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Abstract: This paper presents look-ahead energy management system for a grid-connected
residential photovoltaic (PV) system with battery under critical peak pricing for electricity,
enabling effective and proactive participation of consumers in the Smart Grid’s demand
response. In the proposed system, the PV is the primary energy source with the battery for
storing (or retrieving) excessive (or stored) energy to pursue the lowest possible electricity
bill but it is grid-tied to secure electric power delivery. Premise energy management scheme
with an accurate yet practical load forecasting capability based on a Kalman filter is designed
to increase the predictability in controlling the power flows among these power system
components and the controllable electric appliances in the premise. The case studies with
various operating scenarios demonstrate the validity of the proposed system and significant
cost savings through operating the energy management scheme.

Keywords: photovoltaic (PV); energy storage system; smart grid; load forecasting; critical
peak pricing (CPP)
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1. Introduction

The increasing electricity demand and price and the concerns about fossil-fueled generation have led
to active research to deploy advanced energy systems using distributed generation (DG) sources such
as wind, photovoltaic (PV) power, fuel cells (FCs) supported by energy storage system (ESS). These
studies have facilitated the use of green energy, thereby reducing energy costs and concerns over the
exhaustion of natural resources while curving the carbon emissions.

Stand-alone and grid-connected premise power systems have been proposed to exploit renewable
energy sources. The stand-alone system consists only of the DG sources listed above and does not
incorporate existing grid power [1–6]. This type of system may allow electricity to be provided
free-of-charge to consumers once the practical constraints of sizing, siting and environmental concerns
are overcome. It is highly expected that the practicality of solar power particularly at the kilowatt scale
lowers the barrier to entry and helps more customers adopt it as soon as the parity with retail electricity
costs is reached. Note that this paper focuses on the grid-connected residential PV power system and its
economic benefits through operation and capital cost for installation is not included for evaluation.

On the other hand, the grid-connected system consists of some renewable DG sources, e.g., PV power
tied to the power grid [7–10]. Grid-connected systems often reinforced by the ESS seem to be practical
for harnessing alternative energy because of the the assurance of a stable power supply. In this system,
consumers are required to pay for the grid power and an active energy management plan should thus
be beneficial. However, it is interesting to note that existing systems or studies do not incorporate
schemes for optimally scheduling the use of grid power and operate rather passively in the following
typical way: (1) the system supplies PV-generated power; (2) if there is excess PV power, the system
uses it to charge the ESS; (3) if there is no alternative power, the system supplies grid power. This
schedule has been considered reasonable in the past because consumers pay for electricity based on
consumption, regardless of the time of day. However, several nations plan to start enforcing critical
peak pricing, discussed in [11], or real-time pricing, thus these variables need to be incorporated into the
grid-connected system.

Thus, we propose a grid-connected system under time-based rate program such as critical peak pricing
(CPP). This system consists of a PV, a battery and grid power. The PV provides renewable energy and
is the primary power source of the system while the battery is used for energy storage. Grid power is
assumed to be always available, thus guaranteeing the stability of the electrical power supply. We also
develop a practical load forecasting method to predict and correlate the power usage with the changing
electricity prices (peak pricing periods). This method is based on a new model considering historic load
profile, weather and the number of people in a household with a Kalman filter approach. Finally, we
design a premise energy management scheme with the proposed load forecasting model to control the
flow of power among the different system components. The proposed system uses this management
scheme to forecast the next day’s load demand for the peak period and enables economic energy use
from the PV and battery as well as inexpensive grid power. If there is no power available from PV or
battery power, the system automatically relies on the grid power.

The remainder of this paper is organized as follows. Section 2 describes the configuration and
specifications of the proposed system. Section 3 introduces the load forecasting technique based on
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a Kalman filter. The energy management scheme with load forecasting is discussed in Section 4.
Section 5 evaluates the performance of the proposed system for several practical operating scenarios
and demonstrates its economic benefits. Conclusions are presented in Section 6.

2. System Configuration and Specification

2.1. System Configuration

Figure 1. Configuration of the proposed premise energy management system.

