.00% 

Laboratory Surface discharge Late stage 8/10 80.00% 

Laboratory Cavity discharge Early stage 14/20 70.00% 

Laboratory Cavity discharge Middle stage 13/20 65.00% 

Laboratory Cavity discharge Late stage 10/10 100.00% 

DGA database Surface discharge Unknown 28/50 56% 

DGA database Cavity discharge Unknown 26/50 52% 

6. Conclusions 

(1) According to the CCA results, the correlation between the PD statistical parameters and gas 

concentrations is significant, which means that the gas formation is strongly dependent on  

partial discharges; 

(2) The representativeness of statistical parameters of PDs is related to the symmetry of electrode 

system. In a symmetrical electrode system, skewness (sk) and peak number (pk) are more 
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representative to describe the severity of a PD fault. However, kurtosis (ku) is more suitable for an 

asymmetrical electrode arrangement; 

(3) Among the oil dissolved gas components, the concentration of oil dissolved C2H4 has the largest 

correlation with the development of all three PDs. Dissolved gas formation of a certain discharge has 

its own features: feature gas components of surface discharge are C2H4 and C2H6; feature gas 

components of cavity discharge are C2H4 and C2H2; gas formation of corona is smaller than that of the 

other two discharges. When surface discharge or cavity discharge is in the late stage, the 

concentrations of C2H2 and H2 increase rapidly. 

(4) An attempt is made to develop these findings into a practical application. A novel ratio method 

for discharge diagnosis is proposed. By this method, diagnostic accuracy is above 50% through the test 

of DGA data both in laboratory and in actual transformer history. This method is not considered to be 

the sole application but aims to provide a novel and practical vision on this subject according to  

the findings.  
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