The configuration of the proposed grid-connected system is shown in Figure 1. This research assumes
that the system consists of a 1-kW (peak) PV array as the primary energy source, which is controlled by
a maximum power point tracking (MPPT) controller, a battery for storing extra or inexpensive power,
and may use the grid power under critical peak pricing to ensure a stable supply of electricity through
220 V/60 Hz link in Korea. This grid connection guarantees high reliability, modularity and scalability
of a hybrid system [12]. The PV array with battery system and the grid can be seamlessly integrated
with advancing power electronics. Modern power converters are highly efficient in that the efficiency
becomes over 95% and thus converter losses are not considered in this research. The system is further
assumed to be equipped with weather and RFID (Radio Frequency Identification) sensors for obtaining
information on temperature, solar irradiation and the number of people in the household [13]. A core
manager (CM) is designed for determining the power flows in the system by using the load forecast and
the power from the PV and monitoring the state of charge (SOC) of the battery. Losses occurring during
charing and discharging are not included in this research. The CM commands the system components
accordingly and dictates whether PV power, battery power or grid power is consumed at the current
operating time. The CM effectively manages the battery power. For example, when there is any more
PV power than is required, the CM monitors the SOC of the battery and starts charging the battery as
needed. When greater power is needed during peak usage while the grid power is economic, the system
may start using grid power and even charge the battery for future use.
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Table 1 lists the component specifications of the proposed grid-connected system assumed to be
deployed in a typical residential premise (Figure 2). In this research, we consider a widely used PV
model as represented in Equation (1), where G is the incident irradiance, Pmp is the maximum output
power and T is the temperature. Pmp,ref , Gref and Tref are the maximum reference power, the reference
incident irradiance and temperature respectively, and γ refers to the maximum power correction factor
for temperature [14].

Pmp =
G

Gref

Pmp,ref [1 + γ(T − Tref )] (1)

Table 1. System components specifications.

Components Specification

Photovoltaic Array Maximum reference power = 1 kW, Tref = 25 °C, Gref = 1000 W/m
Battery Capacity = 0.9 kWh, Charge and Discharge rates are 0.3 and 0.9 kWh/h
Grid power Ready to be connected with 220 V, 60 Hz
Sensors Temperature, irradiation sensors and RFIDs

Figure 2. Sample of hourly electrical demand in Korea.

The PV generating power along with varying irradiance and temperature is also illustrated in Figure 3.
It manifests that higher irradiance results in larger output power of the PV array. Conversely, the
maximum power decreases with increasing temperature. In this research, it is assumed that PV keeps
providing the same power output for one hour for the convenience of demonstrating the economic benefit
in terms of cost per kWh.

The performance of the battery system for storing excess PV power or inexpensive grid power in
preparation for the peak pricing period may depend on its size but a 0.9 kWh-ESS (90% of the maximum
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PV power) is adopted in this paper. This battery is specified to have a 0.3 kW per hour charge rate and
a 0.9 kW per hour discharge rate. Finally, useful sensors are assumed to be installed in the system for
collecting data such as temperature, irradiation and the number of people in the house as used in the core
manager and load forecasting scheme.

Figure 3. The output power characteristics of a PV array under different irradiance
intensities and temperatures.

3. Load Forecasting Based on Kalman Filter

Securing the proper amount of premise power during the peak period in a CPP market is the key to
the proposed energy management system. Thus, this research incorporates load forecasting to inform
the amount of necessary power and proposes a new load model taking into consideration the number of
people in the house at the operating hour. Since there are many controllable electrical appliances that can
be turned on or off in a modern household (e.g., computers, air conditioner, washing machine, TV, etc.),
it is important to consider the number of people in the house in predicting the load demand.

3.1. Load Model

One of the most important tasks in forecasting load demand is to develop an appropriate load
model because it determines the prediction accuracy. Neural networks and parametric based methods
may be two well-known forecasting approaches [15–17]. Commonly used load models include
non-weather sensitive models, weather-sensitive models and hybrid models [18]. One may observe
many sophisticated algorithms for improving the forecasting accuracy especially for securing the grid
operations. Each curve in Figure 4 shows actual hourly load demand of a typical Korean household for
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one day. Figure 5 illustrates fluctuations in load, temperature and the number of people in the house over
the course of a day. It is evident from Figure 5 that load demand increases as temperature decreases and
the number of people in the house increases.

Figure 4. Daily fluctuations in load for the week.

Figure 5. Daily fluctuations in load demand, temperature and the number of people in
the house.
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Pursuing the practicality of the algorithm, we design a Kalman filter-based parametric model that
depends on past load demand, temperature and the number of people in the house as presented below:

E = α1 + α2En−1,day + α3En,day−1 + α4En,day−7 + α5Tn−1,day

+ α6Tn,day−1 + α7Tn,day−7 + α8Nn−1,day + α9Nn,day−1 + α10Nn,day−7

(2)

where subscripts n and day indicate an hour of the day and day itself, respectively; n = {0, 1, 2, . . . , 21,

22, 23} and day = {1, 2, 3, . . . , 29, 30, 31}. E, T and N are the load, temperature and the number of
people in the house, respectively. En−1,day corresponds to the load consumption of the previous hour on
the same day, En,day−1 is the load consumption for the same time period a day prior, and En,day−7 is the
load consumption for the same time period a week prior. T and N are treated in exactly the same manner.
α1 is a base coefficient at the hour of n, α2 ∼ α10 are the coefficients of load demand, temperature and
the number of people in the house. Every parameter is assumed to remain constant over each discrete
time period (one hour). Accordingly, 24 sets of coefficients are required to be estimated for a single day
forecasting. However, we use an average of these coefficients in our model in order to minimize the
computational complexity. Useful heuristics may be added to reinforce the accuracy of the algorithms to
accommodate special occasions or seasonal variations such as the impact of climate change.

3.2. Kalman Filtering

As indicated above, the recursive discrete Kalman filter has been used to estimate parameters of our
load model [19,20]. Consider the following discrete state equations to develop the load model:

x(k) = F (k)x(k − 1) + v(k − 1) (3)

z(k) = H(k)x(k) + n(k) (4)

where x(k) is a vector of n×1 system states, F (k) represents the n×n dimensions of the state transition
matrix, Z(k) is m× 1 measurement vector, H(k) is m×n output matrix, v(k− 1) is n× 1 system error
and n(k) is m × 1 measurement error. The noise vectors v(k − 1) and n(k) are drawn from white
Gaussian noise with zero means and no time correlations as presented below.

E[v(k)] = E[n(k)] = 0 (5)

E[v(i)vT (j)] = E[n(i)nT (j)] = 0 for i ̸= j (6)

Covariance matrices, Q1 and Q2 are also defined as follows:

E[v(k)vT (k)] = Q1, E[n(k)nT (k)] = Q2 (7)

Given a priori estimate of the state vector x̂(0) = x̂0 and its error covariance matrix P (0) = P0,
we set k = 0 and then the Kalman filter algorithm is applied to estimate the next states by recursively
computing the following set of equations.

K(k) = [F (k)P (k)HT (k)][H(k)P (k)HT (k) + Q2]
−1 (8)

x̂(k + 1) = F (k)x̂(k) + K(k)[z(k) − H(k)x̂(k)] (9)

P (k + 1) = [F (k) − K(k)H(k)]P (k)[F (k) − K(k)H(k)]T + K(k)Q2K
T (k) (10)
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where K(k) is the Kalman gain. In this Kalman filter algorithm, it is important to choose a priori estimate
of the state x̂0 and its covariance error P0 because intelligent choice helps increase accuracy and decrease
the computational complexity of the algorithm. A few measurement vector samples can be considered
as initial values for x̂0 and P0 as presented below:

x̂0 = [HT Q−1
2 H]−1HT Q−1

2 z0 (11)

P0 = [HT Q−1
2 H]−1 (12)

The discrete state equations in Equations (3) and (4) are defined for the forecasting model in the
following way:

1. The state transition matrix, F (k), is a constant identity matrix.
2. The error covariance matrices, Q1 and Q2 are constant identity matrices.
3. The state vector, x(k), has ten parameters based on Equation (2), α1 ∼ α10.
4. The time-varying output matrix, H(k), also has ten parameters derived from the load demand

profile, temperature and the number of people in the house.
5. The observation value, z(k), represents the load at time k. z(k) = H(k)x(k) takes the following

form as presented in Equation (13) as was defined in Equation (2):

z(k) = [1 E1 E2 E3 T1 T2 T3 N1 N2 N3] × [α1 α2 α3 α4 α5 α6 α7 α8 α9 α10]
T (13)

4. Premise Power Management Scheme

Figure 6. Configuration of the proposed premise energy management system.
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In this section, we describe a premise power management scheme (Figure 6) for effectively controlling
the power flows among different energy sources in the residential premise. The power management
scheme manages these sources through load forecasting, energy storage and a master manager (MM) in
the core manager. The aforementioned load forecasting is implemented in a forecasting manager (FM)
and the battery and its controller are located in the energy storage manager (ESM). The MM works with
these component managers and controls the generating sources.

The proposed scheme begins with forecasting the amount of load demand and PV generation via the
FM. This research has done hourly forecasting but it may be flexibly adjusted to the scanning rate of
input data. The FM constructs a load forecasting model as discussed in Section 3 and informs the MM
of the predicted load demand. Additionally, the FM can estimate the amount of PV power by collecting
weather information from sensors or a weather forecasting service.

In the next step, the ESM determines the way to charge the battery. It first forecasts power difference
between the PV power and power demand based on Equation (14):

Pd = P
′

PV − P
′

demand (14)

where Pd is the power difference between the forecasted PV power P
′
PV and load demand P

′

demand.
Power loss of the converters are ignored for simplicity.

At any given time, if Pd is positive, the ESM stands by until there is actual excess power to store
after the household occupants start using the electricity. The amount of excess PV power to be stored is
calculated through the following equation:

PES+ = PPV − Pdemand (15)

where PES+ is excess PV power available, PPV and Pdemand correspond to the PV power being generated
and consumed by occupants, respectively. When Pd < 0, command for securing the power reserve is
initiated based on a potential power shortage, PES− calculated by Equation (16). A reference time is
defined as tref , which is set to be three hours prior to the peak time based on battery capacity and
charging rate, i.e., the ESM completes each round of estimation every three-hours ahead of the operating
time in this research. And it is at this point that the system begins charging the battery based on PES−

for use during the peak period.

PES− = (P
′

demand − P
′

PV ) − Pcharged (16)

where Pcharged is the power stored in the battery before a given time. If PES− < 0, the battery already
has sufficient power to cover a potential shortage and thus does not require a charge using grid power.

In the third step, the MM chooses an energy source among the PV, grid and battery options. It
prioritizes the PV as the primary source, but if there is no PV power available and the given operating
hour is not within the peak pricing period, the MM uses grid power as the primary source. However,
during the peak pricing period, the MM uses battery power first, and then grid power is the last resort if
there is no battery power available.

5. Simulation Results

Simulation studies are performed using MATLAB to demonstrate the efficacy of the proposed premise
power management system. The electrical cost savings with the proposed system are evaluated with
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reference to the costs without the proposed scheme. Also the systems are assumed to be deployed
in a residential premise where four people live. Actual hourly load data measured from a typical
Korean middle-class household is used in this study. The weather data are obtained from the Korea
meteorological administration [21]. Additionally, the critical peak pricing curve is assumed to have two
peaks as presented in Figure 7.

Figure 7. An example of a critical peak pricing (CPP) curve.

After a training mode for constructing the load forecasting model, simulations are carried out for
evaluating the performance of the power management system under three different scenarios. The first
scenario is for a normal situation in which the PV generates the expected amount of power and there is
no unexpected load demand. In the second scenario, the forecasting works fine but the PV is unable to
generate sufficient power due to unfriendly weather condition. The last scenario considers a forecasting
failure so that significant discrepancy between the actual load demand and the forecasted one exists.

5.1. Training Mode to Construct load Forecasting Model

To forecast the load for the next day, initial parameters such as x0, a set of α’s, and P0 in
Equations (11) and (12) must be defined. In this simulation, we set those parameters arbitrarily. Using
these parameters and data for monthly load demands, temperature and the number of people in the house,
we run the Kalman filter to estimate values of the load model coefficients (Table 2).
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Table 2. Estimated coefficients of the proposed forecasting model.

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

0.5962 0.2373 0.2182 0.0559 0.2963 0.3962 0.1912 0.1962 0.1989 0.2991

The forecasted load demand using the estimated parameters above is presented in Figure 8 with
reference to the actual load demand, clearly indicating the accuracy of the proposed forecasting model.

Figure 8. Actual and estimated load demands.

5.2. Scenario 1

We investigate the scenario 1 using the data in Figures 9, 10 and 11. The hourly power output from the
PV is shown in Figure 12. As assumed in Section 2, the MPPT controller ensures the maximum power
output governed by solar irradiance. It is evident in Figure 13 that the FM accurately predicts the load
demand. The electricity prices increase in such periods as 1:00–11:00, 16:00–19:00 and 21:00–24:00
because the load demand is greater than the sum of the power generated by the PV and the charged
battery (See Figure 12). Thus, the occupant should use the grid power during these periods. In contrast,
from 11:00 to 14:00, the PV generates power greater than the required and charges the battery with
excess PV power. Although the power output from the PV is not sufficient to fully charge the battery,
there is no need to use the grid power from 14:00 to 16:00. The electricity price and the SOC of the
battery increase sharply between 16:00 and 19:00, indicating that the proposed system begins charging
the battery using the grid power in response to a forecasted power shortage during the peak time period
of 20:00–21:00. If the system does not charge the battery during that time, the occupants need to pay
higher price during the peak usage period (Figure 14).



Energies 2012, 5 1127

Figure 9. Daily solar irradiance fluctuations.

Figure 10. Daily temperature fluctuations.
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Figure 11. The number of people in the house over the course of a day.

Figure 12. Use of PV power, SOC of the battery and electricity price under Scenario 1.
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Figure 13. Actual and estimated load demands for Scenario 1.

Figure 14. Comparison of electricity prices in Scenario 1.

5.3. Scenario 2

Scenario 2 adopts the same loading conditions as Scenario 1 (See Figure 13), except that the solar
irradiance is zero because of unfriendly weather condition, decreasing the PV power. When there is no
PV power available, the proposed system uses battery and grid power as illustrated in Figure 15, which
also indicates that the system begins charging the battery based on the power shortage forecast during



Energies 2012, 5 1130

the peak period at the point of three hours prior to the peak time previously defined as the reference time.
Consequently, the electricity cost under this scenario is greater than that in Scenario 1. Nevertheless,
Figure 16 shows that our system brings considerable cost savings by efficiently charging the battery in
the absence of PV power.

Figure 15. Use of PV power, SOC of the battery and electricity cost under Scenario 2.

Figure 16. Comparison of electricity costs in Scenario 2.
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5.4. Scenario 3

Scenario 3 may be the worst condition, including serious load forecast error on top of the conditions
of Scenario 2 as illustrated in Figure 17. The power output from the PV, the charged power in the battery
and the electricity cost are shown in Figure 18. The battery is fully charged by 13:00 because there
has been excess power available between 11:00 and 13:00, and the power output from the fully charged
battery helps to reduce the electricity cost during the subsequent peak period. It is apparent in Figure 19
that, even in this worst case, the proposed system operates stably and helps reduce cost.

Figure 17. Actual and estimated load demands for Scenario 3.

Figure 18. Use of PV power, battery charge status and electrical cost under Scenario 3.
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Figure 19. Comparison of electrical costs in Scenario 3.

6. Conclusions

This paper has investigated a practical grid-connected residential system consisting of a PV, a battery
and grid power under critical peak pricing. The PV generates power as the primary energy source, and the
battery stores excess PV power and provides the charged power as needed. The system is grid-connected
to ensure the reliability of power delivery. An effective premise power management scheme including
load-forecasting based on the Kalman filter has also been developed. The load-forecasting model
accurately forecasts the next day’s load demand. Using the forecasting model in conjunction with the
management scheme, the proposed system controls the system components and economizes the use
of electricity by taking the CPP of grid power into account. We performed studies for three different
scenarios using actual load demand, weather and household size data in order to verify the performance
of the proposed system. The results demonstrate that the proposed system yields cost savings while
providing reliable electricity service in a CPP market.
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